

## Summary of Stag Field Environment Plan Permit WA-15-L GF-70-PLN-I-00002.01

Rev 1

| Rev No. | Date        | Owner       | Reviewer               | Approver           | Revision Notes                                                                                                   |
|---------|-------------|-------------|------------------------|--------------------|------------------------------------------------------------------------------------------------------------------|
| 0       | 22-Dec-2017 | HSE Manager | Document<br>Controller | General<br>Manager | Issued to NOPSEMA. Based on Stag Field<br>Environment Plan Permit WA-15-L accepted by<br>NOPSEMA on 13 Dec 2017. |
| 1       | 16-Feb-2017 | HSE Manager | Document<br>Controller | General<br>Manager | Revised in response to NOPSEMA's assessment<br>and comments dated 06 Feb 2018                                    |
|         |             |             |                        |                    |                                                                                                                  |



#### CONTENTS

| 1. INTI | RODUCTION9                                          |
|---------|-----------------------------------------------------|
| 1.1     | Titleholder9                                        |
| 1.2     | Contact Person9                                     |
| 1.3     | Purpose of EP Summary9                              |
| 1.4     | Activity Duration and Timing9                       |
| 2. DES  | CRIPTION OF THE STAG FIELD                          |
| 2.1     | Operations Overview10                               |
| 2.2     | Location11                                          |
| 2.2.1   | Restricted Zones and Cautionary Areas12             |
| 2.3     | Layout and Description12                            |
| 2.3.1   | Central Processing Facility                         |
| 2.3.2   | Wells and Subsea Infrastructure                     |
| 2.3.3   | CALM Buoy                                           |
| 2.3.4   | Floating Storage and Offtake (FSO) Vessel           |
| 2.4     | Operations and Process Description13                |
| 2.4.1   | Crude Oil Production                                |
| 2.4.2   | Flaring                                             |
| 2.4.3   | Produced Sand15                                     |
| 2.4.4   | Processing and Discharge of Produced Water 15       |
| 2.4.5   | Drainage Systems 16                                 |
| 2.4.6   | Inspection, Maintenance and Repair Activities16     |
| 2.4.7   | Integrity and Corrosion Control17                   |
| 2.4.8   | Utility Systems                                     |
| 2.4.9   | Well Intervention and Workover Operations18         |
| 2.4.10  | Plant Modification                                  |
| 2.4.11  | Oil Export Facility Operations                      |
| 2.4.12  | Support Vessels                                     |
| 2.4.13  | Helicopter Operations                               |
| 2.4.14  | Diving and ROV Operations                           |
| 2.4.15  | Hazardous Substances and Chemical Selection Process |
| 3. DES  | CRIPTION OF THE ENVIRONMENT21                       |
| 3.1     | Environment that May Be Affected (EMBA)21           |
| 3.2     | Regional Setting21                                  |
| 3.3     | Physical Environment                                |
| 3.3.1   | Climate                                             |

#### GF-70-PLN-I-00002.01 Rev 1

| 3.3.2  | Seawater Temperature and Salinity                               | 22 |
|--------|-----------------------------------------------------------------|----|
| 3.3.3  | Wind                                                            | 22 |
| 3.3.4  | Waves                                                           | 23 |
| 3.3.5  | Tides and Currents                                              | 23 |
| 3.3.6  | Sedimentology                                                   | 23 |
| 3.4    | Subtidal Benthic Habitats                                       | 24 |
| 3.4.1  | Operational Area                                                | 24 |
| 3.4.2  | EMBA                                                            | 24 |
| 3.5    | Intertidal Shoreline Habitats                                   |    |
| 3.5.1  | Mangroves                                                       | 28 |
| 3.5.2  | Coastal Salt Marsh                                              | 28 |
| 3.5.3  | Sandy Beaches                                                   | 28 |
| 3.5.4  | Mud Flats                                                       | 28 |
| 3.5.5  | Rocky Shorelines                                                | 29 |
| 3.5.6  | Habitats within the Operational Area and EMBA                   | 29 |
| 3.6    | Marine Fauna                                                    |    |
| 3.7    | Threatened and Migratory Species                                |    |
| 3.7.1  | Fish                                                            | 42 |
| 3.7.2  | Marine Mammals                                                  | 45 |
| 3.7.3  | Marine Reptiles                                                 | 49 |
| 3.7.4  | Birds                                                           | 51 |
| 3.7.5  | Environmental Sensitivities                                     | 52 |
| 3.8    | Protected Areas                                                 | 54 |
| 3.8.1  | EPBC Act Protected Matters                                      | 54 |
| 3.8.2  | Australian Marine Parks                                         | 56 |
| 3.8.3  | IUCN Principles                                                 | 58 |
| 3.8.4  | Key Ecological Features                                         | 58 |
| 3.8.5  | EPBC Act Protected Matters within the Operational Area and EMBA | 58 |
| 3.9    | State Marine Reserves                                           | 62 |
| 3.9.1  | State Marine Reserves within the EMBA                           | 62 |
| 3.9.2  | State Marine Reserves within the Operational Area and EMBA      | 62 |
| 3.10   | Socio-Economic Environment                                      | 65 |
| 3.10.1 | Commercial Fisheries and Aquaculture                            | 65 |
| 3.10.2 | Recreational Fisheries                                          | 68 |
| 3.10.3 | Oil and Gas Industry                                            | 68 |
| 3.10.4 | Commercial Shipping                                             | 68 |
| 3.10.5 | Tourism                                                         | 69 |
|        |                                                                 |    |

#### GF-70-PLN-I-00002.01 Rev 1

| 3.10  | .6   | Native Title                                                             | 69   |
|-------|------|--------------------------------------------------------------------------|------|
| 3.10  | .7   | Socio-Economic Values and Sensitivities within Operational Area and EMBA | 74   |
| 4.    | CON  | ISULTATION WITH RELEVANT PERSONS                                         | 77   |
| 5.    | EVA  | LUATION OF ENVIRONMENTAL IMPACTS AND RISKS                               | 90   |
| 5.1   |      | Methodology                                                              | 90   |
| 5.2   |      | Risk Ranking Process                                                     | 91   |
| 5.2.1 | 1    | Risk Matrix                                                              | 91   |
| 5.2.2 | 2    | Demonstration of ALARP                                                   | 92   |
| 5.2.3 | 3    | Demonstration of Acceptability                                           | . 93 |
| 5.3   |      | Impact and Risk Assessment for Hydrocarbon Spills Response               | 94   |
| 5.3.1 | 1    | Approach                                                                 | . 94 |
| 5.3.2 | 2    | ALARP and Acceptability Evaluation                                       | . 94 |
| 6.    | ENV  | IRONMENTAL HAZARDS AND CONTROLS                                          | 95   |
| 6.1   |      | Risk Evaluation Summary                                                  | 95   |
| 6.2   |      | Environmental Impacts, Risks and Control Measures                        | 95   |
| 6.2.1 | 1    | Planned Events                                                           | . 96 |
| 6.2.2 | 2    | Unplanned Events                                                         | 100  |
| 7.    | HYD  | ROCARBON SPILL RESPONSE ARRANGEMENTS                                     | 103  |
| 7.1   |      | Credible Worst Case Hydrocarbon Spill                                    | 103  |
| 7.2   |      | Net Environmental Benefit Analysis                                       | 103  |
| 7.3   |      | Evaluation of Spill Response Strategies                                  | 103  |
| 7.4   |      | Oil Spill Response Arrangements and Capability                           | 106  |
| 8.    | MAN  | NAGEMENT APPROACH                                                        | 108  |
| 8.1   |      | Overview                                                                 | 108  |
| 8.2   |      | Implementation Strategy                                                  | 108  |
| 8.2.1 | 1    | Environmental Performance Monitoring                                     | 108  |
| 8.2.2 | 2    | Management of Change                                                     | 109  |
| 8.2.3 | 3    | Management of Non-conformance                                            | 109  |
| 8.2.4 | 1    | Roles, responsibilities, training and competency                         | 109  |
| 8.3   |      | Incident Notification and Reporting                                      | 109  |
| 8.4   |      | Annual Performance Review                                                | 109  |
| 9.    | Refe | rences                                                                   | 110  |
|       |      |                                                                          |      |



| Figure 2-1:  | Schematic of the Stag Field                                                     |
|--------------|---------------------------------------------------------------------------------|
| Figure 2-2:  | Aerial View of Stag Field11                                                     |
| Figure 2-3:  | Location of the Stag Field12                                                    |
| Figure 2-4:  | Stag Production Field Depth Structure                                           |
| Figure 3-1:  | EMBA for Worst Case Scenario Hydrocarbon Spill                                  |
| Figure 3-2:  | Marine Habitats Surrounding the Dampier Archipelago25                           |
| Figure 3-3:  | Marine Habitats Surrounding the Montebello, Lowendal and Barrow Islands26       |
| Figure 3-4:  | Marine Habitats Surrounding the Ningaloo Marine Park North of Point Cloates27   |
| Figure 3-5:  | Biologically Important Areas for Shark and Fish                                 |
| Figure 3-6:  | Biologically Important Areas for Marine Mammals45                               |
| Figure 3-7:  | Biologically Important Areas for Turtles                                        |
| Figure 3-8:  | National Heritage Features of the Dampier Archipelago                           |
| Figure 3-9:  | State Marine Reserves and Australian Marine Parks and Key Ecological Features57 |
| Figure 3-10: | AMSA Designated Shipping Routes in the Vicinity of the Stag Field (2016)70      |
| Figure 3-11: | Commonwealth Commercial Fishing Zones in the Vicinity of the Stag Field70       |
| Figure 3-12: | State Commercial Fishing Zones in the Vicinity of the Stag Field71              |
| Figure 5-1:  | Impact and Risk Evaluation Process90                                            |
| Figure 5-2:  | ALARP Triangle                                                                  |



#### TABLES

| Table 2-1:                                                                                                                                                                                                                     | Distances from Stag Facility to Key Regional Features                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Table 2-2:                                                                                                                                                                                                                     | Stag CPF and the CALM Buoy Coordinates11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Table 2-3:                                                                                                                                                                                                                     | Typical diving and ROV Activities Undertaken at the Stag Field19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Table 3-1:                                                                                                                                                                                                                     | $\label{eq:constraint} \textbf{Environmental Values and Sensitivities for Habitats within Operational Area and \textbf{EMBA}.30$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Table 3-2:                                                                                                                                                                                                                     | Marine Fauna and Management Considerations in the Operational Area and EMBA32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Table 3-3:                                                                                                                                                                                                                     | Threatened and Migratory Species in the EMBA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Table 3-4:                                                                                                                                                                                                                     | Marine Turtle Activity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Table 3-5:                                                                                                                                                                                                                     | Seabird Biologically Important Areas that Overlap the EMBA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Table 3-6:                                                                                                                                                                                                                     | $\label{eq:constraint} \textbf{Environmental Sensitivities for Marine Fauna within the Operational area and \textbf{EMBAs}52$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Table 3-7:                                                                                                                                                                                                                     | Summary of Protected Areas within the EMBA54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Table 3-8:                                                                                                                                                                                                                     | Australian Marine Parks within the EMBA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Table 3-9:                                                                                                                                                                                                                     | Distances from Stag Facility to Key Ecological Features within the EMBA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Table 3-10:                                                                                                                                                                                                                    | Summary of Environmental Values and Sensitivities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Table 3-11:                                                                                                                                                                                                                    | Distances from Stag Facility Location to State Marine Reserves within the EMBA62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Table 3-12:                                                                                                                                                                                                                    | Summary of Environmental Values and Sensitivities for State Marine Reserves 63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Table 3-13:                                                                                                                                                                                                                    | Fisheries Resources                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Table 3-13:<br>Table 3-14:                                                                                                                                                                                                     | Fisheries Resources                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Table 3-13:<br>Table 3-14:<br>Table 3-15:                                                                                                                                                                                      | Fisheries Resources                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Table 3-13:<br>Table 3-14:<br>Table 3-15:<br>Table 4-1:                                                                                                                                                                        | Fisheries Resources                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Table 3-13:<br>Table 3-14:<br>Table 3-15:<br>Table 4-1:<br>Table 4-2:                                                                                                                                                          | Fisheries Resources       67         Summary of Commercial Fishery Licences in Vicinity of Stag Field and EMBA       71         Summary of Socio-economic Values and Sensitivities       74         Relevant Persons Identified for the Stag Field Operations       78         Assessment of Merit of Concerns, Objections and Claims       82                                                                                                                                                                                                                                                                                               |
| Table 3-13:<br>Table 3-14:<br>Table 3-15:<br>Table 4-1:<br>Table 4-2:<br>Table 5-1:                                                                                                                                            | Fisheries Resources       67         Summary of Commercial Fishery Licences in Vicinity of Stag Field and EMBA       71         Summary of Socio-economic Values and Sensitivities       74         Relevant Persons Identified for the Stag Field Operations       78         Assessment of Merit of Concerns, Objections and Claims       82         Jadestone Energy Qualitative Risk Matrix       91                                                                                                                                                                                                                                     |
| Table 3-13:<br>Table 3-14:<br>Table 3-15:<br>Table 4-1:<br>Table 4-2:<br>Table 5-1:<br>Table 5-2:                                                                                                                              | Fisheries Resources                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Table 3-13:<br>Table 3-14:<br>Table 3-15:<br>Table 4-1:<br>Table 4-2:<br>Table 5-1:<br>Table 5-2:<br>Table 5-3:                                                                                                                | Fisheries Resources       67         Summary of Commercial Fishery Licences in Vicinity of Stag Field and EMBA       71         Summary of Socio-economic Values and Sensitivities       74         Relevant Persons Identified for the Stag Field Operations       78         Assessment of Merit of Concerns, Objections and Claims       82         Jadestone Energy Qualitative Risk Matrix       91         Definition of Consequence Levels       91                                                                                                                                                                                   |
| Table 3-13:         Table 3-14:         Table 3-15:         Table 4-1:         Table 4-2:         Table 5-1:         Table 5-2:         Table 5-3:         Table 5-4:                                                          | Fisheries Resources                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Table 3-13:         Table 3-14:         Table 3-15:         Table 4-1:         Table 4-2:         Table 5-1:         Table 5-2:         Table 5-3:         Table 5-4:         Table 6-1:                                       | Fisheries Resources       67         Summary of Commercial Fishery Licences in Vicinity of Stag Field and EMBA       71         Summary of Socio-economic Values and Sensitivities       74         Relevant Persons Identified for the Stag Field Operations       78         Assessment of Merit of Concerns, Objections and Claims       82         Jadestone Energy Qualitative Risk Matrix       91         Definition of Consequence Levels       91         Definition of Likelihood Levels       91         Acceptability Assessment Criteria       94         Summary of Environmental Impact and Risk Assessment Rankings       95 |
| Table 3-13:         Table 3-14:         Table 3-15:         Table 4-1:         Table 4-2:         Table 5-1:         Table 5-2:         Table 5-3:         Table 5-4:         Table 6-1:         Table 6-2:                    | Fisheries Resources67Summary of Commercial Fishery Licences in Vicinity of Stag Field and EMBA71Summary of Socio-economic Values and Sensitivities74Relevant Persons Identified for the Stag Field Operations78Assessment of Merit of Concerns, Objections and Claims82Jadestone Energy Qualitative Risk Matrix91Definition of Consequence Levels91Definition of Likelihood Levels91Acceptability Assessment Criteria94Summary of Environmental Impact and Risk Assessment Rankings95Summary of Environmental Impacts, Risks and Controls for Planned Events96                                                                               |
| Table 3-13:         Table 3-14:         Table 3-15:         Table 4-1:         Table 4-2:         Table 5-1:         Table 5-2:         Table 5-3:         Table 5-4:         Table 6-1:         Table 6-3:                    | Fisheries Resources67Summary of Commercial Fishery Licences in Vicinity of Stag Field and EMBA71Summary of Socio-economic Values and Sensitivities74Relevant Persons Identified for the Stag Field Operations78Assessment of Merit of Concerns, Objections and Claims82Jadestone Energy Qualitative Risk Matrix91Definition of Consequence Levels91Definition of Likelihood Levels91Acceptability Assessment Criteria94Summary of Environmental Impacts, Risks and Controls for Planned Events96Summary of Environmental Impacts, Risks and Controls for Unplanned Events100                                                                 |
| Table 3-13:         Table 3-14:         Table 3-15:         Table 4-1:         Table 5-1:         Table 5-2:         Table 5-3:         Table 6-1:         Table 6-2:         Table 6-3:         Table 7-1:                    | Fisheries Resources                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Table 3-13:         Table 3-14:         Table 3-15:         Table 4-1:         Table 4-2:         Table 5-1:         Table 5-2:         Table 5-3:         Table 6-1:         Table 6-2:         Table 6-3:         Table 7-1: | Fisheries Resources                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

### ABBREVIATIONS

| Abbreviation | Description                                                                                    |
|--------------|------------------------------------------------------------------------------------------------|
| AFZ          | Australian Fishing Zone                                                                        |
| ALARP        | as low as reasonably practicable                                                               |
| AMP          | Australian Marine Parks                                                                        |
| AMSA         | Australian Maritime Safety Authority                                                           |
| API          | American Petroleum Institute                                                                   |
| ΑΡΡΕΑ        | Australian Petroleum Production and Exploration Association                                    |
| AUV          | Autonomous underwater vehicle                                                                  |
| CALM         | Catenary Anchor Leg Mooring                                                                    |
| СММЅ         | Computerised Maintenance Management System                                                     |
| CPF          | Central Production Facility                                                                    |
| DBCA         | Department of Biodiversity, Conservation and Attractions                                       |
| DEC          | Department of Environment and Conservation (now DBCA)                                          |
| DEWHA        | Department of the Environment, Water, Heritage and the Arts (now DoEE)                         |
| DoEE         | Department of the Environment and Energy                                                       |
| DPaW         | Department of Parks and Wildlife (now DBCA)                                                    |
| DPIRD        | Department of Primary Industries and Regional Development (previously Department of Fisheries) |
| DSWEPaC      | Department of Sustainability, Environment, Water, Population and Communities (now DoEE)        |
| dwt          | Dry weight tonnes                                                                              |
| ЕМВА         | Environment that may be affected                                                               |
| EPBC Act     | Environment Protection and Biodiversity Conservation Act 1999                                  |
| EP           | Environment Plan                                                                               |
| ESD          | Emergency Shut-Down system                                                                     |
| ESP          | Electric Submersible Pump                                                                      |
| FSO          | Floating Storage and Offtake                                                                   |
| HVAC         | Heating ventiliation air conditioning (system)                                                 |
| IMR          | Integrity, maintenance and repair                                                              |
| KEFs         | Key Ecological Features                                                                        |
| kL           | Kilolitre                                                                                      |
| LAT          | Lowest astronomical tide                                                                       |
| mg/L         | Milligrams per litre                                                                           |

#### 2.01 Rev 1

| JADES          | БТ <b>П</b> Е                                                                |
|----------------|------------------------------------------------------------------------------|
| ——— ЕПЕ        | <b>F G Y</b> GF-70-PLN-I-00002                                               |
|                |                                                                              |
| Abbreviation   | Description                                                                  |
| mmscfd         | Million Standard Cubic Feet per Day                                          |
| NEBA           | Net Environmental Benefit Assessment                                         |
| NES            | National Environmental Significance                                          |
| NOPSEMA        | National Offshore Petroleum Safety and Environmental Management Authority    |
| NORMs          | Naturally Occurring Radioactive Materials                                    |
| NWS            | North-West Shelf                                                             |
| NWSTF          | North-West Slope Trawl Fishery                                               |
| OCNS           | Offshore Chemical Notification Scheme                                        |
| OIM            | Offshore Installation Manager                                                |
| OIW            | Oil-in-water                                                                 |
| OPEP           | Oil Pollution Emergency Plan                                                 |
| OPGGS Act      | Offshore Petroleum and Greenhouse Gas Storage Act 2006                       |
| OPGGS (E) Regs | Offshore Petroleum and Greenhouse Gas Storage (Environment) Regulations 2009 |
| OPMF           | Onslow Prawn Managed Fishery                                                 |
| РАН            | Polycyclic aromatic hydrocarbons                                             |
| PW             | Produced water                                                               |
| PLEM           | Pipeline end manifold                                                        |
| ROV            | Remote Operated Vehicle                                                      |
| SBFTF          | Southern Bluefin Tuna Fishery                                                |
| WA             | Western Australia                                                            |
| WSTF           | Western Skipjack Tuna Fishery                                                |

Western Tuna and Billfish Fishery

\_\_\_\_

WTBF



#### 1. INTRODUCTION

Jadestone Energy (Australia) Pty Ltd (Jadestone Energy) is the operator and titleholder of the Stag Field Production and Export Facility (Stag Field) located in permit area WA-15-L.

#### 1.1 Titleholder

Jadestone Energy (Australia) Pty Ltd is the titleholder for petroleum activities covered under this EP within WA-15-L.

Jadestone Energy's Australian office is located at:

Level 6, 41 St Georges Terrace

Perth, Western Australia, 6000.

ACN 613 671 819

#### 1.2 Contact Person

Jadestone Energy's contact for Stag Field Operations is:

Mark Robertson

General Manager

Phone: +61 8 9486 6602

Email: mark.robertson@jadestone-energy.com.au

#### **1.3** Purpose of EP Summary

The overall purpose of the Stag Field Operations Environment Plan GF-70-PLN-I-00002 (the EP) is to comply with statutory requirements of the Commonwealth *Offshore Petroleum and Greenhouse Gas Storage (Environment) Regulations 2009* (OPGGS (E) Regulations) and to ensure that the activity is planned and conducted in line with Jadestone Energy's environmental policies and standards.

The EP was assessed and accepted by the National Offshore Petroleum Safety and Environmental Management Authority (NOPSEMA) on the 13 December 2017. This EP Summary has been prepared in accordance with the requirements of regulation 11 (4) of the OPGGS (E) Regulations, and with the guidance of the NOPSEMA Guideline N-04750-GL1566 Rev. 1, Environment plan summaries.

#### 1.4 Activity Duration and Timing

Profitable production is expected to be achievable at the Stag Field for another 8 to 10 years. Operation Activity at the Facility is 24 hours per day.

#### 2. DESCRIPTION OF THE STAG FIELD

#### 2.1 Operations Overview

The Stag Field operations shown in Figure 2-1 and Figure 2-2 includes:

- A fixed Central Production Facility (CPF), producing and processing oil from a number of wells;
- A single 2 km long carbon steel export oil pipeline on the northeast side of the CPF connecting to a Catenary Anchor Leg Mooring (CALM) buoy via a flexible submarine hose;
- A Floating Storage and Offtake (FSO) tanker, the Dampier Spirit, which receives oil through a flexible import hose from the CALM buoy and periodically exports oil to third-party offtake tankers;
- Water injection flowlines and wells to assist reservoir fluid recovery. The water injection flowlines run 1,100 m north-east of the CPF where they connect to two sub-surface wellheads. A further three sub-surface water injection wellheads are located approximately 3 km west of the facility.
- Support/ supply vessels, work vessels and tug boats supporting third-party offtake tanker movement, facility logistics, maintenance and provisioning; and
- Helicopter support.

Oil is loaded continuously to the FSO at a production rate of approximately 4,000 bbl/d. Conventional trading tankers (third-party offtake tankers) that periodically moor astern of the FSO in a tandem arrangement, load oil in parcels of typically 250,000 bbls. The CPF has been in production since 1998 with only minor modifications carried out.

Stag oil is a medium crude (API 19) with a very low proportion of volatile compounds due to microbial degradation within the reservoir.



Figure 2-1: Schematic of the Stag Field





Figure 2-2: Aerial View of Stag Field

#### 2.2 Location

The Stag CPF is located on the North-West Shelf (NWS) area off Western Australia (WA), approximately 60 km north-west of Dampier (Table 1-2, Figure 2-3).

| Table 2-1: | Distances from Stag Facility to Key Regional Features |
|------------|-------------------------------------------------------|
|------------|-------------------------------------------------------|

| Regional Feature          | Distance from Stag CPF |
|---------------------------|------------------------|
| Dampier Archipelago       | 32 km (17.3 Nm)        |
| Closest Montebello Island | 75 km (40.5 Nm)        |
| Varanus Island            | 82 km (44.3 Nm)        |
| Barrow Island             | 96 km (51.8 Nm)        |
| Glomar Shoals             | 100 km (54 Nm)         |

The CPF is located above the original Stag-6H well. The export pipeline runs due north from the north-west side of the CPF to the CALM buoy. The CALM buoy is located in a water depth of approximately 47 m below lowest astronomical tide (LAT), approximately 2 km to the north of the Stag CPF (**Table 1-1**).

| Table 2-2: | Stag CPF and the CALM Buoy Coordinates |
|------------|----------------------------------------|
|------------|----------------------------------------|

| Facility  | Latitude      | Longitude      |
|-----------|---------------|----------------|
| Stag CPF  | 20° 16.5′ S   | 116° 15.433' E |
| CALM Buoy | 20° 15.395′ S | 116° 15.492′ E |





Figure 2-3: Location of the Stag Field

#### 2.2.1 Restricted Zones and Cautionary Areas

There is a restricted zone of 500 m radius around the CPF, CALM buoy, pipeline and FSO (whilst at CALM buoy mooring). Vessels operating within this zone must not exceed a speed of five (5) knots. There is also a cautionary area circle as designated by AMSA of 3 nautical mile radius charted around the Stag Field facilities, with the centre located 1,365 m due north of the CPF. This location is arranged such that the limits of the circle sweep out by the FSO, third-party offtake tanker and support vessel at the same distance from the edge of the cautionary area as the CPF.

#### 2.3 Layout and Description

#### 2.3.1 Central Processing Facility

The CPF is a fixed oil production platform. It comprises a jacket, which is secured to the seabed by six drilled and grouted piles, a hull, which is supported on tubular legs, a process module and an accommodation module. The platform has accommodation, offices, medical and mess facilities for a maximum overnight manning level of 58 personnel on board.

The CPF stands approximately 20 m above sea level in a water depth of approximately 49 m LAT. The maximum topsides area is approximately 37 m x 57 m (2,109 m<sup>2</sup>). The structure, including topsides and piles, weighs approximately 6,500 tonnes.



The CPF is located over a pre-installed mudline template as a guide and supports 12 well slots; in addition, five subsea water injection wells. Two subsea water injection wells are located approximately 1,100 m northeast of the facility, with the other three being located approximately 3,200 m west of the facility.

#### 2.3.2 Wells and Subsea Infrastructure

The scope of this EP includes all subsea infrastructure associated with production and water injection, including:

- Trees/ wells;
- Manifolds;
- Rigid spools;
- Flexible flowlines;
- Electric submersible pumps; and
- Chemical injection system.

Hydrocarbons from the reservoir are pumped to the topside manifolds via the wells for processing at the CPF.

#### 2.3.3 CALM Buoy

The Stag CALM buoy is located approximately 2 km to the north of the CPF, and is linked by the export pipeline and the PLEM. Oil from the export pipeline passes through the CALM buoy product piping, swivel and valve isolation system, and into the floating import hose and the FSO.

It is moored by a six-chain catenary anchor system which is secured by means of gravity anchors covered by rock berms. It is designed for securing third-party offtake tankers up to 150,000 dwt.

#### 2.3.4 Floating Storage and Offtake (FSO) Vessel

The FSO Dampier Spirit is operated by Teekay Shipping (Australia) and operates under its own accepted safety case. The FSO, whilst in the field, is moored to the CALM buoy and used as a storage and offtake vessel for crude oil from the Stag CPF.

The following operations are carried out on the FSO:

- Connection and disconnection from the CALM Buoy;
- Crude oil import and export operations;
- Maintenance operations;
- Helicopter operations;
- Dewatering of cargo tanks;
- Diving/ ROV operations; and
- Accommodation facilities for up to 28 persons.

#### 2.4 Operations and Process Description

Primary operations at the Stag Field entail production and maintenance activities including:

- Production including water re-injection;
- Operational and emergency flaring of excess gas through flare systems;
- Processing and discharge of produced water within discharge limits;
- Processing and discharge of drainage/ oily waters;
- Produced sand handling;
- Oil export operations, including loading and unloading of crude from FSO; and



 Inspection, Maintenance and Repair (IMR) activities (topsides and subsea) including well intervention, plant modification and diving/ ROV operations.

Supporting activities associated with the facility operations include:

- Utility systems such as lighting, heating, ventilation and air conditioning, water systems, power generation, safety system, and accommodation facilities;
- Collection, treatment and disposal of sewage;
- Support vessel operations;
- Lifting operations; and
- Helicopter operations for transporting personnel and urgent freight.

For noting, installation of new subsea equipment or the tie-in of new production or water injection wells is not covered by this EP.

#### 2.4.1 Crude Oil Production

Oil is currently produced from eleven production wells and supported by seawater injected into dedicated injection wells. The current layout of the Stag Field is shown in Figure 2-4.

Due to the low pressure of the reservoir, the wells are sub-hydrostatic and electric submersible pumps have been installed in the wells to draw reservoir fluids to the surface. Water injection is required to maintain reservoir pressure and to control the movement of oil within the reservoir to maximise its recovery. Seawater for water injection is pumped through coarse and fine filtration systems and de-aerated before it is pumped under high pressure into the water injection wells.

Reservoir fluids from the wells are typically delivered into two parallel production headers and then two stage product separators that split the well production into oil, gas and water streams. Oil is split from water and gas in the first stage separators, then heated and further treated to remove entrained water during the second stage. Oil polishing takes place in the electrostatic coalescer prior to export to the FSO. Hot crude ready for export is cooled by heat exchangers and pumped to the oil export system. Some crude oil is drawn from the export line, conditioned and used as fuel in the main power generators.

#### 2.4.2 Flaring

The FSO uses Stag crude oil as a fuel supply for its engines. Gas that is excess to the fuel requirements for heating in the production process and excess blanket gas from the gas flotation unit, is burned as a continuous release through a flare system present on the CPF. Approximately 20% of the gas produced (current average flare rate of 400 sm<sup>3</sup>/h) is used as fuel for equipment with the balance (80%) being flared.

The flare tip is supported on a 30m boom attached to the side of the process module and is mounted to discharge vertically.

The flare system is designed to handle a continuous flaring rate which may range between 0.3 and 10 million standard cubic feet per day (mmscfd); the flare typically operates at approximately 0.3 mmscfd. In addition, the flare system can accommodate an instantaneous flaring rate of 15 mmscfd.





Figure 2-4:

**Stag Production Field Depth Structure** 

#### 2.4.3 **Produced Sand**

Produced sand from the Stag Reservoir consists of fine sand and glauconite containing traces of oil and some heavy metals. In normal operation, suspended solids in the separators are carried by process water to hydrocyclones removing solids greater than 20 µm from the water stream to the solids handling system for further processing. Larger particulates not carried through by the produced water stream accumulate in the separators requiring regular sparging. Solids are discharged into bulk bags (~1.7 t) ready to ship to shore for disposal and liquids discharged to the slops tanks for recycled processing.

At the conclusion of the solids removal, some fine solids and oil may remain in the wash water and these are then tested before being pumped into deep water injectors 17H and 18H where they are returned to the reservoir.

Produced sands are not discharged to the marine environment.

#### 2.4.4 **Processing and Discharge of Produced Water**

Produced water and hydrocarbons from the reservoir arrive in a multi-phase state at the CPF where produced water is separated and treated.

Produced water from the Stag field contains a mixture of dissolved hydrocarbons and suspended oil droplets), dissolved inorganic salts, dissolved metals, dissolved gases as well as low residual concentrations of a small number of chemical additives that are introduced during the production process such as corrosion and scale inhibitors, and biocides, and at very low levels naturally occurring radioactive materials (NORMs).

Produced water is then treated through the CPF produced water treatment system which cools, degasses and removes residual oil. Periodically an emulsion breaker is injected into the process to assist with oil/ water separation.

Exported crude from Stag to the FSO can contain up to 0.5% water. The FSO treats produced water through its slop system and intermittently discharges to the sea.



Recovered oil is pumped back through the separator to join the export oil stream. A continuous produced water stream is discharged overboard (0.5 m above sea surface) at the CPF at a rate of approximately  $3,816 \text{ m}^3/\text{d}$  with an average oil-in-water (OIW) concentration of not greater than 30 mg/L over any 24-hour period.

#### 2.4.5 Drainage Systems

The Stag CPF drainage system collects hydrocarbon-based and other liquid wastes (rain and washwater etc.) from all areas across the facility via open (hazardous and non-hazardous) or closed drains.

#### Open Drains

The Stag CPF open drains system consists of two separate collection systems, the hazardous open drain system and the non-hazardous open drain system. Hazardous areas and non-hazardous area drains are completely segregated to prevent ingress of hydrocarbons into a non-hazardous area via the drains system.

The hazardous open drains system is designed to remove and collect oily water from hazardous areas, such as wash down water and spillage of liquids on decks, detergents, equipment drip trays or bunded areas. Collected fluids are routed to two slops storage tanks with a total capacity of 250 m<sup>3</sup>. All drains into the tanks are via stand pipes into a water trap which prevents any back flow of oil/ gas. Liquids are recovered and processed through the second stage of the production separation system and treated prior to discharge.

Drainage from the helicopter landing deck is allowed to drain directly overboard.

The non-hazardous open drains system collects rain water, wash down water and spillage of liquids from decks located in non-hazardous areas of the facility.

#### Closed Drains

The closed drain system collects liquids from:

- Normally pressurised and hazardous equipment prior to maintenance;
- Flare drum liquids;
- Produced water degasser;
- Operational drainage from the oil separators;
- Liquid sampling draining from the oil separators; and
- Level bridle drains.

The closed drains system is combined with the flare system and consists of a flare knockout/ closed drain drum and transfer pumps. The hydrocarbon liquid drained from the process equipment is drained by gravity flow to the flare/ closed drains drum via drain headers. Under normal operations the liquids in the closed drains drum are pumped back under level control to the process upstream of the oil heaters.

#### 2.4.6 Inspection, Maintenance and Repair Activities

IMR is undertaken at planned intervals to maintain performance, reliability and prevent deterioration or failure of equipment and ensure safe and reliable operation of the facility. IMR activities (including corrosion control;) are scheduled through Bassnet and generally involve up to four campaigns per year.

IMR activities include maintenance of the topside component of the CPF as well as subsea infrastructure and may include activities such as cycling of valves, pressure and leak testing, lubrication of rotating equipment, and cleaning and painting activities for corrosion protection.

Maintenance is managed using the Bassnet Computerised Maintenance Management System (CMMS)

Inspection of subsea infrastructure is the process of physical verification and assessment of components detect changes to its as-built state. Inspections are planned to occur every three years and techniques may include general visual inspections, cathodic protection surveys using ROV, side-scan sonar (SSS) using the

# 

vessel's transducer or autonomous underwater vehicle (AUV), and wall thickness measurements using ROV-deployable tools.

#### 2.4.7 Integrity and Corrosion Control

Integrity and corrosion control work involves anode replacements on the various subsea pipelines and offshore facilities, cathodic protection monitoring, weld inspections, ultrasonic wall thickness testing, flooded member detection surveys, free span inspection of pipelines, coating inspection and repairs, , protective leg wrap maintenance and installation, non-destructive testing and general inspections and maintenance of subsea valves, Xmas trees and conductors, conductor guide centralisers and other subsea infrastructure. These activities can involve ROV/ AUV inspections or diver assisted surveys.

A program of ongoing fabric maintenance of the CPF is also undertaken as part of the corrosion control program. Prior to painting, the offshore structures are ultra-high pressure water or grit-blasted with garnet (a natural coastal sand product).

Following an inspection, it may be necessary to modify the seabed in the vicinity of subsea infrastructure such as the pipeline to correct for free spans (by placing grout bags under the free span) or burial (by jetting or airlifting sediments from on top of the pipeline).

As part of the maintenance of these facilities, marine growth on the substructures is monitored using ROV and/ or divers and if determined to be beyond the design imposed acceptable thickness it is periodically removed. This is usually undertaken by either water blasting or manual ROV, divers or bespoke automatic devices.

Inspections are scheduled to occur every three years, and replacement programs are planned on inspection findings. No discharges to the marine environment occur with planned replacement activities or inspections.

#### 2.4.8 Utility Systems

#### Power Generation

main electrical power is supplied by three generator sets powered by caterpillar diesel engines. primary fuel for these engines is treated stag crude oil however they can also run on diesel if required. each machine is contained within its own enclosure, which provides weather protection, sound attenuation and fire protection.

#### Cooling Water

Seawater is used as a heat exchange medium for the cooling of the three onboard power generators. The cooling water is drawn through a segregated cooling system and is therefore not contaminated by engine oils or other liquid discharges from the process. Average discharge rates are up to 108 m<sup>3</sup>/h for each of the generators. Discharge water is approximately 3°C above ambient marine waters and is discharged at hull level.

An industrial grade salt water chlorinator is used to produce chlorinated water to dose the respective caisson and pumps utilising sea water to prevent the accumulation of marine growth throughout the system.

#### **Desalination Brine Discharges**

The freshwater system is designed to produce, store and distribute fresh and potable water throughout the CPF. During normal operations, fresh and potable water is produced via a desalination process and results in a discharge of ~850 m<sup>3</sup>/d with elevated salinity (approximately 10% higher than the intake seawater), increase in temperature (between 27–39°C) and low concentrations of anti-scale chemicals. The seawater feed is taken from the main generator seawater cooling return line and further heated as required by steam supplied from the boiler.



Potable water may also be delivered by supply vessel during extended maintenance periods. A unique hose connection is provided to prevent cross contamination by inadvertent transfer of diesel from the supply vessel.

Storage is provided in a single Potable Water Tank with a capacity of 215 m<sup>3</sup> is located within the west side of the hull structure. The tank is fitted high and low level alarms and trips.

#### Heating Ventilation and Air Conditioning (HVAC) System

The purpose of the HVAC system is to:

- Purge enclosed designated areas of the accommodation and hull to maintain a non-hazardous classification and to prevent the entry of flammable gases;
- Provide conditioned air to manned areas to ensure a comfortable working and living environment;
- Provide controlled temperature in enclosed areas for the safe and efficient running of equipment; and
- Purge contaminated air from areas housing essential equipment before reoccupation (black start purging).

Two major air distribution systems are provided, one for the accommodation module and one for the hull. Each system has its own fans, ducting distribution system and fire dampers where required, but they share a common chilled water plant which supplies the cooling medium to both systems.

#### Facility Lighting

The CPF is provided with lighting throughout the accommodation and process areas. In the event of a power failure, the system changes over to a low voltage emergency system.

#### Fuel Gas

Gas produced from the process separators is used as fuel in the boiler and for process blanketing. The remaining gas is sent to flare.

#### 2.4.9 Well Intervention and Workover Operations

A range of well intervention activities are undertaken at the Stag CPF including:

- Workover to replace Electric Submersible Pump (ESP), including
  - Well kill operations,
  - o Pull out of hole and lay down faulty completions,
  - Rig up and run in hole new completion,
  - o Cementing, and
  - Casing integrity tests.
- Wireline interventions;
- Annulus monitoring/ treatment;
- Perforating;
- Water shut-off/ zonal isolation;
- Production logging;
- Sand clean out;
- Casing milling, cutting recovery and patch work; and
- Commissioning of new production wells may occur during Stag CPF operations as required.

Work overs and interventions are undertaken on an as needs basis. Based on previous years' activities, approximately seven work overs/ interventions have been required per year.

# 

#### 2.4.10 Plant Modification

Plant modification may entail the removal, replacement or installation of new equipment to either surface or subsea equipment. Plant modification may occur in response to operational changes or new technology. Such modifications may include removing pipework and process units, or upgrading the various components and equipment on the platform, including the addition of new equipment.

No discharges to the marine environment are planned during modifications to plant and process equipment.

#### 2.4.11 Oil Export Facility Operations

#### Loading Operations

Stag crude Oil production is approximately 640 kL/d (4,000 bbl/d). Continuous transfer of the product from the CPF to the FSO is through a rigid 8" riser and subsea flowline, PLEM and flexible riser at the PLEM; the under-buoy hose, up to the CALM buoy and from there through a 200 mm (8"), 189 m long, double carcass type floatation hose. The length of hose has been designed to allow mooring of third party offtake tankers whenever the FSO is not available.

#### Unloading Operations

Transfer of cargo from the FSO to a third-party offtake tanker moored in tandem astern, is through a long double carcass type flotation hose.

#### 2.4.12 Support Vessels

Supply/ support vessels provide support activities to the facility during operations, including transport materials, fuel and chemicals, for offloading and backload any equipment, waste and materials. Support vessels are also used to provide services for handling the hawser and offtake hose between the FSO and third party offtake tanker, and maintenance activities if required.

These vessels may also be used to provide oil spill response services in the case of an emergency.

#### 2.4.13 Helicopter Operations

Helicopter operations contracted for Stag Field operations encompasses routine crew change and access to 24-hour medivac coverage. The Helicopter hanger and passenger processing facilities are currently conducted out of the Karratha Airport; however, the aircraft contract arrangements are reviewed on a regular basis and the contractor and heliport arrangements may be changed from time to time.

#### 2.4.14 Diving and ROV Operations

Diving operations (air diving or saturation diving) may be required at the Stag CPF and Stag CALM Buoy to conduct inspection and survey, maintenance and repair or intervention.

Typical diving activities are summarised in Table 2-3. These activities may be initiated to maintain the safety and productivity of the facility and are carried out using detailed planning and maintenance procedures.

| Table 2-5. Typical diving and KOV Activities Undertaken at the Stag Field |                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |  |  |
|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| Diving/ ROV tasks                                                         | Specifications                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |  |  |
| Inspection and survey                                                     | Inspection of pipelines, pipeline risers and subsea infrastructure (including the CALM buoy and mooring inspection); non-destructive testing inspection; photography and video; condition monitoring.                                                                                                                                |  |  |  |  |  |  |  |  |
| Maintenance and repair                                                    | Cathodic protection measurements and anode replacement; cleaning and marine growth removal; pipeline/ riser coating removal and repair; free span correction; air lifting and dredging; general maintenance of structures, pipelines and risers; under buoy hose removal and replacement; mooring chain maintenance and replacement. |  |  |  |  |  |  |  |  |

## Table 2-3: Typical diving and ROV Activities Undertaken at the Stag Field



| Diving/ ROV tasks                               | Specifications                                                                                                                                                                                                                                                |
|-------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Intervention<br>activities/ valve<br>operations | Installation and recovery of subsea temporary pig receivers/ launchers; installation of pipeline and riser repair clamps; replacement of flexible risers/ pipelines; installation of protection frame and subsea structures; subsea manifold valve operation. |

#### 2.4.15 Hazardous Substances and Chemical Selection Process

Production chemicals are required to be added to the production process to ensure the process is operating efficiently. The primary means of reducing the risk of environmental impacts from the composition of chemicals used is achieved through Jadestone Energy's Chemical Selection Evaluation and Approval Procedure, which prioritises the use of environmentally low risk chemicals by undertaking a risk assessment of the product. The risk assessment process assesses chemicals based on toxicity, biodegradation and bioaccumulation to select an appropriate product. Selection is based on the United Kingdom's Offshore Chemical Notification Scheme (OCNS):

- Chemicals that are Gold, Silver, group E and D under the OCNS Definitive Ranked Lists and have no substitution warning do not require further assessment, as they do not represent a significant impact on the environment in standard discharge scenarios;
- Chemicals not meeting the criteria above (i.e. OCNS white, blue, orange, purple, A, B, C or have product/ substitution warning) require additional assessment to understand the environmental implications for an expected portion to be discharged into the marine environment; or
- Chemicals that are not OCNS registered require further assessment to determine the environmental implications if the chemical is discharged into the marine environment.

The selection of chemicals that fall into the last two assessment types require the additional development of an ALARP justification and are subject to periodic review as part of the continuous improvement of chemical selection and usage.

The quantity of chemicals used, and therefore the residual concentration discharged to the environment, is reduced to ALARP through routine sampling and assessment.

#### 3. DESCRIPTION OF THE ENVIRONMENT

#### 3.1 Environment that May Be Affected (EMBA)

This section describes aspects of the existing environment including the physical environment, habitats, matters protected by the Environmental Protection and Biodiversity Conservation (EPBC) Act, State waters marine reserves, marine fauna and the socio-economic environment.

In addition to describing the area that may be impacted from planned events (Operational Area), features that could be impacted by unplanned events have been described within a larger 'environment that may be affected' (EMBA), i.e. the largest area within which impacts to the environment could occur from unplanned events. For Stag Operations, the EMBA is derived from a worst case credible Stage Crude release from the FSO (refer Section 7). It should be noted that this worst-case scenario would not lead to impacts within the entire EMBA, but rather a smaller subset since the EMBA represents the combined area from 100 spill model iterations under a range of potential environmental conditions. Where relevant, the environment description outlines sensitivities within both the Operational Area and EMBA that may be affected.

The spatial extent of the EMBA and therefore the scope for this environment description is as presented in Figure 3-1. Please note that although modelling indicates that hydrocarbons have minimal to no contact with the Pilbara coastline, for completeness, the environment description includes the onshore environment from Ningaloo to Eighty Mile Beach.



Figure 3-1:

EMBA for Worst Case Scenario Hydrocarbon Spill

#### 3.2 Regional Setting

The Operational Area and EMBA lie entirely within the Commonwealth waters of the North-west Marine Region (the region) and adjacent state waters between Ningaloo and Eighty Mile Beach. The region is distinguished by its predominantly wide continental shelf, very high tidal regimes (especially in the north), high cyclone incidence, unique current systems and warm, low-nutrient surface waters.

The region supports high species-richness of tropical Indo-west Pacific biota, but low levels of endemism (DSEWPaC 2012d). The offshore islands, coastline and waters within the region provide vital habitat to an



extensive range of marine species including turtles, cetaceans, whale sharks and seabirds and has high fish biodiversity and consequently, is of value to commercial fish, prawn and crab fisheries.

#### 3.3 Physical Environment

#### 3.3.1 Climate

The region lies in the arid tropics experiencing high summer temperatures and periodic cyclones. Rainfall in the region is low with evaporation generally exceeding rainfall throughout the year although intense rainfall may occur during the passage of summer tropical cyclones and thunderstorms (Condie et al. 2006). Mean air temperatures over the neighbouring ocean area range from a minimum of 11°C in winter to a maximum of 37°C in summer. Due to the arid climate, daytime visibility in the area is generally greater than 5 nm (SSE 1991).

The summer and winter seasons fall into the periods September–March and May–July, respectively. Winters are characterised by clear skies, fine weather, predominantly strong east to south-east winds and infrequent rain. Summer winds are more variable, with strong south-westerlies dominating. Three to four cyclones per year are typical, with the official cyclone season being November through to April (BoM 2013).

#### 3.3.2 Seawater Temperature and Salinity

Salinity is relatively uniform at 34–35 ppt throughout the water column and across the North-West Shelf. Due to the low rainfall, there is little freshwater run-off from the adjacent mainland (Blaber et al. 1985). North-West Shelf waters are usually thermally stratified, with a marked change in water density at approximately 20 m (SSE 1993). Surface temperatures vary annually, being warmest in March (32°C) and coolest in August (19°C). Vertical gradients are correlated to sea surface temperatures, and are greatest during the warm-water season (SSE 1991). Near bottom water temperature is approximately 23°C with no discernible seasonal variation.

Changes in water temperature and salinity characteristics can result from changes in local heating and evaporation following the southward movement of warmer water due to southward-moving cyclones, and can have flow-on effects to primary and secondary productivity (McKinnon et al. 2003).

#### 3.3.3 Wind

Non-cyclonic wind conditions are predicted for the Stag Field based on four years of continuous wind measurements at a nearby site (Wandoo platform; WNI 1995). Wind patterns are monsoonal with a marked seasonal pattern; wind shear on surface waters generates local-scale drift currents that can persist for extended periods (hours to days). During October–March, the prevailing non-storm winds are from the south-west, west and north-west at an average speed of less than 10 knots, peak average speeds of 15–25 knots, and maximum speeds of 30 knots. Winds from the south-east to north-east quadrant are experienced at a frequency of less than 10% over these seasons. In June–August, winds are generally lighter and more variable in direction than in spring and summer. Non-storm winds prevail from north-east through to south-east at average speeds of 5–6 knots, peak average speeds of 10–15 knots, and maximum speeds of 20 knots. Transitional wind periods, during which either seasonal wind pattern may predominate, can be experienced in April–May and September of each year.

Extreme wind conditions in the area may be generated by tropical cyclones, strong easterly pressure gradients, squalls, tornados and water spouts. Tropical cyclones generate the most significant storm conditions on the North-West Shelf (SSE 1993). These clockwise-spiralling storms have generated wind speeds 50–120 knots within the region (SSE 1991). Tropical cyclones develop in the eastern Indian Ocean, and the Timor and Arafura Seas during the summer months of November to April. Since recordings began in 1960/61, tropical cyclones have approached from the northwest through to east, with the most frequent directions being from the north (34%) and east (36%). Due to the circular wind patterns involved however, winds can approach from any direction during the passage of the storm.

## 

#### 3.3.4 Waves

The wave climate is composed of locally-generated wind waves (seas) and swells that are propagated from distant areas (WNI 1995). Sea directions run roughly parallel to prevailing wind directions. Hence, in summer, seas typically approach from the west and south-west, while in winter, seas typically approach from the south and east. Mean sea wave heights of less than 1 m with peak heights of less than 2 m are experienced in all months of the year (WNI 1995). Mean swell heights are low at around 0.4–0.6 m in all months. Due to the proximity of the mainland, the greatest exposure to swells is from the west (SSE 1993). Tropical cyclones have generated significant swell heights of up to 5 m in this area, although the predicted frequency of swells exceeding 2 m is less than 5% (WNI 1996). In the open ocean, sustained winds result in wind-forced currents of approximately 3% of the wind speed (Holloway and Nye 1985).

#### 3.3.5 Tides and Currents

Sea surface currents over the North-West Shelf are generated by several components such as tidal forcing, local wind forcing and residual drift. Of these, tidal and wind forcing are the dominant contributions to local sea surface currents. The orientation and degree of drop-off of the continental shelf slope also influences the oceanography of the area. The tides of the North-West Shelf have a strong semi-diurnal signal with four tide changes per day (Holloway and Nye 1985; CMAR 2007). Peak tidal flows are from the north-northwest on the ebb, and to the south-southeast on the flood (Holloway and Nye 1985; SSE 1993; King 1994). Mid-shelf tidal currents are predicted to have average speeds of approximately 0.25 knots during neap tides and up to 0.5 knots during spring tides (NSR 1995; WNI 1995).

The dominant offshore sea surface current (typically seaward of the 200m isobath) is the Leeuwin Current, which carries warm tropical water south along the edge of WA's continental shelf, reaching its peak strength in winter and becoming weaker and more variable in summer (CMAR 2007; Condie et al. 2006). The current is described as a surface current, extending in depth to 150 m (BHPB 2005; Woodside 2005). From September to mid-April the nearshore Ningaloo Current flows northwards, opposite to the Leeuwin Current, along the outside of the Ningaloo Reef and across the inner shelf (BHPB 2005; Woodside 2005). The Indonesian Throughflow is the other important current influencing the upper 200 m of the outer North-West Shelf (Woodside 2005; CMAR 2007). This current brings warm and relatively fresh water to the region from the western Pacific via the Indonesian Archipelago. Modelling undertaken by Woodside and CMAR indicates that significant east-west flows occur across the North-West Shelf to the north of the North-West Cape, possibly linking water masses in the area (Woodside 2005; Condie et al. 2006).

Offshore drift currents are represented as a series of interconnected eddies and connecting flows that can generate relatively fast (1–2 knots) and complex water movement. These offshore drift currents also tend to persist longer (days to weeks) than tidal current flows (hours between reversals). Therefore, in the event of an accidental oil spill, offshore drift currents have a greater influence than tidal currents on oil dispersion over timescales exceeding a few hours (APASA 2012a).

#### 3.3.6 Sedimentology

The Operational Area is characterised by a thick sequence of carbonate rock that is overlain by thin layers of unconsolidated fine to medium grained, carbonate sediments with occasional shell or gravel patches (Racal, 1994; Dames and Moore, 1995). Surveys conducted over the NWS indicate that a similar seafloor occurs extensively over this geographic region, but with spatial variation in the grain size and origin of the surface sediments (McLoughlin and Young, 1985; Woodside, 1990). Surface seabed sediments in the area are predominantly composed of skeletal remains of marine fauna, with lenses of weathered sands (McLoughlin and Young, 1985).

A debris seabed survey around the Stag Platform was undertaken as part of the Stag Apache Site Survey Campaign 2011 (Neptune Geomatics, 2011b). The survey confirmed that the surrounding seabed is free from debris. Two seabed types have been classified throughout the Stag Operations area:

• Type A: Low relief unconsolidated calcareous fine to medium sand; and



• Type B: Low relief unconsolidated calcareous gravelly medium to coarse sand.

#### 3.4 Subtidal Benthic Habitats

Benthic habitats are defined as those subtidal habitats lying below the lowest astronomical tide (LAT). The benthic habitats within the EMBA range from those at LAT to more than 6,000 m at the Argo and Cuvier Abyssal Plains (DEWHA 2008).

Benthic habitats are partially driven by light availability. Primary producers (photosynthetic corals, seagrass and macroalgae) are limited to the photic zone, whereas benthic invertebrates including filter feeding communities may be found in deeper waters. The depth of the photic zone varies spatially and temporally is predominantly dependent on the volumes of the suspended material in the water column. The photic zone in the offshore Pilbara approximately 70 m whereas in oceanic waters, the photic zone may extend to 120 m (DEWHA 2008).

#### 3.4.1 Operational Area

The benthic habitat within the Operational Area of the Stag Field consists of unconsolidated fine-medium and medium-coarse sands with patches of coral rubble (CSIRO 2001).

While there are no benthic primary producers (benthic photosynthetic organisms) associated with the soft sediment habitat within the Operational Area, subsea infrastructure such as the CPF platform, CALM buoy mooring and FSO hull likely provides attachment points with sufficient light availability for algae as well as other filter feeding organisms (e.g. hydroids, bryozoans and molluscs).

Apache Energy Ltd conducted sampling of the infauna within the Operational Area prior to development drilling as a baseline for comparison to the post-development and post-commissioning situation (Kinhill 1997; 1998). This study confirmed that the benthic biota within the vicinity of Stag is comparable to that found over similar substratum and at similar depths over the wider region (Ward and Rainer 1988; Woodside 1988; Rainer 1991). The unconsolidated sediments in this habitat support a diverse infauna, consisting predominantly of mobile burrowing species, which include molluscs; crustaceans (crabs, shrimps and smaller related species); polychaete, sipunculid and platyhelminth worms; asteroids (sea stars); echinoids (sea urchins), and other small infaunal animals.

There is small spatial variability in the infaunal assemblages (e.g crustaceans, molluscs, ostracods, bivalves, polychaete worms and amphipods) surrounding the Stag Facility and this is typical of soft sediments in the surrounding areas (IRCE 2001).

#### 3.4.2 EMBA

A wide range of benthic habitats occur within the EMBA including benthic primary producer habitats (i.e. photosynthetic organisms) such as macroalgal beds, seagrass meadows and hard corals which are distributed in shallow subtidal and intertidal waters, as well as intertidal water/ shoreline distributed habitats such as mangroves and salt marshes. Benthic primary producers are important components of ecosystems as they provide the source of energy driving food webs, and provide shelter for a diverse array of organisms.

Other subtidal habitats within the EMBA include unconsolidated sediment, which is the most common subtidal habitat on the North-West Shelf, and rocky substrate (e.g. outcropping limestone pavement). Subtidal rocky substrate typically supports a mosaic benthic community which may comprise benthic primary producers such as macroalage and hard corals in the photic zone. In deeper waters and/or where light is limited, hard substrate may have a community dominated by habitat-forming filter feeding organisms such as various soft corals, sponges and hydroids.

Other intertidal and shoreline habitats in the EMBA include intertidal sand/mud flats, intertidal rocky reefs, rocky shorelines and sandy beaches. Intertidal mud/sand flats are particularly extensive along the more northerly mainland shorelines of the EMBA, where the tidal range is greatest, and comprise large areas of exposed mud and sand at low tide. These are important foraging habitats for shorebirds, including important migratory species, which consume benthic organisms living in and on these flats. Protected sand/mud flat



habitats within the EMBA include the Eighty-Mile Beach Ramsar site (also a proposed Marine Park). There are numerous sandy beaches within the EMBA, on both offshore islands and the mainland, that are important nesting sites for a number of protected marine turtle species.

Habitat diversity is highest in shallower waters where light availability promotes the occurrence of benthic primary producers, and in areas where hard substrate provides attachment points for a greater diversity of habitat forming organisms. Within the EMBA benthic habitat diversity is therefore highest within waters along the Ningaloo coastline, coastal waters between the Dampier Archipelago and Broome, shallow waters around offshore islands extending from North-West Cape to Broome (including Muiron, Thevenard, Montebello/ Barrow/ Lowendal, Dampier Archipelago and Turtle islands) and offshore shoals (e.g. Rowley shoals) Figure 3-2, Figure 3-3 and Figure 3-4.

A summary of the benthic primary producers within the EMBA is provided below.



Figure 3-2: Marine Habitats Surrounding the Dampier Archipelago







Figure 3-3: Marine Habitats Surrounding the Montebello, Lowendal and Barrow Islands





Figure 3-4: Marine Habitats Surrounding the Ningaloo Marine Park North of Point Cloates

#### 3.5 Intertidal Shoreline Habitats

#### 3.5.1 Mangroves

Mangroves are recognised as significant as they are productive coastal forest systems, providing habitat and shelter for infauna, epifauna, gastropods, crustaceans, fish and other marine species. Mangroves are important nursery areas for fish, lobster and prawn species, some of which are targeted by recreational and commercial fishers. Mangroves may also provide shelter for other species such as juvenile turtles. Ospreys (Pandion haliaetus) and white-bellied sea eagles (Haliaeetus leucogaster) roost in mangroves, while a range of smaller birds' nest in them (DEC 2007a). Mangroves are also recognised for their capacity to protect coastal areas from erosion due to storms and storm surge. In WA, mangroves are generally of high conservation significance and are protected throughout under the Wildlife Conservation Act 1950.

The regional mangroves of mainland and islands from Exmouth to Broome represent Australia's only 'tropical-arid' mangroves. Within the NWS region, mangroves are present on the Montebello and Lowendal Islands, along the south eastern and southern shores of Barrow Island, in sheltered pockets on the offshore islands of the Dampier Archipelago, along the western side of the Cape Range Peninsula, on the eastern shore of Exmouth Gulf, and in extensive stretches along many creeks and watercourses on the mainland coast. Western Australia does not support any unusual endemic or restricted mangrove species. All mangrove species within Western Australia are common and widespread elsewhere, either in northern Australia, or in the Indo-pacific region proximal to northern Australia.

#### 3.5.2 Coastal Salt Marsh

Coastal salt marsh is a transitional habitat between land and salty or brackish water (e.g. in bays and estuaries). It is dominated by halophytic (salt tolerant) herbaceous plants (e.g. samphires). In the Port Hedland Industrial Management Unit and surrounding areas, salt marsh habitat commonly replaces mangrove stands with increasing distance from the water line where sediments are drier and more saline (BHPB 2011). Salt marshes are also features of the landscape further north, at Eighty Mile Beach. Salt marshes may be inundated by spring high tides and therefore may be exposed to oil spills on spring high tides.

#### 3.5.3 Sandy Beaches

Sandy beaches are those areas within the intertidal zone in which unconsolidated sediment has been deposited by wave and tidal action. Sandy beaches can vary from low to high energy zones which will influence their profile through varying rates of erosion and accretion. Sandy shorelines are generally interspersed among areas of hard substrate (e.g. sandstone) that form intertidal platforms and rocky outcrops. Sandy beaches provide habitat to a variety of burrowing invertebrates and subsequently provide foraging grounds for shorebirds, as well as important habitat for nesting turtles.

Sandy beaches are found throughout the bioregion on both the mainland at Eighty Mile beach, Dampier and Onslow, as well as on many of the numerous islands throughout including Barrow Island, Murion Islands, Thevenard, Serrurier, Dampier Archipelago, Bedout Island, North Turtle Island, and the chain of nearshore islands covered under the Great Sandy Island Nature Reserves. Eighty Mile Beach Marine Park is one of the Australia's largest uninterrupted sandy beaches (stretching 220 km) and is an important feeding grounds for small wading birds that migrate to the area each summer, travelling from countries thousands of kilometres away. It is also a listed Ramsar wetland.

#### 3.5.4 Mud Flats

Intertidal mudflats form when fine sediment carried by rivers and the ocean is deposited in a low energy environment. Tidal mudflats are highly productive components of shelf ecosystems responsible for recycling organic matter and nutrients through microbial activity. This microbial activity helps stabilise organic fluxes by reducing seasonal variation in primary productivity which ensures a more constant food supply. Intertidal sand and mudflats support a wide range of benthic infauna and epifauna which graze on microscopic algae and microbenthos, such as bivalves, molluscs, polycheate worms and crustaceans.



The high abundance of invertebrates found in intertidal sand and mudflats provides an important food source for finfish and shellfish which swim over the area at high tide. Mudflats have also been shown to be significant nursery areas for flatfish. During low tide, these intertidal areas are also important foraging areas for indigenous and migratory shorebirds. Mudflats also play a vital role in protecting shorelines from erosion.

Eighty Mile beach has significant intertidal mudflats that are used by birds in spring and summer including species listed as threatened under the EPBC Act, or listed on the IUCN Red List of Threatened Species (2012).

#### 3.5.5 Rocky Shorelines

Intertidal platforms are areas of hard bedrock and/or limestone with or without a sediment veneer of varying thickness. These platforms can vary from low to high relief and provide a habitat for a diverse range of intertidal organisms and some species of shore birds. They are common within each of the coastal bioregions within the area of interest.

Intertidal rock pavement and rocky shores are typically associated with high stress environments, with periods of desiccation, predation and sometimes strong wave energies. The higher tidal ranges and less severe wave action in the north mean that smooth intertidal slopes are not common. Intertidal rock pavement is a significant part of the marine landscape, due to the high biological productivity, and their sediments on the coast through erosion and biological production of material such as shell fragments. Some platforms protect nearshore waters, such as Ningaloo and North-West Cape, which is separated from the coast by shallow water lagoons.

Rocky coasts occur where there is a lack of sandy sediment or where erosion has exposed the underlying rock. Rocky shores can include pebble/cobble, boulders, and rocky limestone cliffs (often at the landward edge of reef platforms). Rocky shorelines are an important foraging area for seabirds and habitat for invertebrates found in the intertidal splash zone. For example, oyster catchers and ruddy turnstones feed along beaches and rocky shorelines.

Rocky shores dominate on most of the Barrow and Montebello islands and provide habitat for a variety of intertidal organisms. CALM (2004) estimated the linear extent of rocky shore habitat in the zone as approximately 63% of the coastline, and a further 11% was categorised as beach interspersed with rocky shore. Rocky shores provide food for shorebirds and are also common within the Dampier Archipelago, notably King and Conzinc Bays, and Angel, Gidley, Enderby and the Lewis Islands.

#### 3.5.6 Habitats within the Operational Area and EMBA

Table 3-1 summarises the habitats that may be affected by routine events at the Stag Field within the Operational Area as well as unplanned events that may arise within a larger EMBA.



### Table 3-1: Environmental Values and Sensitivities for Habitats within Operational Area and EMBA

| Habitats                                  | Environmental value                                                                                                                                                                                                                                                                                                                                              | Sensitivities<br>within the<br>Operational<br>Area        | Sensitivities within the EMBA                                                                                                                                                                                                                                   |  |  |  |  |  |  |  |  |  |  |
|-------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|--|
|                                           | Subtidal Benthic Habitats                                                                                                                                                                                                                                                                                                                                        |                                                           |                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |  |  |  |  |
| Soft sediments<br>and benthic<br>fauna    | Support a diverse infauna consisting<br>predominantly of mobile burrowing species<br>that include molluscs, crustaceans (crabs,<br>Shrimps and smaller related species),<br>polychaetes, sipunculid and platyhelminth<br>worms,<br>asteroids (sea stars), echinoids (sea urchins)<br>and other small animals. Biological activity<br>occurs throughout the year. | <b>Yes –</b> Soft sediment<br>is the dominant<br>habitat. | <b>Yes</b> – Soft sediment is the Dominant subtidal<br>habitat throughout the EMBA.                                                                                                                                                                             |  |  |  |  |  |  |  |  |  |  |
| Hard Coral<br>habitat                     | Food source for some fish species; Integral<br>source of carbonate sediments; large<br>component of primary productivity and<br>habitat to regional marine ecology Peak coral<br>spawning occurs March–April Coral spawning<br>also occurs October–November                                                                                                      | No                                                        | Yes – Important coral localities: Dampier<br>Archipelago, Ningaloo Reef, Muiron Islands<br>Barrow/ Montebello/Lowendal Island group<br>and Rowley Shoals.                                                                                                       |  |  |  |  |  |  |  |  |  |  |
| Macroalgae<br>beds                        | Primary producers; dugong and turtle feeding<br>habitat; support a diverse and abundant<br>fauna of small invertebrates that are the<br>principal food source for many inshore<br>tropical fish species Produce reproductive<br>structures and then senesce each winter<br>(May–September)                                                                       | Νο                                                        | Yes – Macroalgal habitat prevalent within<br>shallow waters (photic zone) associated with<br>primarily rocky substrate along The mainland<br>coast and associated with offshore islands.                                                                        |  |  |  |  |  |  |  |  |  |  |
| Seagrasses<br>meadows                     | Primary producer; dugong feeding habitat<br>Throughout the year they are growing or<br>shedding fronds                                                                                                                                                                                                                                                           | No                                                        | Yes – Seagrasses occur within the photic zone<br>along the Dampier Archipelago, Ningaloo Reef,<br>Muiron Islands Barrow/ Montebello/ Lowendal<br>Island group                                                                                                   |  |  |  |  |  |  |  |  |  |  |
| Hard<br>substrates and<br>epiflora/ fauna | Support higher diversity of Epifauna than soft<br>sediment habitats and provide surfaces for<br>attachment of fauna (e.g. hard coral, soft<br>corals, sponges) and macroalgae                                                                                                                                                                                    | No                                                        | Yes – Hard substrates occur throughout the<br>EMBA. Filter feeding epifauna can occur across<br>a range of depths. Benthic primary production<br>associated with hard substrate restricted to<br>shallow photic zone.                                           |  |  |  |  |  |  |  |  |  |  |
|                                           | Intertidal                                                                                                                                                                                                                                                                                                                                                       | Shoreline Habitats                                        |                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |  |  |  |  |
| Mangroves                                 | An important primary producer habitat along<br>shorelines of the Pilbara mainland and<br>islands. Important habitat for birds, molluscs,<br>crustaceans, juvenile fish; bird watching hide.<br>Important for shoreline stabilisation and<br>nutrient recycling.                                                                                                  | No                                                        | Yes – Along mainland coastline between<br>Ningaloo coast to Broome; Montebello and<br>Lowendal Islands south eastern and southern<br>shores of Barrow Island and in sheltered<br>pockets on the offshore islands of the Dampier<br>Archipelago and Exmouth Gulf |  |  |  |  |  |  |  |  |  |  |
| Salt marsh                                | Primary producer habitat commonly occurring<br>landward of mangrove stands. Salt marshes<br>stabilise sediments, recycle nutrients and<br>provide habitat for coastal fauna.                                                                                                                                                                                     | No                                                        | Yes – Can be distributed landward of mangrove<br>habitat in brackish environment. Known<br>occurrence between Port Hedland and Broome                                                                                                                           |  |  |  |  |  |  |  |  |  |  |



| Habitats            | Environmental value                                                                                                                                                                      | Sensitivities<br>within the<br>Operational<br>Area | Sensitivities within the EMBA                                                                                                                                                                                                                                                                        |
|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sandy beaches       | Shorebird foraging/ breeding habitat; turtle<br>nesting habitat<br>Crested tern nesting post-wet season; turtle<br>nesting October to February; hatchling<br>emergence November to April | Νο                                                 | Yes – Sandy beaches occur throughout the<br>region. Important sites occur on Eighty Mile<br>beach, Dampier and Onslow, as well as on many<br>of the numerous islands including Barrow<br>Island, Murion Islands, Thevenard, Serrurier,<br>Dampier Archipelago, Bedout Island, North<br>Turtle Island |
| Mud/sand flats      | Support a diverse assemblage of vertebrates<br>and invertebrates, macroalgae and seagrass<br>Biological activity occurs throughout the year                                              | No                                                 | Yes – Found throughout the EMBA. Important<br>site is Eighty- mile beach which is a Ramsar site<br>important for migratory shorebirds.                                                                                                                                                               |
| Rocky<br>shorelines | Foraging area for shorebirds. Invertebrates<br>found in the vertical splash zone; roosting<br>areas for seabirds<br>Biological activity occurs throughout the year                       | No                                                 | Yes – Found throughout the EMBA including<br>Ningaloo Coast, Muiron Islands, Montebello/<br>Barrow/ Lowendal Islands and Dampier<br>Archipelago.                                                                                                                                                     |

#### 3.6 Marine Fauna

Fauna that may be present within the EMBA for the activity include plankton, invertebrates, fish, marine mammals, marine reptiles and seabirds.

**Table 3-2** summarises the fauna that may be affected by routine events at the Stag Field within the Operational Area as well as unplanned events that may arise within a larger EMBA.

#### 3.7 Threatened and Migratory Species

The EPBC Act lists both threatened and migratory species that are protected under Commonwealth legislation and various international conventions and treaties.

A search of the EPBC Act Protected Matters Database in November 2016 identified 55 threatened species (endangered, vulnerable, and critically endangered) as occurring or having habitat within the EMBA (Table 3-2). Twenty of these threatened species are terrestrial and have been excluded as it is unlikely that they would be impacted from an oil spill associated with the Stag Field.

No threatened ecological communities were identified within the EMBA. Further detail on species identified as threatened or migratory is presented in the following sections.



| Class              | Common Name                                    | Scientific Name           | EPBC Act<br>Status | WC Act         | Cons<br>Advice | Recovery<br>Plan | Abatement<br>Plan | BIA                 | Identified /relevant<br>risks             |
|--------------------|------------------------------------------------|---------------------------|--------------------|----------------|----------------|------------------|-------------------|---------------------|-------------------------------------------|
| Threat abatem      | nent plan for the imp                          | acts of marine debris on  | vertebrate m       | arine life (DE | WHA 2009)      |                  |                   |                     |                                           |
|                    | Whale shark                                    | Rhincodon typus           | V; M               | OPF (S7)       |                | Ceased<br>2010   |                   | EMBA 9km<br>from PW | Vessel interaction<br>Habitat disturbance |
|                    | White shark                                    | Carcharodon<br>carcharias | V; M               | V (S3)         | No             |                  | Marine debris     |                     |                                           |
|                    | Green sawfish                                  | Pristis zijsron           | V; M               |                | No             |                  |                   |                     |                                           |
|                    | Grey nurse shark<br>(west coast<br>population) | Carcharias taurus         | V                  | V (S3)         | No             |                  | Marine debris     |                     |                                           |
| Sharks and<br>Fish | Northern River<br>Shark                        | Glyphis garricki          | E                  | P1             | No             |                  |                   |                     |                                           |
|                    | Dwarf sawfish                                  | Pristis clavata           | V                  | P1             | No             |                  |                   |                     |                                           |
|                    | Shortfin mako                                  | Isurus oxyrinchus         | М                  |                | No             | No               |                   |                     |                                           |
|                    | Longfin mako                                   | Isurus paucus             | М                  |                | No             | No               |                   |                     |                                           |
|                    | Porbeagle<br>mackerel shark                    | Lamna nasus               | М                  |                | No             | No               |                   |                     |                                           |
|                    | Reef Manta Ray                                 | Manta alfredi             | М                  |                | No             | No               |                   |                     |                                           |
|                    | Giant Manta Ray                                | Manta birostris           | М                  |                | No             | No               |                   |                     |                                           |
| The Action Pla     | n for Australian Man                           | nmals 2012 (Woinarski et  | : al. 2014)        |                |                |                  |                   |                     |                                           |
| Threat abatem      | nent plan for the imp                          | acts of marine debris on  | vertebrate m       | arine life (DE | WHA 2009)      |                  |                   |                     |                                           |

#### Table 3-2: Marine Fauna and Management Considerations in the Operational Area and EMBA

| Threat abatement plan for the impacts of marine debris on vertebrate marine life (DEWHA 2009) |           |                          |    |        |  |                   |               |  |                                                       |  |  |
|-----------------------------------------------------------------------------------------------|-----------|--------------------------|----|--------|--|-------------------|---------------|--|-------------------------------------------------------|--|--|
| Marine<br>mammals                                                                             | Sei whale | Balaenoptera<br>borealis | VM | E (S2) |  | Ceased in<br>2015 | Marine debris |  | Noise<br>Habitat degradation/<br>pollution<br>vessels |  |  |



| Class | Common Name                                                            | Scientific Name             | EPBC Act<br>Status | WC Act   | Cons<br>Advice | Recovery<br>Plan | Threat<br>Abatement<br>Plan | BIA        | Identified /relevant<br>risks           |
|-------|------------------------------------------------------------------------|-----------------------------|--------------------|----------|----------------|------------------|-----------------------------|------------|-----------------------------------------|
|       | Fin whale                                                              | Balaenoptera<br>physalus    | VM                 | E (S2)   |                | Ceased<br>2015   | Marine debris               |            |                                         |
|       | Humpback whale                                                         | Megaptera<br>novaeangliae   | VM                 |          |                | Ceased<br>2015   | Marine debris               | PW<br>EMBA | Noise<br>Vessels<br>Pollution           |
|       | Blue whale                                                             | Balaenoptera<br>musculus    | EM                 | E (S2)   | No             |                  | Marine debris               | PW<br>EMBA | Noise<br>Vessels                        |
|       | Southern right<br>whale                                                | Eubalaena australis         | EM                 | V (S3)   | No             |                  | Marine debris               |            | Noise<br>Habitat disturbance<br>vessels |
|       | Antarctic minke<br>whale                                               | Balaenoptera<br>bonaerensis | М                  |          |                |                  |                             |            |                                         |
|       | Bryde's whale                                                          | Balaenoptera edeni          | М                  |          |                | No               |                             |            |                                         |
|       | Sperm whale                                                            | Physeter<br>macrocephalus   | М                  | V        |                | No               |                             |            |                                         |
|       | Killer whale                                                           | Orcinus orca                | М                  |          |                | No               |                             |            |                                         |
|       | Spotted<br>bottlenose<br>dolphin<br>(Arafura/Timor<br>Sea populations) | Tursiops aduncus            | М                  |          |                | No               |                             |            |                                         |
|       | Indo-Pacific<br>humpback dolphin                                       | Sousa chinensis             | М                  |          |                | No               |                             |            |                                         |
|       | Irrawaddy dolphin                                                      | Orcaella brevirostris       | М                  | P4       |                | No               |                             |            |                                         |
|       | Dugong                                                                 | Dugong dugon                | М                  | OPF (S7) |                | No               |                             |            |                                         |



| Class              | Common Name                                                                                   | Scientific Name               | EPBC Act<br>Status | WC Act   | Cons<br>Advice | Recovery<br>Plan | Threat<br>Abatement<br>Plan | BIA                                | Identified /relevant<br>risks                                   |  |  |  |  |
|--------------------|-----------------------------------------------------------------------------------------------|-------------------------------|--------------------|----------|----------------|------------------|-----------------------------|------------------------------------|-----------------------------------------------------------------|--|--|--|--|
|                    | Turtle Recovery Plan (Commonwealth of Australia, 2017)                                        |                               |                    |          |                |                  |                             |                                    |                                                                 |  |  |  |  |
|                    | Threat abatement plan for the impacts of marine debris on vertebrate marine life (DEWHA 2009) |                               |                    |          |                |                  |                             |                                    |                                                                 |  |  |  |  |
| Marine<br>reptiles | Hawksbill turtle                                                                              | Eretmochelys<br>imbricata     | VM                 | V<br>S3  |                |                  |                             |                                    |                                                                 |  |  |  |  |
|                    | Flatback turtle                                                                               | Natator depressus             | VM                 | V<br>S3  |                |                  |                             | <ul><li>PFW</li><li>EMBA</li></ul> | Light<br>Vessel interaction                                     |  |  |  |  |
|                    | Green turtle                                                                                  | Chelonia mydas                | VM                 | V<br>S3  |                |                  | Marine debris               |                                    |                                                                 |  |  |  |  |
|                    | Loggerhead turtle                                                                             | Caretta caretta               | EM                 | E S2     |                |                  | Marine debris               |                                    |                                                                 |  |  |  |  |
|                    | Leatherback turtle                                                                            | Dermochelys coriacea          | EM                 | V S3     |                |                  | Marine debris               |                                    | Marine debris<br>vessel interaction                             |  |  |  |  |
|                    | Short-nosed<br>seasnake                                                                       | Aipysurus<br>apraefrontalis   | CE                 | CE (S1)  |                | No               |                             |                                    |                                                                 |  |  |  |  |
|                    | Salt-water<br>crocodile                                                                       | Crocodylus porosus            | М                  | OPF (S7) |                | No               |                             |                                    |                                                                 |  |  |  |  |
|                    | Curlew Sandpiper                                                                              | Calidris ferruginea           | CE<br>Mw           | V S3     |                | No               |                             |                                    | Loss wetlands<br>human disturbance<br>habitat loss<br>pollution |  |  |  |  |
| Pirde              | Great Knot                                                                                    | Calidris tenuirostris         | CE<br>Mw           | V S3     |                | No               |                             |                                    | Pollution                                                       |  |  |  |  |
| DIUS               | Bar-tailed Godwit<br>(menzbieri)                                                              | Limosa lapponica<br>menzbieri | CE<br>Mw           | V S3     |                | No               |                             |                                    |                                                                 |  |  |  |  |
|                    | Eastern Curlew                                                                                | Numenius<br>madagascariensis  | CE<br>Mw           | V S3     |                | No               |                             |                                    | Loss wetlands<br>human disturbance<br>habitat loss<br>pollution |  |  |  |  |



| Class | Common Name                   | Scientific Name              | EPBC Act<br>Status | WC Act | Cons<br>Advice | Recovery<br>Plan  | Threat<br>Abatement<br>Plan | BIA  | Identified /relevant<br>risks                  |
|-------|-------------------------------|------------------------------|--------------------|--------|----------------|-------------------|-----------------------------|------|------------------------------------------------|
|       | Lesser Sand<br>Plover         | Charadrius mongolus          | E<br>Mw            | E S2   |                | No                |                             |      | Habitat loss<br>Disturbance                    |
|       | Red Knot                      | Calidris canutus             | E<br>Mw            | V S3   |                | No                |                             |      | Habitat loss<br>Disturbance                    |
|       | Southern giant-<br>petrel     | Macronectes<br>giganteus     | E<br>Mw            | P4     |                | Yes               |                             | EMBA |                                                |
|       | Australian painted snipe      | Rostratula australis         | E<br>Mw            | E S2   |                | No                |                             |      | Habitat<br>loss/disturbance                    |
|       | Soft-plumaged<br>petrel       | Pterodroma mollis            | V                  |        |                | Ceased in<br>2015 |                             |      | Feral cats<br>habitat destruction<br>(erosion) |
|       | Australian fairy<br>tern      | Sternula nereis nereis       | V                  | V      |                | No                |                             | ЕМВА | Habitat disturbance                            |
|       | Bar-tailed Godwit<br>(baueri) | Limosa lapponica<br>baueri   | V<br>Mw            | V S3   |                |                   |                             |      |                                                |
|       | Greater Sand<br>Plover        | Charadrius<br>Ieschenaultii  | V<br>Mw            | V S3   |                |                   |                             |      | Pollution<br>Habitat loss                      |
|       | Shy Albatross                 | Thalassarche cauta<br>cauta  | V<br>M             | M S5   |                | Yes               |                             |      |                                                |
|       | White-capped<br>Albatross     | Thalassarche cauta<br>steadi | V<br>M             | V S3   |                | Yes               |                             |      | N/A (bycatch and predation)                    |
|       | Campbell<br>Albatross         | Thalassarche<br>impavida     | V<br>M             | V S3   |                | Yes               |                             |      | N/A commercial fishing                         |
|       | Black-browed<br>Albatross     | Thalassarche<br>melanophris  | V<br>M             | E S2   |                | Yes               |                             |      | N/A commercial fishing                         |
|       | Common noddy                  | Anous stolidus               | М                  | LC     |                | No                |                             |      |                                                |



| Class | Common Name                | Scientific Name           | EPBC Act<br>Status | WC Act | Cons<br>Advice | Recovery<br>Plan | Threat<br>Abatement<br>Plan | BIA        | Identified /relevant<br>risks |
|-------|----------------------------|---------------------------|--------------------|--------|----------------|------------------|-----------------------------|------------|-------------------------------|
|       | Fork-tailed swift          | Apus pacificus            | М                  | LC     |                | No               |                             |            |                               |
|       | Streaked<br>shearwater     | Calonectris<br>leucomelas | М                  | LC     |                | No               |                             |            |                               |
|       | Lesser frigatebird         | Fregata ariel             | М                  | LC     |                | No               |                             |            |                               |
|       | Great frigatebird          | Fregata minor             | М                  | LC     |                | No               |                             |            |                               |
|       | White-tailed<br>tropicbird | Phaethon lepturus         | М                  | LC     |                | No               |                             |            |                               |
|       | Red-tailed<br>tropicbird   | Phaethon rubricauda       | М                  | LC     |                | No               |                             |            |                               |
|       | Flesh-footed<br>Shearwater | Puffinus carneipes        | М                  | LC     |                | No               |                             |            |                               |
|       | Wedge-tailed<br>shearwater | Puffinus pacificus        | М                  | LC     |                | No               |                             | EMBA<br>PW |                               |
|       | Little tern                | Sterna albifrons          | М                  | LC     |                | No               |                             |            |                               |
|       | Bridled tern               | Sterna anaethetus         | М                  | LC     |                | No               |                             |            |                               |
|       | Lesser crested tern        | Sterna bengalensis        | М                  | LC     |                | No               |                             |            |                               |
|       | Caspian tern               | Sterna caspia             | М                  | LC     |                | No               |                             |            |                               |
|       | Roseate tern               | Sterna dougallii          | М                  | LC     |                | No               |                             |            |                               |
|       | Masked booby               | Sula dactylatra           | М                  | LC     |                | No               |                             |            |                               |
|       | Brown booby                | Sula leucogaster          | М                  | LC     |                | No               |                             |            |                               |
|       | Red-footed booby           | Sula sula                 | М                  | LC     |                | No               |                             |            |                               |
|       | Common<br>sandpiper        | Actitis hypoleucos        | Mw                 | LC     |                | No               |                             |            |                               |
|       | Ruddy turnstone            | Arenaria interpres        | Mw                 | LC     |                | No               |                             |            |                               |


| Class | Common Name               | Scientific Name             | EPBC Act<br>Status | WC Act | Cons<br>Advice | Recovery<br>Plan | Threat<br>Abatement<br>Plan | BIA | Identified /relevant<br>risks |
|-------|---------------------------|-----------------------------|--------------------|--------|----------------|------------------|-----------------------------|-----|-------------------------------|
|       | Sharp-tailed<br>sandpiper | Calidris acuminata          | Mw                 | LC     |                | No               |                             |     |                               |
|       | Sanderling                | Calidris alba               | Mw                 | LC     |                | No               |                             |     |                               |
|       | Pectroral<br>Sandpiper    | Calidris melanotos          | Mw                 | LC     |                | No               |                             |     |                               |
|       | Red-necked Stint          | Calidris ruficollis         | Mw                 | LC     |                | No               |                             |     |                               |
|       | Long-toed Stint           | Calidris subminuta          | Mw                 | LC     |                | No               |                             |     |                               |
|       | Double-banded<br>Plover   | Charadrius bicinctus        | Mw                 | LC     |                | No               |                             |     |                               |
|       | Oriental Plover           | Charadrius veredus          | Mw                 | LC     |                | No               |                             |     |                               |
|       | Oriental<br>Pratincole    | Glareola maldivarum         | Mw                 | LC     |                | No               |                             |     |                               |
|       | Grey-tailed Tattler       | Heteroscelus brevipes       | Mw                 | LC     |                | No               |                             |     |                               |
|       | Broad-billed<br>Sandpiper | Limicola falcinellus        | Mw                 | LC     |                | No               |                             |     |                               |
|       | Asian Dowitcher           | Limnodromus<br>semipalmatus | Mw                 | LC     |                | No               |                             |     |                               |
|       | Little Curlew             | Numenius minutus            | Mw                 | LC     |                | No               |                             |     |                               |
|       | Whimbrel                  | Numenius phaeopus           | Mw                 | LC     |                | No               |                             |     |                               |
|       | Osprey                    | Pandion haliaetus           | Mw                 | LC     |                | No               |                             |     |                               |
|       | Ruff                      | Philomachus pugnax          | Mw                 | LC     |                |                  |                             |     |                               |
|       | Pacific Golden<br>Plover  | Pluvialis fulva             | Mw                 | LC     |                |                  |                             |     |                               |
|       | Grey Plover               | Pluvialis squatarola        | Mw                 | LC     |                |                  |                             |     |                               |
|       | Crested Tern              | Thalasseus bergii           | Mw                 | LC     |                |                  |                             |     |                               |



| Class | Common Name          | Scientific Name    | EPBC Act<br>Status | WC Act | Cons<br>Advice | Recovery<br>Plan | Threat<br>Abatement<br>Plan | BIA | Identified /relevant<br>risks |
|-------|----------------------|--------------------|--------------------|--------|----------------|------------------|-----------------------------|-----|-------------------------------|
|       | Wood Sandpiper       | Tringa glareola    | Mw                 | LC     |                |                  |                             |     |                               |
|       | Common<br>Greenshank | Tringa nebularia   | Mw                 | LC     |                |                  |                             |     |                               |
|       | Marsh Sandpiper      | Tringa stagnatilis | Mw                 | LC     |                |                  |                             |     |                               |
|       | Common<br>Redshank   | Tringa tetanus     | Mw                 | LC     |                |                  |                             |     |                               |
|       | Terek Sandpiper      | Xenus cinereus     | Mw                 | LC     |                |                  |                             |     |                               |



| Tabl | e 3 | -3: |  |
|------|-----|-----|--|
|------|-----|-----|--|

Threatened and Migratory Species in the EMBA

| Class              | Common Name                                                     | Scientific Name            | EPBC Act – Status                             |  |
|--------------------|-----------------------------------------------------------------|----------------------------|-----------------------------------------------|--|
|                    | Whale shark                                                     | Rhincodon typus            | Vulnerable; Migratory – marine                |  |
|                    | White shark                                                     | Carcharodon carcharias     | Vulnerable; Migratory – marine                |  |
|                    | Green sawfish                                                   | Pristis zijsron            | Vulnerable; Migratory – marine                |  |
|                    | Grey nurse shark (west coast population)                        | Carcharias taurus          | Vulnerable                                    |  |
|                    | Northern River Shark                                            | Glyphis garricki           | Endangered                                    |  |
| Fish               | Dwarf sawfish                                                   | Pristis clavata            | Vulnerable                                    |  |
|                    | Shortfin mako                                                   | Isurus oxyrinchus          | Migratory – marine                            |  |
|                    | Longfin mako                                                    | Isurus paucus              | Migratory – marine                            |  |
|                    | Porbeagle mackerel shark                                        | Lamna nasus                | Migratory – marine                            |  |
|                    | Reef Manta Ray                                                  | Manta alfredi              | Migratory – marine                            |  |
|                    | Giant Manta Ray                                                 | Manta birostris            | Migratory – marine                            |  |
|                    | Sei whale                                                       | Balaenoptera borealis      | Vulnerable; Migratory – marine                |  |
|                    | Fin whale                                                       | Balaenoptera physalus      | Vulnerable; Migratory – marine                |  |
|                    | Humpback whale                                                  | Megaptera novaeangliae     | Vulnerable; Migratory – marine                |  |
|                    | Blue whale                                                      | Balaenoptera musculus      | Endangered; Migratory – marine                |  |
|                    | Southern right whale                                            | Eubalaena australis        | Endangered; Migratory – marine                |  |
|                    | Antarctic minke whale                                           | Balaenoptera bonaerensis   | Migratory – marine                            |  |
| Marine             | Bryde's whale                                                   | Balaenoptera edeni         | Migratory – marine                            |  |
| mammals            | Sperm whale                                                     | Physeter macrocephalus     | Migratory – marine                            |  |
|                    | Killer whale                                                    | Orcinus orca               | Migratory – marine                            |  |
|                    | Spotted bottlenose dolphin<br>(Arafura/ Timor Sea) populations) | Tursiops aduncus           | Migratory – marine                            |  |
|                    | Indo-Pacific humpback dolphin                                   | Sousa chinensis            | Migratory – marine                            |  |
|                    | Irrawaddy dolphin                                               | Orcaella brevirostris      | Migratory – marine                            |  |
|                    | Dugong                                                          | Dugong dugon               | Migratory – marine                            |  |
|                    | Hawksbill turtle                                                | Eretmochelys imbricata     | Vulnerable; Migratory – marine                |  |
|                    | Flatback turtle                                                 | Natator depressus          | Vulnerable; Migratory – marine                |  |
|                    | Green turtle                                                    | Chelonia mydas             | Vulnerable; Migratory – marine                |  |
| Marine<br>reptiles | Loggerhead turtle                                               | Caretta caretta            | Endangered; Migratory – marine                |  |
|                    | Leatherback turtle                                              | Dermochelys coriacea       | Endangered; Migratory – marine                |  |
|                    | Short-nosed sea-snake                                           | Aipysurus apraefrontalis   | Critically Endangered                         |  |
|                    | Salt-water crocodile                                            | Crocodylus porosus         | Migratory – marine                            |  |
|                    | Curlew Sandpiper                                                | Calidris ferruginea        | Critically Endangered; Migratory –<br>wetland |  |
| Birds              | Great Knot                                                      | Calidris tenuirostris      | Critically Endangered; Migratory –<br>wetland |  |
|                    | Bar-tailed Godwit (menzbieri)                                   | Limosa lapponica menzbieri | Critically Endangered; Migratory – wetland    |  |



| Class | Common Name                | Scientific Name              | EPBC Act – Status                             |
|-------|----------------------------|------------------------------|-----------------------------------------------|
|       | Eastern Curlew             | Numenius<br>madagascariensis | Critically Endangered; Migratory –<br>wetland |
|       | Lesser Sand Plover         | Charadrius mongolus          | Endangered; Migratory – wetland               |
|       | Red Knot                   | Calidris canutus             | Endangered; Migratory – wetland               |
|       | Southern giant-petrel      | Macronectes giganteus        | Endangered; Migratory – marine                |
|       | Australian painted snipe   | Rostratula australis         | Endangered; Migratory – wetland               |
|       | Soft-plumaged petrel       | Pterodroma mollis            | Vulnerable                                    |
|       | Australian fairy tern      | Sternula nereis nereis       | Vulnerable                                    |
|       | Bar-tailed Godwit (baueri) | Limosa lapponica baueri      | Vulnerable; Migratory – wetland               |
|       | Greater Sand Plover        | Charadrius leschenaultii     | Vulnerable; Migratory – wetland               |
|       | Shy Albatross              | Thalassarche cauta cauta     | Vulnerable; Migratory – marine                |
|       | White-capped Albatross     | Thalassarche cauta steadi    | Vulnerable; Migratory – marine                |
|       | Campbell Albatross         | Thalassarche impavida        | Vulnerable; Migratory – marine                |
|       | Black-browed Albatross     | Thalassarche melanophris     | Vulnerable; Migratory – marine                |
|       | Common noddy               | Anous stolidus               | Migratory – marine                            |
|       | Fork-tailed swift          | Apus pacificus               | Migratory – marine                            |
|       | Streaked shearwater        | Calonectris leucomelas       | Migratory – marine                            |
|       | Lesser frigatebird         | Fregata ariel                | Migratory – marine                            |
|       | Great frigatebird          | Fregata minor                | Migratory – marine                            |
|       | White-tailed tropicbird    | Phaethon lepturus            | Migratory – marine                            |
|       | Red-tailed tropicbird      | Phaethon rubricauda          | Migratory – marine                            |
|       | Flesh-footed Shearwater    | Puffinus carneipes           | Migratory – marine                            |
|       | Wedge-tailed shearwater    | Puffinus pacificus           | Migratory – marine                            |
|       | Little tern                | Sterna albifrons             | Migratory – marine                            |
|       | Bridled tern               | Sterna anaethetus            | Migratory – marine                            |
|       | Lesser crested tern        | Sterna bengalensis           | Migratory – marine                            |
|       | Caspian tern               | Sterna caspia                | Migratory – marine                            |
|       | Roseate tern               | Sterna dougallii             | Migratory – marine                            |
|       | Masked booby               | Sula dactylatra              | Migratory – marine                            |
|       | Brown booby                | Sula leucogaster             | Migratory – marine                            |
|       | Red-footed booby           | Sula sula                    | Migratory – marine                            |
|       | Common sandpiper           | Actitis hypoleucos           | Migratory – wetland                           |
|       | Ruddy turnstone            | Arenaria interpres           | Migratory – wetland                           |
|       | Sharp-tailed sandpiper     | Calidris acuminata           | Migratory – wetland                           |
|       | Sanderling                 | Calidris alba                | Migratory – wetland                           |
|       | Pectroral Sandpiper        | Calidris melanotos           | Migratory – wetland                           |
|       | Red-necked Stint           | Calidris ruficollis          | Migratory – wetland                           |
|       | Long-toed Stint            | Calidris subminuta           | Migratory – wetland                           |



| Class | Common Name            | Scientific Name             | EPBC Act – Status   |
|-------|------------------------|-----------------------------|---------------------|
|       | Double-banded Plover   | Charadrius bicinctus        | Migratory – wetland |
|       | Oriental Plover        | Charadrius veredus          | Migratory – wetland |
|       | Oriental Pratincole    | Glareola maldivarum         | Migratory – wetland |
|       | Grey-tailed Tattler    | Heteroscelus brevipes       | Migratory – wetland |
|       | Broad-billed Sandpiper | Limicola falcinellus        | Migratory – wetland |
|       | Asian Dowitcher        | Limnodromus<br>semipalmatus | Migratory – wetland |
|       | Little Curlew          | Numenius minutus            | Migratory – wetland |
|       | Whimbrel               | Numenius phaeopus           | Migratory – wetland |
|       | Osprey                 | Pandion haliaetus           | Migratory – wetland |
|       | Ruff                   | Philomachus pugnax          | Migratory – wetland |
|       | Pacific Golden Plover  | Pluvialis fulva             | Migratory – wetland |
|       | Grey Plover            | Pluvialis squatarola        | Migratory – wetland |
|       | Crested Tern           | Thalasseus bergii           | Migratory – wetland |
|       | Wood Sandpiper         | Tringa glareola             | Migratory – wetland |
|       | Common Greenshank      | Tringa nebularia            | Migratory – wetland |
|       | Marsh Sandpiper        | Tringa stagnatilis          | Migratory – wetland |
|       | Common Redshank        | Tringa totanus              | Migratory – wetland |
|       | Terek Sandpiper        | Xenus cinereus              | Migratory – wetland |



# 3.7.1 Fish

Ten species of EPBC listed fish and rays have been identified as potentially occurring within the EMBA for the Stag Field. Of these, four species BIAs' also overlap with the EMBA including the; whale shark, green, dwarf and freshwater sawfishes (**Figure 3-5**).



Figure 3-5: Biologically Important Areas for Shark and Fish

## Whale Shark

The whale shark (Rhincodon typus) is an oceanic and coastal, pelagic fish, generally found in tropical areas where the surface temperature is 21–25°C. It is a filter feeder and, commonly ranges in size from 4–10 m (Colman, 1997). This species was listed as Vulnerable under the EPBC Act in 2001, and is also classified as Vulnerable on the World Conservation Union's Red List of Threatened Species (IUCN, 2012). In WA, whale sharks are protected under the Wildlife Conservation Act 1950, the Conservation and Land Management Act 1984 and the Fish Resources Management Act 1994.

There is a general lack of knowledge on many aspects of whale shark biology, including definitive migration patterns. They are normally oceanic and cosmopolitan in their distribution and are known to aggregate in the reef front waters adjacent to the Ningaloo Reef between March to June (Colman, 1997; Wilson et al., 2006) with the highest frequency of sightings occurring in April (Wilson et al., 2001). However, the season is variable and individual whale sharks have been recorded at other times of the year. This location has been identified as a foraging BIA (Figure 3-5), While the species spends the majority of its time in deeper water, it is also encountered close to or at the surface. Whale shark presence coincides with the coral mass spawning period, when there is an abundance of food (krill, planktonic larvae and schools of small fish) in the waters adjacent to the reef. Estimates of the size of the population participating in the Ningaloo aggregation are between 300 and 500 individuals (Meekan et al., 2006).



Preliminary research on the migration patterns of whale sharks in the western Indian Ocean, and isolated and infrequent observations of individuals, indicate that a small number of the WA population migrate through the NWMR. Wilson et al. (2006) tagged 19 whale sharks in 2003 and 2004, with long-term movements patterns successfully recorded from six individuals. All travelled north-east into the Indian Ocean after departing Ningaloo Reef, with one tracked to Ashmore Reef and another to Scott Reef.

The most significant threat to whale sharks is intentional and unintentional mortality from fishing outside of Australian waters. In Australian waters, threats to the recovery of the species include boat strike from large vessels and habitat disruption from mineral exploration, production and transportation. Other lesser threats include disturbance from domestic tourism operations, marine debris and climate change.

Ongoing threats to whale sharks, together with life history characteristics; including slow growth, late maturation and extended longevity (Colman, 1997); means the whale shark remains susceptible to declines across its international range.

### White Shark

The great white shark (Carcharodon carcharias) is listed as vulnerable under the EPBC Act and may occur within the spill trajectory area as they are known to prey on humpback whales and have been recorded in NWC waters during humpback migrations. Study into great white shark populations is difficult (Cailliet, 1996) given the uncertainty about their movements, emigration, immigration and difficulty in estimating the rates of natural or fishing mortality. In Australia, great white sharks have been recorded from central Queensland around the south coast to north-west WA, but may occur further north on both coasts (Last and Stevens, 2009). They are widely but not evenly distributed in Australian waters and is considered uncommon to rare compared to most other large sharks (CITES, 2004). Great white sharks can be found from close inshore around rocky reefs, surf beaches and shallow coastal bays to outer continental shelf and slope areas (Pogonoski et al., 2002). They also make open ocean excursions and can cross ocean basins (for instance from South Africa to the western coast of Australia and from the eastern coast of Australia to New Zealand). Great white sharks are often found in regions with high prey density, such as pinniped colonies (DEWHA, 2009).

#### Grey Nurse Shark

In Australia, the grey nurse shark has an inshore coastal distribution primarily in sub-tropical to cool temperate waters on the continental shelf. There are two separate, genetically distinct grey nurse shark populations in Australian waters—one on the east coast and one on the west coast. The range of the west coast population is not well known; however, records indicate that the species is widely distributed from the North-West Shelf (including coastal waters in Exmouth Gulf), south to the Great Australian Bight.

It is thought that individuals have a high degree of site fidelity, although some studies have suggested that the species exhibits some migratory characteristics moving between different habitats and localities (McAuley, 2004).

Grey Nurse Sharks are often observed aggregating above the seabed (at depths 10–40 m) near deep sandybottomed gutters or rocky caves in the vicinity of inshore rocky reefs and islands (CoA 2014). Grey nurse sharks have also been recorded in the surf zone, around coral reefs, and to depths of around 200 m on the continental shelf (Pollard et al. 1996). No key aggregation sites have been identified in WA waters.

As outlined in the Recovery Plan for the Grey Nurse Shark (Carcharias taurus) 2014 (CoA 2014), the principal current threats to the grey nurse shark in Australia are:

- Mortality related to incidental capture by commercial and recreational fisheries; and
- Mortality related to shark control activities such as beach meshing or drumlining.

Although individuals may be present in the EMBA, based on their distribution it is likely limited to individuals only.



### Shortfin and Longfin Mako

The shortfin mako and longfin mako sharks are listed as Migratory under the EPBC Act. The longfin mako is a widely-distributed but rarely encountered oceanic shark that ranges from Geraldton around the north coast to at least Port Stephens in New South Wales (DSEWPaC 2012). The shortfin mako is an oceanic and pelagic species, although they are occasionally seen inshore. They are found throughout temperate seas but are rarely found in waters colder than 16°C.

## Porbeagle Mackerel Shark

The Porbeagle is wide-ranging and inhabits temperate, subarctic and subantarctic waters of the North Atlantic and Southern Hemisphere. In Australia, the species occurs in waters from southern Queensland to south-west Australia (Last and Stevens 2009). Animals typically occur in oceanic waters off the continental shelf, although they occasionally enter coastal waters.

The Porbeagle primarily inhabits oceanic waters and areas around the edge of the continental shelf although they occasionally move into coastal waters, but these movements are temporary. Individuals are known to undertake seasonal migrations, possibly in search of food, although the timing and details of these migratory movements are not well-understood.

## **Dwarf Sawfish**

The dwarf sawfish (Pristis clavata) is listed as vulnerable under the EPBC Act. The Australian distribution of the dwarf sawfish is considered to extend across northern Australia and along the Kimberley and Pilbara coasts (Last and Stevens, 2009; Stevens et al., 2005). The majority of records of dwarf sawfish in WA have come from shallow estuarine waters of the Kimberley region which are believed to be nursery areas, with immature juveniles remaining in these areas up until three years of age (Thorburn et al., 2004). Sawfish regularly use the tidal creeks and mangrove areas of Roebuck Bay, within the EMBA, for breeding and refuge. Pupping is known and likely to occur along the Pilbara coastline, with main areas within the EMBA being along Eighty Mile Beach. Similarly, the Recovery Plan indicates that adults are known to occur along the coast north of Exmouth and within the EMBA and operational area.

### Northern River shark

Northern river sharks have been recorded in rivers and estuaries, as well as the marine environment, within the west and east Kimberley, including King Sound, the Ord and King Rivers, the west arm of Cambridge Gulf and from Joseph Bonaparte Gulf and so outside the EMBA.

### Green Sawfish

In Australian waters, green sawfish have historically been recorded in the coastal waters off Broome, Western Australia, around northern Australia and down the east coast as far as Jervis Bay, NSW (Stevens et al., 2005). The green sawfish inhabits muddy bottom habitats and enters estuaries (Allen, 1997; Stead, 1963). It has been recorded in inshore marine waters, estuaries, river mouths, embankments and along sandy and muddy beaches (Peverell et al., 2004; Stevens et al., 2005; Thorburn et al., 2004). Stead (1963) reported that this species was frequently found in shallow water. Green sawfish have been recorded in very shallow water (<1 m) to offshore trawl grounds in over 70 m of water (Stevens et al., 2005).

Smaller specimens (<2.5 m in length) are more common in foreshore and offshore coastal waters (Thorburn et al., 2004), as well as estuaries and river mouths at slightly reduced salinities, but do not venture into freshwater. Larger individuals (>2.5 m in length) are found in both inshore and offshore waters.

Pupping is known and likely to occur along the Pilbara coastline, with main areas within the EMBA being along Eighty Mile Beach. Similarly, the Recovery Plan indicates that adults are known to occur along the coast north of Exmouth within the EMBA and operational area.

Principal threats to sawfish species is fishing activities (by-catch, traditional or illegal fishing) and habitat degradations or modification.



## <u>Manta Rays</u>

The giant and reef manta rays can be found throughout the waters of WA. They are listed as migratory and may be found in locations such as Ningaloo.

## Pipefish and seahorse (Syngnathidae)

Other EPBC Act protected marine species that may occur within the EMBA include various species of pipefishes and seahorses (Family Syngnathidae). Knowledge about the distribution, abundance and ecology of both syngnathids and solenostomids is limited (DSEWPaC 2012). In tropical areas such as the EMBA, species are primarily found among coral reefs.

## 3.7.2 Marine Mammals

Marine mammals occur in the waters of the Stag Field, some being seasonal visitors while others occur at low densities year- round. Marine mammals that may occur in the region include cetaceans (whales, porpoises and dolphins) and dugongs. A search of the EPBC Act protected matters database revealed 32 cetaceans that may occur within the EMBA. The search identified five threatened marine mammal species that may occur within the Stag Field EMBA, including three species listed as vulnerable, the sei whale (Balaenoptera borealis), humpback whale (Megaptera novaeangliae) and fin whale (Balaenoptera physalus), and two species listed as endangered, the blue whale (Balaenoptera musculus) and southern right whale (Eubalaena australis). Further information on these species is provided in Figure 3-6. In addition, eight marine mammals were identified as migratory.



Figure 3-6: Biologically Important Areas for Marine Mammals

### Humpback Whale

Humpback whales are moderately large baleen whales that occur throughout Australian waters and are the most commonly sighted whale in the NWMR (DSEWPaC, 2012e).



The WA humpback whale population (known as the Group IV population) is genetically distinct from the eastern Australian population and was severely depleted by whaling activities. The population was estimated at 12,000 to 16,000 individuals in 1934 and continued to decline to an estimated 800 individuals prior to the moratorium on whaling in the southern hemisphere in 1962 (Chittleborough, 1965). More recent population estimates have suggested whale numbers have increased to ~ 28,830 in 2008 (Hedley et al., 2011 as cited in DoE 2015). Numbers have increased further in recent years and the Action Plan for Australian Mammals 2012 by Woinarski et al., 2014, and a recent paper from Bejder et al., 2015 recommend that humpback whales no longer meet any criteria for listing as threatened under the EPBC Act.

Humpback whales migrate annually between summer feeding grounds in Antarctica and breeding aggregation areas in Southern Kimberley between Broome and the northern end of Camden Sound.

The Approved Conservation Advice for Megaptera novaeangliae (humpback whale) (DoE 2015) identifies that the humpback whale migration pathway is within the continental shelf boundary or 200 m bathymetry along the WA coastline. However actual sightings recorded by Jenner et al (2002) indicates that the route is actually much closer to shore, particularly along the Pilbara coast, with migrating whales tending to travel within 50 km of the coast between North-West Cape and Camden Sound.

Humpback whales pass north along the waters west of Barrow Island to the Montebello Islands during their annual winter migration from the Antarctic. Once past the Montebello Islands their migration route heads east towards their breeding grounds in the Kimberley. The northward migration past Montebello and Barrow Islands generally occurs from mid-July with the peak in late July, though this can vary by up to three weeks. Unlike the northern migration, which tends to follow the deeper water of the continental shelf, the southward migration concentrates whales closer to the mainland with a peak Aug–mid-Sep (DoE 2015).

Major calving areas have been identified in the Kimberley region and particularly between Lacepede Islands (16°8S) and Camden Sound (15°38S) (Jenner et al., 2002) which are more than 900 km from the Stag Operational Area.

The Operational Area is within a region identified in the Conservation Advice (DoE 2015) as a 'species core range' (Figure 3-6) and whales may travel through this area on a seasonal basis as part of their migratory movements. The Stag Platform is more than 900 km from core calving grounds and more than 250 km from identified resting areas at Exmouth Gulf and southern Kimberley. As such, whales may be present in the area as part of the season migration.

### Blue Whale

Blue whales are found in all oceans of the world. They are the largest living animal and can grow to a length of over 30 m and weigh an average of 100–120 t. There are two recognised subspecies in Australia; the 'true' blue whale (Balaenoptera musculus intermedia) and the 'pygmy' blue whale (Balaenoptera musculus brevicauda) (DSEWPaC, 2012d). Both of these species are covered by the Blue Whale Conservation Management Plan 2015 (DoE 1999). In general, the southern blue whale is found south of 60° S and pygmy blue whales are found north of 55° S (DEWHA, 2008a, b). As southern blue whales feed predominantly in polar waters it has been suggested that all blue whales sighted in Australian waters are pygmy blue whales (DEH, 2005). During summer–autumn true blue whales feed mainly in the Antarctic, mostly on krill, while pygmy blue whales are thought to feed in productive regions in temperate latitudes (Branch *et al.*, 2007).

The Perth Canyon is the only area so far identified off the WA coast where pygmy blue whales aggregate with some predictability. The area represents a significant feeding ground for pygmy blue whales between January and April, with aerial surveys between 1999 and 2004 recording an average of 30 individuals at the peak of the season (March–May) (Jenner et al., 2002; McCauley et al., 2004). Acoustic detections suggest that true blue whales also over-winter around the Perth Canyon and head south in mid-October (McCauley et al., 2004).

The blue whale BIA (migratory path) overlaps the operational area (Figure 3-6). However Blue whale migration is thought to follow deep oceanic routes, although little is known about their precise migration



routes (DSEWPaC, 2012d). The blue whale is rarely present in large numbers outside recognised aggregation areas. Chevron's Wheatstone project cetacean monitoring studies indicated that during their southern migration blue whales were recorded between the 750 m and the 850 m isobaths and between the 300 m and the 350 m isobaths (RPS, 2010). These data also showed a seasonal migration pattern further west from May to August (moving northwards), with a southwards migration occurring between November and December (RPS, 2010). These findings are supported by acoustic detections undertaken off the Montebello Islands which showed a northerly pulse from late March to early August with peak migration in June and July, and a pulse of southerly transiting whales from early October to late November, with a peak migration period occurring from early November to early December.

Tagging surveys have shown pygmy blue whales migrating northward relatively near to the Australian coastline (100 km) until reaching North-West Cape after which they travelled offshore (240 km) to Indonesia. Passive acoustic data documented pygmy blue whales migrating along the Western Australian shelf break. The National Conservation Values Atlas has identified the pygmy whale migration pathway on the continental shelf edge at depth of 500 to 1,000 m (Figure 3-6).

## Sperm Whale

Sperm whales typically occur in deep waters (greater than 200m) off the continental shelf along the southern coastline between Cape Leeuwin and Esperance (Bannister et al. 1996). Although there is a lack of detailed information on migration timings, sperm whales are known to migrate northwards in winter and southwards in summer. Sperm whales have been recorded in deep water off the North-west Cape on the west coast of Western Australia, and appear to occasionally venture into shallower waters in other areas. No BIA are in the waters surrounding the Stag Platform or the EMBA.

Given that major foraging areas occur off Perth and in proximity to the Great Australian Bight, sperm whales are unlikely to be present in high numbers within the operational area or EMBA, and any occurrence would be infrequent and limited to transiting individuals.

## Sei Whale

Sei whales have been infrequently recorded in Australian waters (Bannister et al., 1996) which could be due to the similarity in appearance of sei whales and bryde's whales leading to incorrect recordings. There are no known mating or calving locations in Australian waters (Parker, 1978). The species is migratory, moving between Australian waters and Antarctic feeding areas but their movements are unpredictable and not well documented. They have been sighted inshore (in the proximity of the Bonney upwelling, Victoria) as well as in deeper offshore waters and have only been sighted in summer and autumn.

## Fin Whale

Fin whales are listed as vulnerable and migratory under the EPBC Act. The fin whale is the second largest species after the blue whale. Fin whale distribution in Australia is known primarily from stranding events and whaling records and the whales are thought to be present along the western coast of Australia to NSW. The Australian Antarctic waters are important feeding grounds for fin whales but there are no known mating or calving locations in Australian waters (Morrice et al., 2004). The migration routes and location of winter breeding grounds are uncertain but presence has been detected in summer and autumn months.

## Southern Right Whale

Southern right whales from Australian populations probably forage between about 40°S and 65°S, generally south of Australia. In the region of the Sub-Tropical Front (41–44°S) they mainly consume copepods, while at higher latitudes (south of 50°S) krill is the main prey item. The species feeds in the Southern Ocean in summer, moving close to shore in winter. Right whales feed by surface skimming or shallow dives, trapping plankton on fine baleen fibres. The migratory paths between calving and feeding areas are not well understood (CoA 2012).



The Conservation Management Plan for the Southern Right Whale 2011-2021 (CoA 2012) indicates that the core coastal range for southern right whale is from Perth along the southern coastline to Sydney. Although sightings have been recorded as far north as Exmouth these are rare (Bannister et al. 1996) and no BIA are located in the waters surrounding the Stag Platform or the EMBA.

Given that major calving areas and aggregations occur in proximity to the Great Australian Bight, southern right whales are unlikely to be present in high numbers within the operational area or EMBA, and any occurrence would be infrequent and limited to transiting individuals.

#### **Other Whale Species**

Other cetacean species whose broad distributions overlap with the EMBA include whales that are infrequently observed and usually restricted to cooler or deep waters such as Bryde's whales, Antarctic minke and killer whales. As no BIA for these species are known in the region, and they are generally restricted to deeper waters, it is unlikely they will be encountered in significant numbers.

#### Spotted Bottlenose

The Indo-Pacific bottlenose dolphin (Tursiops aduncus) (Arafura / Timor Sea populations) is generally considered to be a warm water subspecies of the spotted bottlenose dolphin, occurring in shallow (often <10m deep) inshore waters (Bannister et al., 1996; Hale et al., 2000). The known distribution of the Indo-Pacific bottlenose dolphin extends from Shark Bay north to the western edge of the Gulf of Carpentaria in Australia.

No BIA for the spotted bottlenose dolphin is located within the EMBA, although a foraging BIA is located in the shallower waters off Broome.

#### Indo-Pacific Humpback

The Indo-pacific humpback dolphin is typically found in water less than 20m deep, but has been recorded in water up to 40m deep. This species is generally found in association with river mouths, mangroves, tidal channels and inshore reefs. This species of dolphin is known to have resident groups that forage, feed, breed and calve in the state waters of Roebuck Bay and areas further north.

No BIA for the Indo-pacific humpback dolphin is located within the EMBA, although a foraging and breeding BIA is located in the shallower waters off Broome.

### Irrawady Dolphin (Australian Snubfin)

The snubfin dolphin (Orcaella heinsohni) is known to occur within the waters off northern Australia, extending north from Broome in Western Australia to the Brisbane River in Queensland. Surveys have indicated that the species is typically found in protected shallow nearshore waters, generally less than 20m deep, adjacent to river and creek mouths close to seagrass beds. The snubfin dolphin was not recorded during any of the aerial surveys undertaken along the Dampier Peninsula coastline in the vicinity of James Price Point but were observed in Roebuck Bay from vessels on several occasions. Based on the extensive survey effort and amenable conditions within the James Price Point coastal area during survey, it is concluded that this species is seldom found outside of shallow and sheltered bays and inlets.

### Dugong

Dugongs are listed as a Migratory species under the EPBC Act and protected under Schedule 4 of the WA Wildlife Conservation Act. They are also listed on the Appendix 1 of the Convention of International Trade in Endangered Species (CITES) and on Appendix II of the Convention of Migratory Species (the CMS). Dugongs (Dugong dugon) are large herbivorous marine mammals (up to 3 metres) that feed off seagrass and generally inhabit coastal areas in shallow waters (less than 5 m).

Dugong distribution and movement is based on the abundance, size and species of seagrass meadow. Key populations along the WA coast are principally located at: Shark Bay (the largest resident population in Australia), Ningaloo Marine Park, the Pilbara coast and offshore areas including Montebello, Barrow and



Lowendal Islands, and further north at Eighty Mile Beach and off the Kimberley Coast, particularly Roebuck Bay and Dampier Peninsula (DSEWPaC 2012).

A foraging and migration BIA is in Roebuck Bay (outside the EMBA) while the waters around Ningaloo Reef are a recognised breeding and nursery BIA.

### 3.7.3 Marine Reptiles

Five species of threatened marine turtles may occur within the EMBA, three of these species are classed as threatened-vulnerable under the EPBC Act, the hawksbill (Eretmochelys imbricata), flatback (Natator depressus) and green turtles (Chelonia mydas) with two species, the loggerhead (Caretta caretta) and leatherback turtle (Dermochelys coriacia), classed as threatened-endangered. Green, flatback, hawksbill, and loggerhead turtles nest on the sandy beaches of offshore islands and the mainland within the Stag Field EMBA. The leatherback turtle may also visit the open waters of the region.

These species are all identified within the Recovery Plan for Marine Turtles in Australia (EA 2003) as well as the Draft Recovery Plan (CoA 2017).

The nearest turtle nesting sites to the operational area are located ~ 35 km to the south-east at Dampier Archipelago and ~ 60 km to the south-west at Barrow, Montebello and Lowendal Islands. **Error! Reference source not found.** outlines turtle activity within the Operational Area and EMBA.

A search of EPBC Act protected matters revealed 18 listed seasnakes that may occur within the EMBA. Of these species, one is considered threatened (critically endangered), the short-nosed sea snake (Aipysurus apraefrontalis).

The EPBC search also identified two species of crocodile, the saltwater crocodile (Crocodylus porosus) and the freshwater crocodile (Crocodylus johnstoni) as potentially occurring within the EMBA. The saltwater crocodile is listed as migratory marine species under the EPBC Act. These species are associated with riverine, estuarine and nearby coastal waters of the mainland and are most likely to be encountered along the northern mainland coastline of the EMBA. Given their habitat preferences they are unlikely to be encountered in the offshore waters of the Operational Area.







| Table 3-4: | Marine Turtle Activity |
|------------|------------------------|
|------------|------------------------|

| Species                | Hawksbill turtle                                                                                                                                                                                                                                                                                             | Flatback turtle                                                                                                                                                                                                                                                          |                                                                              | Green turtle                                                                                                                                                                                                                                                                 | Loggerhead turtle                                                             | Leatherback turtle                                                                                                                                                                                                                        |
|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Stock                  | WA Stock                                                                                                                                                                                                                                                                                                     | Pilbara Stock                                                                                                                                                                                                                                                            | Southwest<br>Kimberley                                                       | NWS Stock                                                                                                                                                                                                                                                                    | WA Stock                                                                      | Australia                                                                                                                                                                                                                                 |
| Nesting<br>period      | Year Round                                                                                                                                                                                                                                                                                                   | October -March                                                                                                                                                                                                                                                           | Year Round                                                                   | November -March                                                                                                                                                                                                                                                              | November -Mar                                                                 | December -Jan                                                                                                                                                                                                                             |
| Nesting<br>peak        | Oct-Feb                                                                                                                                                                                                                                                                                                      | Nov-Jan                                                                                                                                                                                                                                                                  | Dec-Jan                                                                      | Jan - Feb                                                                                                                                                                                                                                                                    | January                                                                       | -                                                                                                                                                                                                                                         |
| Internesting<br>buffer | 20 km                                                                                                                                                                                                                                                                                                        | 60 km                                                                                                                                                                                                                                                                    | 60 km                                                                        | 20 km                                                                                                                                                                                                                                                                        | 20 km                                                                         | -                                                                                                                                                                                                                                         |
| Important<br>rookeries | Nesting location:<br>Dampier Archipelago<br>(including Rosemary<br>Island, Delambre<br>Island), Montebello<br>Islands (including Ah<br>Chong Island, South<br>East Island and<br>Trimouille Island),<br>Lowendal Islands<br>(including Varanus<br>Island, Beacon Island,<br>Bridled Island), Sholl<br>Island | Nesting location:<br>Montebello Islands,<br>Mundabullangana<br>Beach, Barrow<br>Island, Thevenard<br>Island, Cemetery<br>Beach, Dampier<br>Archipelago<br>(including Delambre<br>Island and Huay<br>Island), coastal<br>islands from Cape<br>Preston to Locker<br>Island | Nesting location:<br>Eighty Mile<br>Beach, Eco<br>Beach, Lacepede<br>Islands | Nesting locations:<br>Adele Island, Maret<br>Island, Cassini<br>Island, Lacepede<br>Islands, Barrow<br>Island, Montebello<br>Islands (all with<br>sandy beaches),<br>Serrurier Island,<br>Dampier<br>Archipelago,<br>Thevenard Island,<br>Northwest Cape,<br>Ningaloo coast. | Nesting location:<br>South Murion Island,<br>North-West Cape,<br>Gnarloo Bay. | There are no<br>confirmed<br>leatherback turtle<br>nesting sites in<br>Western Australia.<br>Scattered nesting<br>occurs in southern<br>Queensland and<br>Northern Territory<br>such as Coburg<br>Peninsula (outside<br>operational area) |

| Species             | Hawksbill turtle                                                                                   | Flatback turtle                                                                                                                                                                                                                                       | Green turtle                                                                                                                                                                       | Loggerhead turtle                                                                                                                                                                                                           | Leatherback turtle                                                                                                                                                                    |
|---------------------|----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Generalised<br>diet | Omnivorous, feeding<br>on algae, sponges,<br>soft corals and other<br>soft-bodied<br>invertebrates | Primarily carnivorous, feeding on soft-<br>bodied invertebrates. Juveniles eat<br>gastropod molluscs, squid,<br>siphonophores. Limited data indicate<br>that cuttlefish, hydroids, soft corals,<br>crinoids, molluscs and jellyfish are also<br>eaten | Primarily<br>herbivorous,<br>foraging on algae,<br>seagrass and<br>mangroves. In their<br>pelagic juvenile<br>stage, they feed on<br>algae, pelagic<br>crustaceans and<br>molluscs | Carnivorous, feeding<br>predominantly on<br>benthic invertebrates<br>in habitats ranging<br>from near shore to<br>55 m. During their<br>post-hatchling stage,<br>they feed on algae,<br>pelagic crustaceans<br>and molluscs | Oceanic and<br>Therefore, remain<br>planktivorous<br>throughout their<br>life, feeding on<br>jellyfish and large<br>planktonic ascidians<br>(e.g. sea squirts) in<br>the water column |

#### 3.7.4 Birds

Marine waters and coastal habitat in the EMBA contains habitats that are important to birds, including offshore islands, sandy beaches, tidal flats, mangroves and coastal and pelagic waters. These habitats support a variety of birds which utilise the area in different ways and at different times of the year (DSEWPaC 2012a). Birds can be broadly grouped according to their preferred foraging habitat as coastal/ terrestrial birds, seabirds and shorebirds.

Coastal or terrestrial species inhabit the offshore islands and coastal areas of the mainland throughout the year and are either primarily terrestrial or they may forage in coastal waters. Resident coastal and terrestrial species include species such as the osprey (Pandion haliaetus) (DEWHA 2008).

Shorebirds, including waders and wetland birds, inhabit the intertidal zone and adjacent areas. Some shorebird species are resident while others are migratory and include species that utilise the East Asian–Australasian Flyway. Shorebirds that regularly migrate through the area include the Scolopacidae (curlews, sandpipers etc.) and Charadriidae (plovers and lapwings) families.

Seabirds include those species whose primary habitat and food source is derived from pelagic waters and spend the majority of their lives at sea, ranging over large distances to forage over the open ocean. Seabirds present in the area include terns, petrels, shearwaters, tropicbirds, frigatebirds, boobies and albatrosses (DEWHA 2008).

A search of the EPBC protected matters database in November 2016 using a conservative EMBA for the Stag Field, revealed 75 listed bird species, 11 of which are classified as threatened and may occur within the EMBA. Further information on these species is provided below. The protected matters search also identified numerous migratory marine bird species and migratory wetland bird species that may occur within the EMBA.

A search of BIAs that overlap the EMBA was undertaken for the threatened species as well as migratory marine species and the results are summarised in Table 3-5.

| Species                 | BIA Location                                                                                                                                                                   | Peak times             |
|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| Wedgetail<br>shearwater | Foraging and breeding with 100 km buffer along Pilbara coastline and islands including:                                                                                        | Mid Aug to April       |
|                         | Dampier Archipelago, Passage Island, Montebello Islands, Lowedall Islands off<br>Barrow Island and islands off Onslow                                                          |                        |
| Roseate tern            | Breeding: Islands off Pilbara coast including Dampier Archipelago, Lowendall Is,<br>Frazer Is, Bedout Island and around Montebello Islands<br>Resting: North Eighty Mile Beach | Mid-March to July      |
| Lesser crested tern     | Breeding: Bedout Island, Lowendal Islands, Thevenard Island                                                                                                                    | March to June          |
| Lesser Frigatebird      | Breeding and 100 km foraging buffer: Bedout Island                                                                                                                             | March to September     |
| Fairy Tern              | Breeding: Pilbara coast incl. Dampier Archipelago and Barrow Island.                                                                                                           | July to late September |

| Table 3-5: | Seabird Biologically Important Areas that Overlap the EMBA |
|------------|------------------------------------------------------------|
|------------|------------------------------------------------------------|



| Species                    | BIA Location                                                                                                                                   | Peak times                       |
|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| Brown booby                | Breeding and foraging: Bedout Island                                                                                                           | Feb to Oct, but mainly<br>Autumn |
| Little tern                | Breeding: Pilbara coastline along Eighty Mile Beach Resting:<br>Rowley Shoals                                                                  | June- July and Oct               |
| White-tailed<br>tropicbird | Breeding and foraging with 100 km buffer: Rowley Shoals                                                                                        | May to Oct                       |
| Red footed<br>booby        | In Australia, the distribution is apparently disjunct; birds are not known to travel far from breeding colonies. Unknown in Western Australia. |                                  |
| Greater<br>frigatebird     | Pilbara coast – northern territory.                                                                                                            |                                  |

The Eighty Mile Beach is particularly significant for migrating shorebird species and is considered one of the most significant sites in Australia for migratory shorebirds as well as supporting a high diversity and abundance of wetland birds. Although many birds may then move further on their journey, many others remain at the site for the non-breeding period. Eighty Mile Beach is considered the most significant site (in terms of numbers of birds) in the South-East Asian Flyway for nine international migratory species; Bar-tailed Godwit; Terek Sandpiper, Grey-tailed Tattler, Great Knot, Red Knot, Curlew Sandpiper; Greater Sand Plover, Oriental Plover and Oriental Pratincole.

## 3.7.5 Environmental Sensitivities

| Marine fauna |                                     | Operational Area                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ЕМВА                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|--------------|-------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Plankton     | Plankton                            | Yes - Phytoplankton and zooplankton present<br>within the operational area.<br>Higher concentrations occurring during the<br>winter months (June to August) during the<br>activity and lower in summer months (December<br>to March).                                                                                                                                                                                                                                         | Yes - Phytoplankton and zooplankton present<br>within the EMBA.<br>Higher concentrations occurring during the<br>winter months (June to August) and lower in<br>summer months (December to March).                                                                                                                                                                                                                                                                                                   |
| Invert-      | Benthic                             | Yes – primarily infaunal species                                                                                                                                                                                                                                                                                                                                                                                                                                              | Yes – will contain both mobile and sessile epifauna and infaunal                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ebrates      | Pelagic                             | Yes – includes squid, salps and jellyfish                                                                                                                                                                                                                                                                                                                                                                                                                                     | Yes – includes squid, salps and jellyfish                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Fish         | Demersal<br>and/ or<br>pelagic fish | Yes – Both demersal and pelagic fish species<br>present. Stag Field infrastructure likely attracts a<br>greater diversity and abundance of fishes than<br>would naturally occur on the soft sediments<br>within the Operational Area. Offshore soft<br>sediment habitat generally supports a lower<br>diversity than other benthic habitats that<br>provide greater structure and feeding<br>opportunities (e.g. rocky and coral reef, seagrass<br>and macroalgae, mangroves) | Yes - Diverse assemblage of demersal and<br>pelagic species distributed throughout the<br>EMBA. Three KEFs within the EMBA likely to<br>support high fish diversity and abundance:<br>Glomar Shoals, Continental Slope Demersal<br>Fish Communities and Mermaid Reef. Shallow<br>water primary producer habitats close to<br>mainland shorelines and offshore islands<br>within the EMBA (e.g. seagrass, macroalgae,<br>hard coral and mangroves) support high<br>abundance and diversity of fishes. |
|              | Whale<br>shark                      | Yes - Could transit through the operational area,<br>particularly around the time of aggregation at<br>Ningaloo Reef (late March to June)                                                                                                                                                                                                                                                                                                                                     | Yes - Will transit through and aggregate within<br>the EMBA. Main period of the whale shark<br>aggregation off Ningaloo Reef is late March to<br>June, with the largest numbers generally<br>recorded in April                                                                                                                                                                                                                                                                                       |

### Table 3-6: Environmental Sensitivities for Marine Fauna within the Operational area and EMBAs



| Marine fauna       |                                                 | Operational Area                                                                                                                                                                                                                                                                      | EMBA                                                                                                                                                                                                                                                                                                              |  |
|--------------------|-------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                    | Grey nurse<br>shark                             | Yes - Could occur as the Operational Area is<br>within depth range (<200 m) but presence is<br>unlikely since there is lack of natural structured<br>habitat in the Operational Area. Operational<br>area is flat bare sand.                                                          | Yes – Likely occurs as residents in some areas<br>where habitat favourable (e.g. near inshore<br>rocky and coral reefs between depths of 10–<br>45 m)                                                                                                                                                             |  |
|                    | White<br>shark                                  | Yes - Could transit through theOperational Area<br>although unlikely to be present for extended<br>durations since white sharks are highly mobile<br>species that follow seasonal feeding<br>opportunities (e.g. whale migrations, pinniped<br>colonies) in primarily coastal waters. | Yes – Likely to transit through and feed within<br>the EMBA where feeding opportunities<br>present (e.g. whale migrations, pinniped<br>colonies) in primarily coastal waters.                                                                                                                                     |  |
|                    | Other<br>shark/ ray<br>species                  | Yes - Could transit through the operational area.                                                                                                                                                                                                                                     | Yes - Could transit through the operational area.                                                                                                                                                                                                                                                                 |  |
|                    | Sawfish                                         | No - Given their preference for shallower<br>estuarine and coastal waters, they are unlikely<br>to be encountered within the Operational Area.                                                                                                                                        | Yes - Could occur in estuaries and nearby<br>coastal mangrove areas and shallow waters<br>particularly the northern mainland coastline<br>the EMBA.                                                                                                                                                               |  |
| Marine<br>mammals  | Humpback<br>whale                               | Yes - Peak northern migration around July. Peak<br>southern migration around Aug/September.<br>Greater likelihood of individuals during northern<br>as opposed to southern migration<br>May transit through the Operational Area as<br>within depth range of migration routes         | Yes - EMBA overlaps known migration routes<br>and presence is reliable during migration<br>season.                                                                                                                                                                                                                |  |
|                    | Pygmy<br>Blue<br>whale                          | Yes - Northern migration in April-August and<br>southern migration Oct - Dec.<br>May transit through the Operational Area<br>although migration routes believed to occur in<br>deeper waters                                                                                          | Yes - EMBA overlaps migration routes in water depths of 500–1,000 m.                                                                                                                                                                                                                                              |  |
|                    | Dugongs                                         | No – Given their preference for shallower<br>waters near seagrass meadows dugongs are<br>unlikely to be encountered within the<br>Operational Area                                                                                                                                    | Yes-Dugongs occur within the EMBA<br>associated with seagrass meadow habitat in<br>coastal waters of the mainland or offshore<br>islands.                                                                                                                                                                         |  |
|                    | Cetacean –<br>various<br>whales and<br>dolphins | Yes – A number of whale and dolphin species<br>may transit the Operational Area. Whales are<br>likely to be transiting during migrations while<br>dolphins may be part of resident coastal<br>populations.                                                                            | Yes - Could occur transiting through the EMBA<br>but not expected in large numbers as they are<br>either infrequently recorded in Australian<br>waters or primarily migrating through deeper<br>waters. Dolphins may be feeding/ aggregating<br>in shallow coastal waters of the mainland or<br>offshore islands. |  |
| Marine<br>Reptiles | Marine<br>Turtles                               | Yes - May transit through the Operational Area<br>although unlikely to be encountered in large<br>numbers (with the exception of the flatback<br>turtle, activity location is outside internesting<br>areas, ~ 35 km from nearest nesting beach at<br>Dampier Archipelago)            | Yes - For all species except Leatherback turtle<br>nesting beaches and breeding/feeding areas<br>occur within the EMBA either on the mainland<br>coastline or offshore islands.                                                                                                                                   |  |
|                    | Sea snakes<br>and kraits                        | No – Not likely to be encountered given the water depth and distance from shore                                                                                                                                                                                                       | Yes - May be encountered in shallow waters habitats of EMBA where feeding habitat is found.                                                                                                                                                                                                                       |  |
|                    | Crocodile                                       | No- Not likely to be encountered given the water<br>depth and distance from estuarine and coastal<br>water of the mainland.                                                                                                                                                           | Yes - May be encountered in estuarine waters<br>and nearby coastal waters. Most likely along<br>more northerly stretches of coastline between<br>Port Hedland and Broome                                                                                                                                          |  |



| Marine fauna |                        | Operational Area                                                                                                                                                               | ЕМВА                                                                                                                                                                                                                                        |
|--------------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Avifauna     | Wetland/<br>Shorebirds | No – Given the distance offshore, shorebirds or<br>wetland birds are unlikely to be present within<br>the Operational Area                                                     | Yes – May occur within the EMBA along<br>shorelines and wetlands feeding or nesting.<br>Areas of particular importance are the Ramsar<br>wetland sites at Eighty- mile Beach. Shorebirds<br>also use Montebello/Lowendal/Barrow<br>Islands. |
|              | Seabirds               | Yes – May utilise the waters of the Operational<br>Area for feeding and may be attracted to the<br>Stag Field by increased abundance of pelagic fish<br>or as resting habitat. | Yes – May occur within the EMBA, either<br>feeding, migrating or utilising coastal islands<br>or mainland shores as nesting habitat.                                                                                                        |

### **3.8** Protected Areas

### 3.8.1 EPBC Act Protected Matters

A search of the EPBC Act Protected Matters Database in November 2016 listed a number of areas that are considered matters of National Environmental Significance (NES) as well as other matters protected under the Act. These are outlined in Table 3-7 and discussed in more detail in Table 3-10.

| Area type                                    | Title                                                                 |  |
|----------------------------------------------|-----------------------------------------------------------------------|--|
| World Heritage Area                          | The Ningaloo Coast                                                    |  |
| National Heritage Properties                 | The Ningaloo Coast                                                    |  |
|                                              | Dampier Archipelago (including Burrup Peninsula)                      |  |
| Commonwealth Heritage Place                  | Mermaid Reef - Rowley Shoals                                          |  |
|                                              | Ningaloo Marine Area - Commonwealth Waters                            |  |
| Wetland of International Importance (Ramsar) | Eighty Mile Beach                                                     |  |
| Wetlands of National Significance            | Eighty Mile Beach System                                              |  |
|                                              | Mermaid Reef                                                          |  |
| Australian Marine Parks (AMP)                | Carnarvon Canyon AMP                                                  |  |
|                                              | Gascoyne AMP                                                          |  |
|                                              | Ningaloo AMP                                                          |  |
|                                              | Montebello AMP                                                        |  |
|                                              | Dampier AMP                                                           |  |
|                                              | Eighty Mile Beach AMP                                                 |  |
|                                              | Argo-Rowley Terrace AMP                                               |  |
|                                              | Mermaid Reef AMP                                                      |  |
|                                              | Kimberley AMP                                                         |  |
| Key Ecological Features                      | Ancient coastline at 125 m depth contour                              |  |
|                                              | Canyons linking the Cuvier Abyssal Plain and the Cape Range Peninsula |  |
|                                              | Commonwealth Waters adjacent to Ningaloo Reef                         |  |
|                                              | Continental Slope Demersal Fish Communities                           |  |
|                                              | Exmouth Plateau                                                       |  |
|                                              | Glomar Shoals                                                         |  |

### Table 3-7: Summary of Protected Areas within the EMBA



| Area type                         | Title                                |  |
|-----------------------------------|--------------------------------------|--|
|                                   | Mermaid Reef and Commonwealth Waters |  |
| Threatened Ecological Communities | None Identified                      |  |
| State Marine Reserves             | Montebello Islands Marine Park       |  |
|                                   | Barrow Island Marine Park            |  |
|                                   | Barrow Island Marine Management Area |  |
|                                   | Muiron Island Marine Management Area |  |
|                                   | Ningaloo Marine Park                 |  |
|                                   | Eighty Mile Beach Marine Park        |  |
|                                   | Rowley Shoals Marine Park            |  |



Figure 3-8: National Heritage Features of the Dampier Archipelago



## 3.8.2 Australian Marine Parks

Nine Australian Marine Parks (AMPs) overlap the EMBA (Figure 3-9) as outlined in Table 3-8.

Table 3-8:Australian Marine Parks within the EMBA

| Australian Marine Parks | Distance from Stag Field | IUCN Categories overlapped                     |  |
|-------------------------|--------------------------|------------------------------------------------|--|
| Carnarvon Canyon AMP    | 620 km                   | Habitat Protection Zone - IUCN Category IV     |  |
| Gascoyne AMP            | 270 km                   | Multiple Use Zone (IUCN VI)                    |  |
|                         |                          | Marine National Park Zone (IUCN                |  |
|                         |                          | II) Habitat Protection Zone (IUCN              |  |
| Ningaloo AMP            | 260 km                   | Recreational Use Zone (IUCN IV)                |  |
| Montebello AMP          | 30 km                    | Multiple Use Zone - IUCN Category VI           |  |
| Dampier AMP             | 60 km                    | Special Purpose Zone (ports) - IUCN Category V |  |
|                         |                          | Marine National Park Zone - IUCN Category II   |  |
| Eighty Mile Beach AMP   | 280 km                   | Multiple Use Zone (IUCN VI)                    |  |
| Argo-Rowley Terrace AMP | 290 km                   | Marine National Park Zone (IUCN II)            |  |
|                         |                          | Multiple Use Zone (IUCN VI)                    |  |
| Mermaid Reef AMP        | 80 km                    | Sanctuary Zone (IUCN 1a)                       |  |
| Kimberley AMP           | 620 km                   | Multiple Use Zone (IUCN VI)                    |  |
| Roebuck AMP             | 643 km                   | Multiple Use Zone (IUCN Category VI)           |  |



GF-70-PLN-I-00002.01 Rev 1



Figure 3-9: State Marine Reserves and Australian Marine Parks and Key Ecological Features



## 3.8.3 IUCN Principles

Existing and proposed Australian Marine Parks are subject to the Australian IUCN reserve management principles as presented in Schedule 8 of the EPBC Regulations. Until management plans come into effect for the new proposed AMP in the NWMR, transitional arrangements apply, and there are no changes on the water for users of the new proposed reserves.

### 3.8.4 Key Ecological Features

Seven marine key ecological features (KEFs) of the NWMR overlap the EMBA (refer Figure 3-9). These KEFs are considered to be of regional importance for either the region's biodiversity or ecosystem function and integrity. Table 3-9 lists the KEFs together with their distance from the Stag Facility. Details on these KEFs are provided below.

| Table 3-9: | Distances from Stag Facility to Key Ecological Features within the EMBA |
|------------|-------------------------------------------------------------------------|
|------------|-------------------------------------------------------------------------|

| Key ecological feature (KEF)                                          | Distance from Stag Facility |  |
|-----------------------------------------------------------------------|-----------------------------|--|
| Ancient coastline at 125 m depth contour                              | ~70 km                      |  |
| Canyons linking the Cuvier Abyssal Plain and the Cape Range Peninsula | ~215 km                     |  |
| Commonwealth Waters adjacent to Ningaloo Reef                         | ~260 km                     |  |
| Continental Slope Demersal Fish Communities                           | ~110 km                     |  |
| Exmouth Plateau                                                       | ~210 km                     |  |
| Glomar Shoals                                                         | ~70 km                      |  |
| Mermaid Reef and Commonwealth Waters                                  | ~390 km                     |  |

### 3.8.5 EPBC Act Protected Matters within the Operational Area and EMBA

**Table 3-10** summarises the habitats that may be affected by routine events at the Stag Field within the Operational Area as well as accidental events that may arise within a larger EMBA.

### Table 3-10:Summary of Environmental Values and Sensitivities

|                                                              | Environmental value                                                                                                                                                                                                                                                                        | Sensitivities overlapped |                                                                                                         |  |  |
|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|---------------------------------------------------------------------------------------------------------|--|--|
| Protected matter                                             |                                                                                                                                                                                                                                                                                            | Operational<br>Area      | EMBA                                                                                                    |  |  |
| World Heritage Are                                           | eas                                                                                                                                                                                                                                                                                        |                          |                                                                                                         |  |  |
| The Ningaloo<br>Coast                                        | Extensive fringing reef and lagoonal system.<br>Supports high diversity of corals, molluscs, fish,<br>crustaceans and sponges. Important habitat for<br>protected and iconic turtles (foraging and nesting),<br>whales (migrating and resting) and whale sharks<br>(feeding aggregations). | No                       | Yes – oil could potentially<br>reach and coat shoreline<br>habitats and coastal waters<br>at this site. |  |  |
| National Heritage Properties                                 |                                                                                                                                                                                                                                                                                            |                          |                                                                                                         |  |  |
| Dampier<br>Archipelago<br>(including<br>Burrup<br>Peninsula) | Important site for indigenous rock painting and stone arrangements.                                                                                                                                                                                                                        | No                       | No – sites above high<br>water mark and would not<br>be impacted from any oil<br>spill scenarios.       |  |  |





|                                                     | Environmental value                                                                                                                                                                                                                                                                         | Sensitivities overlapped |                                                                                                                                                                                           |
|-----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Protected matter                                    |                                                                                                                                                                                                                                                                                             | Operational<br>Area      | ЕМВА                                                                                                                                                                                      |
| The Ningaloo<br>Coast                               | See WHA                                                                                                                                                                                                                                                                                     | No                       | Yes                                                                                                                                                                                       |
| Commonwealth He                                     | ritage Place                                                                                                                                                                                                                                                                                |                          |                                                                                                                                                                                           |
| Mermaid Reef -<br>Rowley Shoals                     | See Mermaid Reef AMP                                                                                                                                                                                                                                                                        | No                       | Yes                                                                                                                                                                                       |
| Ningaloo<br>Marine Area -<br>Commonwealth<br>Waters | See Ningaloo Coast WHA and AMP                                                                                                                                                                                                                                                              | No                       | Yes                                                                                                                                                                                       |
| Ramsar sites                                        |                                                                                                                                                                                                                                                                                             |                          |                                                                                                                                                                                           |
| Eighty Mile<br>Beach                                | This site comprises beach, extensive mudflats and<br>wetlands for feeding/roosting of shorebird/wetland<br>bird species and is an internationally important site<br>for migratory shorebirds.                                                                                               | No                       | Yes – oil could potentially reach and coat shorelines and mudflats of this site.                                                                                                          |
| Wetlands of Nation                                  | al Significance                                                                                                                                                                                                                                                                             |                          |                                                                                                                                                                                           |
| Eighty Mile<br>Beach System                         | See Ramsar Sites                                                                                                                                                                                                                                                                            | No                       | Yes                                                                                                                                                                                       |
| Mermaid Reef                                        | See Mermaid Reef AMP                                                                                                                                                                                                                                                                        | No                       | Yes                                                                                                                                                                                       |
| Commonwealth Ma                                     | arine Parks                                                                                                                                                                                                                                                                                 |                          |                                                                                                                                                                                           |
| Canarvon<br>Canyon AMP                              | Contains the whole of the Carnarvon Canyon and provides a wide range of habitats for benthic and demersal species.                                                                                                                                                                          | No                       | No – values for this feature<br>are related to benthic<br>habitats and species. Given<br>the depth) 1500- 5000 m)<br>no oiling of these habitats<br>or species could occur.               |
| Gascoyne AMP                                        | Contains important foraging areas for seabirds,<br>hawksbill and flatback turtles and whale sharks.<br>Includes seafloor features including canyon, terrace,<br>ridge, knolls, deep hole/valley and continental rise<br>and provides protection for sponge gardens in SW<br>of the reserve. | Νο                       | Yes – sensitivity is only for<br>species (hawksbill and<br>flatback turtles and whale<br>sharks) that use surface<br>waters within the reserve<br>and therefore susceptible<br>to oiling. |
| Ningaloo AMP                                        | Values in Commonwealth waters are around<br>feeding, migrating and aggregating areas for turtles,<br>whales and whale sharks as well as diverse subtidal<br>benthichabitats.                                                                                                                | No                       | Yes – sensitivity is for<br>species (e.g. whales,<br>turtles and whale sharks)<br>that use surface waters<br>within the reserve and<br>therefore susceptible to<br>oiling.                |



|                               | Environmental value                                                                                                                                                                                                                                                                                                                                                                                                                               | Sensitivities overlapped |                                                                                                                                                                                             |  |
|-------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Protected matter              |                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Operational<br>Area      | ЕМВА                                                                                                                                                                                        |  |
| Montebello AMP                | Contains foraging areas adjacent to important<br>breeding/nesting areas for migratory seabirds and<br>turtles and foraging areas for migratory whale<br>sharks. Part of the migratory pathway of the<br>humpback whale.                                                                                                                                                                                                                           | Νο                       | <b>Yes</b> – sensitivity is for<br>species (e.g. whales,<br>turtles and whale sharks)<br>that use surface waters<br>within the reserve and<br>therefore susceptible to<br>oiling.           |  |
| Dampier AMP                   | Contains foraging areas adjacent to important<br>breeding/nesting areas for migratory seabirds and<br>turtles and foraging areas for migratory whale<br>sharks. Part of the migratory pathway of the<br>humpback whale.                                                                                                                                                                                                                           | No                       | Yes – sensitivity is for<br>species (e.g. whales,<br>turtles and whale sharks)<br>that use surface waters<br>within the reserve and<br>therefore susceptible to<br>oiling.                  |  |
| Eighty Mile<br>Beach<br>AMP   | Contains foraging areas adjacent to Important<br>breeding/nesting areas for migratory seabirds and<br>turtles and foraging areas for migratory whale<br>sharks. Part of the migratory pathway of the<br>humpback whale. Adjacent to important foraging,<br>nursing and pupping areas for freshwater, green and<br>dwarf sawfish.                                                                                                                  | Νο                       | <b>Yes</b> – <b>s</b> ensitivity is for<br>species (e.g. whales, turtles<br>and whale sharks) that use<br>surface waters within the<br>reserve and therefore<br>susceptible to oiling.      |  |
| Argo-Rowley<br>Terrace<br>AMP | Important foraging areas for migratory seabirds and<br>the endangered loggerhead turtle. Important area<br>for sharks. The reserve provides protection for many<br>seafloor features including aprons and fans, canyons,<br>continental rise, knolls/abyssal hills and the terrace<br>and continental slope and provides connectivity<br>between the existing Mermaid Reef Marine National<br>Nature Reserve and reefs of the Western Australia   | Νο                       | <b>Yes</b> – sensitivity is for<br>species (e.g. whales, turtles,<br>seabirds and whale sharks)<br>that use Surface waters<br>within the reserve and<br>therefore susceptible to<br>oiling. |  |
|                               | Rowley Shoals Marine Park and the deeper waters of the region.                                                                                                                                                                                                                                                                                                                                                                                    |                          |                                                                                                                                                                                             |  |
| Mermaid Reef<br>AMP           | Mermaid Reef has national and international<br>significance due to its pristine character, coral<br>formations, geomorphic features and diverse marine<br>life (e.g. hard coral). Important areas for sharks,<br>toothed whales, dolphins, tuna and billfish.<br>Important foraging habitat for turtles and important<br>resting and feeding sites for migratory seabirds. One<br>of the best geological example of shelf atolls in<br>Australia. | No                       | Yes – sensitivity is for<br>species (e.g. whales, turtles,<br>seabirds and whale sharks)<br>that use Surface waters<br>within the Reserve and<br>therefore susceptible to<br>oiling.        |  |



|                                                                                      | Environmental value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Sensitivities overlapped |                                                                                                                                                                                       |  |
|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Protected matter                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Operational<br>Area      | EMBA                                                                                                                                                                                  |  |
| Kimberley AMP                                                                        | Contains important foraging areas for migratory<br>seabirds, migratory dugongs, dolphins and<br>threatened and migratory marine turtles. Important<br>migration pathway and nursery areas for the<br>protected humpback whale and adjacent to<br>important foraging and pupping areas for sawfish<br>and important nesting sites for green turtles. The<br>reserve provides protection for the communities<br>and habitats of waters offshore of the Kimberley<br>coastline ranging in depth from less than 15 metres<br>to 800metres. | No.                      | Yes – sensitivity is for<br>species (e.g. whales,<br>turtles, seabirds and whale<br>sharks) that use surface<br>waters within the reserve<br>and therefore susceptible<br>to oiling.  |  |
| Key Ecological Fea                                                                   | itures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                          |                                                                                                                                                                                       |  |
| Ancient coastline<br>at 125 m depth<br>contour                                       | Where the ancient submerged coastline provides<br>areas of hard substrate it may contribute to higher<br>diversity and enhanced species richness relative to<br>soft sediment habitat. May facilitate increased<br>availability of nutrients in particular locations off<br>the Pilbara coast. This enhanced productivity may<br>attract opportunistic feeding by larger marine life<br>including humpback whales, whale sharks and large<br>pelagic fish.                                                                             | No.                      | Yes – sensitivity is for<br>species (e.g. whales,<br>turtles, seabirds and whale<br>sharks) that may be in high<br>abundance above feature<br>and therefore susceptible<br>to oiling. |  |
| Canyons linking<br>the Cuvier<br>Abyssal Plain<br>and the Cape<br>Range<br>Peninsula | Believed to be associated with upwelling. The<br>upwelling zones at the canyon heads are sites of<br>species aggregations such as sweetlip emperor fish.<br>The soft bottom habitats within the canyons<br>themselves are likely to support important<br>assemblages of epibenthic species.                                                                                                                                                                                                                                            | No.                      | Yes –Oil interacting with<br>increased species in<br>upwelled surface waters<br>(e.g. plankton, fish, whale<br>sharks).                                                               |  |
| Commonwealth<br>waters adjacent<br>to Ningaloo Reef                                  | Sensitivities as for Ningaloo AMP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | No.                      | <b>Yes</b> – As per Ningaloo<br>Marine Reserve                                                                                                                                        |  |
| Continental<br>Slope Demersal<br>Fish<br>Communities                                 | High endemism and diversity of demersal fish species                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | No                       | Yes – oil will not directly<br>impact demersal fish<br>species although may<br>interact with demersal fish<br>larvae and eggs over a<br>larger area.                                  |  |
| Exmouth Plateau                                                                      | Plateau is thought to be dotted with numerous<br>pinnacles. It is an important geomorphic feature<br>that modifies the flow of deep waters.                                                                                                                                                                                                                                                                                                                                                                                            | No                       | No – oil will not directly<br>impact this feature or<br>increased benthic diversity<br>associated with this<br>feature.                                                               |  |



|                                               |                                                                                                                                                                                                                                                                                                                          | Sensitivities overlapped |                                                                                                                         |  |
|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-------------------------------------------------------------------------------------------------------------------------|--|
| Protected matter                              | Environmental value                                                                                                                                                                                                                                                                                                      | Operational<br>Area      | EMBA                                                                                                                    |  |
| Glomar Shoals                                 | Regionally important for their high biological<br>diversity and high localised productivity. Enhanced<br>biological productivity supports significant<br>populations of a number of commercially important<br>fish species such as Rankin cod, brownstripe<br>snapper, red emperor, crimson snapper and frypan<br>bream. | Νο                       | Yes – oil could interact with<br>increased productivity<br>within surface waters (e.g.<br>plankton, fish, whale sharks) |  |
| Mermaid Reef<br>and<br>Commonwealth<br>Waters | Sensitivity as for Mermaid Reef AMP                                                                                                                                                                                                                                                                                      | No                       | <b>Yes-</b> as for Mermaid Reef<br>AMP                                                                                  |  |

#### 3.9 State Marine Reserves

#### 3.9.1 State Marine Reserves within the EMBA

Seven State marine reserves have been identified within the EMBA as outlined in Figure 3-9 and Table 3-11.

#### Table 3-11: Distances from Stag Facility Location to State Marine Reserves within the EMBA

| State Marine Reserve                 | Distance from Stag Facility |
|--------------------------------------|-----------------------------|
| Montebello Islands Marine Park       | ~65 km                      |
| Barrow Island Marine Park            | ~110 km                     |
| Barrow Island Marine Management Area | ~75 km                      |
| Muiron Island Marine Management Area | ~240 km                     |
| Ningaloo Marine Park                 | ~260 km                     |
| Eighty Mile Beach Marine Park        | ~340 km                     |
| Rowley Shoals Marine Park            | ~380 km                     |

### 3.9.2 State Marine Reserves within the Operational Area and EMBA

Table 3-12 summarises the State marine reserves that may be affected by unplanned events that may arise within a larger EMBA.



### Table 3-12: Summary of Environmental Values and Sensitivities for State Marine Reserves

| State Marine<br>Reserves                   | Environmental value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | KPIs                                                                                                                       | Sensitivities<br>within the<br>Operational<br>Area | Sensitivities within the EMBA                                                                                                                                                                                                                                     |
|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Montebello Island<br>Marine Park           | Comprise over 100 islands, with<br>habitats including rocky shorelines,<br>coral reefs, mangroves, intertidal flats,<br>extensive sheltered lagoonal waters,<br>and shallow algal and seagrass reef<br>platform. Contains important<br>nesting/breeding and foraging sites for<br>turtles, nesting and resting areas for<br>migrating shorebirds, seabird nesting<br>areas, dugong foraging areas, globally-<br>unique mangrove communities, and<br>highly diverse fish and invertebrate<br>assemblages.                                   | Coral reef<br>communities<br>Mangrove<br>communities<br>Macroalgae<br>and seagrass<br>Turtles<br>Fin fish<br>Water quality | No                                                 | Yes – oil could potentially reach<br>shoreline, intertidal and shallow<br>subtidal habitats as well as<br>Marine species using these<br>habitats (e.g. turtles, seabirds,<br>shorebirds, dugongs)                                                                 |
| Barrow Island<br>Marine Park               | Includes Biggada Reef, an ecologically<br>significant fringing reef, and Turtle<br>Bay, an important turtle aggregation<br>and breeding area. Includes<br>representative areas of seagrass,<br>macroalgal and deep water habitat.                                                                                                                                                                                                                                                                                                          | Coral reef<br>communities<br>Mangrove<br>communities<br>Macroalgae<br>and seagrass<br>Turtles<br>Fin fish<br>Water quality | No                                                 | Yes – oil could potentially reach<br>and coat shoreline, intertidal<br>and shallow subtidal habitats as<br>well as marine species using<br>these habitats (e.g. turtles)                                                                                          |
| Barrow Island<br>Marine<br>Management Area | Includes most of the waters around<br>Barrow Island, the Lowendal Islands<br>and the Barrow Island Marine Park.<br>Includes Bandicoot Bay Conservation<br>Area on the southern coast of Barrow<br>Island created to protect benthic fauna<br>and seabirds. It includes the largest<br>intertidal sand/mudflat community in<br>the reserves and is an important<br>feeding area for migratory birds.<br>Includes significant breeding and<br>nesting areas for marine turtles,<br>important coral reefs and unique<br>mangrove communities. |                                                                                                                            | No                                                 | Yes – oil could potentially reach<br>and coat shoreline, intertidal<br>and shallow subtidal habitats as<br>well as marine species using<br>these habitats (e.g. turtles and<br>migratory shorebirds)                                                              |
| Muiron Island<br>Marine<br>Management Area | Adjacent to Ningaloo Marine Park<br>around Muiron Island. Regionally<br>significant loggerhead turtle nesting<br>beaches. Contains coral reef and<br>macroalgae habitat.                                                                                                                                                                                                                                                                                                                                                                   | Coral reef<br>communities<br>Water quality<br>Coastal<br>biological<br>communities<br>Finfish                              | No                                                 | Yes – oil could potentially reach<br>and coat shoreline, intertidal<br>and shallow subtidal habitats as<br>well as marine species using<br>these habitats (e.g. turtles) or<br>aggregating/migrating offshore<br>from these habitats (whale<br>sharks and whales) |



| State Marine<br>Reserves         | Environmental value                                                                                                                                                                                                                                                                                             | KPIs                                                                                            | Sensitivities<br>within the<br>Operational<br>Area | Sensitivities within the EMBA                                                                                                                                                                                               |
|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                  |                                                                                                                                                                                                                                                                                                                 | Mangrove<br>communities                                                                         |                                                    |                                                                                                                                                                                                                             |
|                                  |                                                                                                                                                                                                                                                                                                                 | Turtles                                                                                         |                                                    |                                                                                                                                                                                                                             |
|                                  |                                                                                                                                                                                                                                                                                                                 | Seascapes<br>Wilderness                                                                         |                                                    |                                                                                                                                                                                                                             |
| Ningaloo Marine<br>Park          | Extensive fringing reef and lagoonal system. Supports high diversity of corals molluses fish crustaceans and                                                                                                                                                                                                    | Coral reef<br>communities                                                                       | No                                                 | Yes – oil could potentially reach<br>and coat shoreline, intertidal<br>and shallow subtidal babitate as                                                                                                                     |
|                                  | corals, molluscs, fish, crustaceans and<br>sponges. Important habitat for<br>protected and iconic turtles (foraging<br>and nesting), whales (migrating and<br>resting) and whale sharks (feeding                                                                                                                | Water quality<br>Coastal<br>biological<br>communities                                           | an<br>we<br>th<br>mi<br>ag                         | well as marine species using<br>these habitats (e.g. turtles and<br>migratory shorebirds) or<br>aggregating/migrating offshore                                                                                              |
|                                  | shorebirds.                                                                                                                                                                                                                                                                                                     | Finfish                                                                                         |                                                    | sharks and whales)                                                                                                                                                                                                          |
|                                  |                                                                                                                                                                                                                                                                                                                 | Mangrove<br>communities                                                                         |                                                    |                                                                                                                                                                                                                             |
|                                  |                                                                                                                                                                                                                                                                                                                 | Seascapes<br>Wilderness                                                                         |                                                    |                                                                                                                                                                                                                             |
| Eighty-mile Beach<br>Marine Park | Contains Ramsar site and one of the<br>world's most important feeding<br>grounds for migratory shorebirds and<br>wetland birds. Also supports<br>dugongs, inshore dolphins, sharks,<br>rays, tropical fish, sponges, coral reefs<br>and several threatened turtle species.<br>Significant nesting population of | Intertidal sand<br>and mudflat<br>communities<br>Mangrove<br>communities<br>and salt<br>marshes | No                                                 | Yes – oil could potentially reach<br>and coat shoreline, intertidal<br>and shallow subtidal habitats as<br>well as marine species using<br>these habitats (e.g. turtles,<br>dugongs, dolphins and migratory<br>shorebirds). |
|                                  | flatback turtles within the park.                                                                                                                                                                                                                                                                               | Waterbirds<br>including<br>migratory<br>species                                                 |                                                    |                                                                                                                                                                                                                             |
|                                  |                                                                                                                                                                                                                                                                                                                 | Marine turtles<br>(also see<br>species info on<br>other tab)                                    |                                                    |                                                                                                                                                                                                                             |
|                                  |                                                                                                                                                                                                                                                                                                                 | Scalefish                                                                                       |                                                    |                                                                                                                                                                                                                             |
|                                  |                                                                                                                                                                                                                                                                                                                 | Remote<br>seascapes                                                                             |                                                    |                                                                                                                                                                                                                             |



| State Marine<br>Reserves     | Environmental value                                                                                                                                                                                                                                                                                                                                                                                            | KPIs                                                                                                                                             | Sensitivities<br>within the<br>Operational<br>Area | Sensitivities within the EMBA                                                                                                                                                                    |
|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Rowley Shoals<br>Marine Park | Comprises the Clerke and Imperieuse<br>Reefs. Characterised by intertidal and<br>subtidal coral reefs, rich and diverse<br>marine fauna and high water quality.<br>Shoals are thought to provide a source<br>of invertebrate and fish recruits for<br>reefs further south and as such are<br>regionally significant The Rowley<br>Shoals provide an important global<br>benchmark for Indo- West Pacific reefs | Water quality<br>Intertidal coral<br>reef<br>communities<br>Subtidal reef<br>communities<br>Invertebrates<br>Fin fish<br>Seascapes<br>Wilderness | No                                                 | Yes – oil could potentially reach<br>and coat shoreline, intertidal<br>and shallow subtidal habitats as<br>well as marine species using<br>these habitats (e.g. turtles,<br>seabirds, cetaceans) |

## **3.10** Socio-Economic Environment

The Stag Field is approximately 60 km offshore from the Port of Dampier. Smaller coastal fishing and tourism settlements occur at Onslow, approximately 200 km to the south, and Point Samson, some 100 km to the southeast.

Dampier, Karratha and Port Hedland are the main service and population centres for the region. Although initially developed for the iron ore industry, these towns have expanded to service the oil and gas industry located on the North-West Shelf (NWS).

### 3.10.1 Commercial Fisheries and Aquaculture

Offshore and coastal waters in the NWS region support a valuable and diverse commercial fishing industry, dominated by Pilbara fisheries. The major fisheries in the Pilbara region target tropical finfish, large pelagic fish species, crustaceans (prawns and scampi) and pearl oysters (AFMA, 2011; Fletcher and Santoro, 2012).

### Commonwealth Fisheries

Commonwealth fisheries are those within the 200-nautical mile Australian Fishing Zone (AFZ) managed by Australian Fisheries Management Authority (AFMA) and are, on the high seas, and, in some cases, by agreement with the States and Territory, to the low water mark. Commonwealth managed fisheries are permitted to operate within Stag Operational area (not including restricted zone) and EMBA, but effective fishing effort is either non-existent or of very limited nature (Table 3-13).

The North-West Slope Trawl Fishery (NWSTF) fishery is limited to waters deeper than 200 m isobath and so does not overlap the operational area, although it did have active fishing in 2014/2015 within the EMBA. It must be noted that only one vessel was active (CoA 2016).

The boundary of the Western Deepwater Trawl Fishery (WDTF) management area is more than 100 km from the operational area, but is overlapped by the EMBA. However, no fishing was undertaken in the 14/15 season, and prior to that, effort was south off Shark Bay and limited to only three vessels (CoA 2016).

Other Commonwealth fisheries, such as the Western Tuna and Billfish Fishery (WTBF), Southern Bluefin Tuna Fishery (SBFTF) and the Skipjack Tuna Fishery (Western; WSTF), refer Figure 3-11,



although licenced to fish in the region, have had no historical fishing effort reported near the Operational Area or within the EMBA (CoA 2016).

A summary of Commonwealth and State managed fisheries operating in the vicinity of the Stag Field is provided in Table 3-14.

#### State Fisheries

State fisheries are managed by the Department of Primary Industries and Regional Development (DPIRD) (previously Department of Fisheries) with specific management plans, regulations and a variety of subsidiary regulatory instruments under the Fish Resources Management Act 1994 (WA). The information provided on State managed fisheries has been derived from the State of Fisheries Report 2014/2015 (Fletcher and Santoro, 2015). Commercial fishery zones that have boundaries that overlap the Stag Field Operational Area are listed below, and summarised in Table 3-14.

#### North Coast Bioregion

- Onslow Prawn Managed Fishery (OPMF);
- Mackerel Managed Fishery (all areas) (MF);
- Pilbara Demersal Scalefish Fishery (Line, Trap and Trawl);
- Pearl Oyster Managed Fishery;
- Pilbara Developing Crab Fishery.

#### Whole of State Fisheries

- Beche-de-mer Fishery;
- Marine Aquarium Fish Fishery;
- Specimen Shell Managed Fishery.

While some fisheries have permitted fishing zones that overlap the Operational Area (Figure 3-11), not all have significant fishing effort in this area Table 3-13. The Stag location is too deep for any dive based fisheries (i.e. Pearl Oyster, Roe's Abalone, Beche-de-Mer, Marine Aquarium Fish, Specimen Shell Fishery), is too far offshore for the prawn Fisheries and does not contain seabed features or reef that attract target species within the Mackerel Fishery or Pilbara Trap Fishery. The Operational Area also represents a 500m restricted zone around Stag Field infrastructure where fishing is prohibited.

Fisheries that do not overlap the operational area but are overlapped by the EMBA include:

### North Coast Bioregion

- Nickol Bay Prawn Managed Fishery (NBMF);
- Broome Prawn Managed Fishery (BMF);
- The Kimberley Gillnet and Barramundi Managed Fishery (KGBF);
- Northern Demersal Scalefish Managed Fishery (NDSF);
- WA North Coast Shark Fishery;
- Pilbara Developing Crab Fishery.

#### Gascoyne Coast Bioregion

- Exmouth Gulf Prawn Fishery;
- Gascoyne Demersal Scalefish Fishery.



#### West Coast Bioregion

- Roe's Abalone Fishery;
- West Coast Rock Lobster Managed Fishery.

#### Whole of State Fisheries

• West Coast Deep Sea Crab (Interim) Managed Fishery.

| North Coast Bioregion                                                                                                                                                                        |                                                                                                                      |                                                                                                    |                                         |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-----------------------------------------|--|--|
| Fishery or resource                                                                                                                                                                          | Catch returns recorded<br>in past 3 years (noting if<br>any returns in North-<br>West Shelf Bioregional<br>province) | Are breeding stocks or<br>effort for all target<br>species in fishery<br>considered<br>acceptable? | Permitted<br>fishing<br>method          |  |  |
| North Coast Prawn Managed Fisheries (including<br>Onslow Prawn Managed Fishery; Nickol Bay<br>Prawn Managed Fishery; Broome Prawn<br>Managed Fishery and Kimberley Prawn Managed<br>Fishery) | Yes<br>(including NWS)                                                                                               | Yes                                                                                                | Otter trawl                             |  |  |
| North Coast Nearshore and Estuarine Fishery resource (including Kimberley Gillnet & Barramundi Managed Fishery)                                                                              | Yes                                                                                                                  | Yes                                                                                                | Gill net                                |  |  |
| North Coast Demersal Fisheries (including Pilbara<br>Fish Trawl (Interim) Managed Fishery, Pilbara<br>Trap and Line Managed Fishery and Northern<br>Demersal Scalefish Managed Fishery)      | Yes<br>(including NWS)                                                                                               | Yes                                                                                                | Handline,<br>dropline and<br>fish traps |  |  |
| Mackerel Managed Fishery                                                                                                                                                                     | Yes<br>(including NWS)                                                                                               | Yes                                                                                                | Trolling, jig<br>or handline            |  |  |
| Pearl Oyster Managed Fishery                                                                                                                                                                 | Yes<br>(including NWS)                                                                                               | Yes                                                                                                | Hand collection                         |  |  |
| Beche-de-mer Fishery                                                                                                                                                                         | Yes<br>(including NWS)                                                                                               | Yes                                                                                                | Hand collection                         |  |  |
| North Coast Crab Fishery (including Kimberley<br>Developing Mud Crab Fishery and Pilbara<br>Developmental Crab Fishery)                                                                      | Yes<br>(including NWS)                                                                                               | Yes                                                                                                | Baited traps<br>and trawl               |  |  |
| North-West Slope Trawl                                                                                                                                                                       | Yes                                                                                                                  | Not reported                                                                                       | Trawl                                   |  |  |
| Northern Prawn Fishery                                                                                                                                                                       | Yes<br>(note limited extent of<br>fishery in Area of<br>Interest)                                                    | Yes                                                                                                | Trawl                                   |  |  |
| Skipjack Tuna Fishery                                                                                                                                                                        |                                                                                                                      |                                                                                                    |                                         |  |  |
| Small Pelagic Fishery                                                                                                                                                                        |                                                                                                                      |                                                                                                    |                                         |  |  |
| Southern Bluefin Tuna Fishery                                                                                                                                                                |                                                                                                                      |                                                                                                    |                                         |  |  |
| The Western Deepwater Trawl                                                                                                                                                                  | Yes                                                                                                                  | Yes                                                                                                | Trawl                                   |  |  |



| North Coast Bioregion                    |                                                                                                                      |                                                                                                    |                                |  |  |  |
|------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|--------------------------------|--|--|--|
| Fishery or resource                      | Catch returns recorded<br>in past 3 years (noting if<br>any returns in North-<br>West Shelf Bioregional<br>province) | Are breeding stocks or<br>effort for all target<br>species in fishery<br>considered<br>acceptable? | Permitted<br>fishing<br>method |  |  |  |
| Western Tuna and Billfish Fishery (WTBF) | Yes                                                                                                                  | No<br>(Stiped Marlin<br>overfished)                                                                | Longline                       |  |  |  |

### <u>Aquaculture</u>

The only aquaculture activity within the EMBA is pearl farming of pearl oysters (Pinctada maxima) in protected waters (Fletcher and Santoro, 2012). Pearl farm locations within the EMBA are at the Montebello Islands.

### **3.10.2** Recreational Fisheries

Recreational fisheries and charter boat operators are managed by the DPIRD; the area covered by the EMBA of this EP falls primarily within the North Coast Bioregion (Fletcher and Santoro, 2012). Within the North Coast Bioregion, recreational fishing is experiencing significant growth, with a distinct seasonal peak in winter when the local population increases significantly from tourists visiting the Exmouth/Onslow area and Dampier Archipelago (Fletcher and Santoro, 2012). Increased recreational fishing has also been attributed to those involved in the construction or operation of developments within the region. Offshore islands, coral reefs and continental shelf provide species of major recreational interest including saddletail snapper, red emperor, cods, coral and coronation trout, sharks, trevally, tuskfish, tunas, mackerels and billfish (Fletcher and Santoro, 2012). Advice received from DPIRD indicates that charter boat fishing effort in permit area WA-15-L has been recorded in the last five years. Offshore shoals, such as Glomar Shoals and Rankin Bank attract occasional recreational and charter boat visitations, however these trips are generally of a short duration and sporadic. The distance of these destinations off-shore mean that only a limited number recreational fishing trips can be expected each year.

Within the Operational Area there are no known natural seabed features that would aggregate fishes and which are typically targeted by recreational fishers. However, the Stag CPF, pipeline, CALM buoy and associated vessels are likely to attract pelagic fish and therefore could also attract recreational fishers target pelagic species. Nevertheless, fishing in the immediate vicinity of the Stag facilities is not permitted since a 500 m Restricted Zone is in place. This could have an impact on requiring extra distance travelled when traversing the region, how this would be small compared to total distance travelled in any trip given the remoteness of the location.

### 3.10.3 Oil and Gas Industry

The surrounding waters are also used for petroleum exploration and development. The nearest production activities to the Stag Field include:

- Wandoo Production Platforms located in Exploration Permit WA-14-L, ~ 20 km northeast;
- Gas pipelines run from the Reindeer platform (~ 29 km north) to the mainland (north to south). To the east (~ 6 km), another gas pipeline runs east to west, ~ 10 km north of the Stag Field.

### 3.10.4 Commercial Shipping

Commercial shipping moves through the offshore waters en-route to or from the marine terminals at Thevenard, Barrow and Varanus Islands. Shipping using NWS waters includes iron ore carriers, third-



party tankers and other vessels proceeding to or from the ports of Dampier, Cape Preston, Port Walcott and Port Hedland; however, these are predominantly heading north from these ports. Large cargo vessels carrying freight bound or departing from Fremantle, transit along the WA coastline heading north and south in deeper waters. Shipping activities in relation to the Stag Operational Area are illustrated in Figure 3-10. The Stag platform is located 3.1 nautical miles (5.7 km) north-west of a shipping fairway that experiences heavy concentrations of commercial traffic as vessels transit into and out of Cape Preston and Barrow Island.

## 3.10.5 Tourism

Aquatic recreation such as boating, diving and fishing occurs near the coast and islands off the Pilbara and Ningaloo coast and to a lesser extent the Rowley Shoals. These activities are concentrated in the vicinity of the population centres such as Exmouth, Dampier and Onslow

Water-based tourism activities undertaken across NWS include:

- Whale watching;
- Recreational boating;
- Charter fishing;
- Snorkelling/diving;
- Surfing;
- Recreational fishing.

In the waters immediately surrounding the Stag Field, tourism activities are limited due to its distance from the mainland and island shorelines.

### 3.10.6 Native Title

Within the SEMBA any sheen or impact on environmental values may impact the associated cultural values or use. Within the SEMBA the following have been identified (NTT 2017):

- Schedule of Native Title Determination Applications;
- Register of Native Title Claims;
- Native Title Determinations;
- Register of Indigenous Land Use Agreements; and
- Notified Indigenous Land Use Agreements.





Figure 3-10: AMSA Designated Shipping Routes in the Vicinity of the Stag Field (2016)



Figure 3-11: Commonwealth Commercial Fishing Zones in the Vicinity of the Stag Field



#### GF-70-PLN-I-00002.01 Rev 1



Figure 3-12: State Commercial Fishing Zones in the Vicinity of the Stag Field

| Table 3-14: | Summary | of Commercial | Fishery | Licences in | Vicinity | of Stag | Field and EMB |
|-------------|---------|---------------|---------|-------------|----------|---------|---------------|
|             |         |               |         |             |          |         |               |

| Fishery                    | Target Species                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Fishing Method and Area                                                                                                                                                                                                                                                                       |
|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Commonwealth-man           | aged Fisheries                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                               |
| North-West Slope<br>Trawl  | Scampi (crayfish): velvet scampi<br>( <i>Metanephrops velutinus</i> ) and boschmai scampi<br>( <i>Metanephrops boschmai</i> ). Deepwater prawns<br>(penaeid and carid): pink prawn ( <i>Parapenaeus</i><br><i>longirostris</i> ), red prawn ( <i>Aristaeomorpha</i><br><i>foliacea</i> ), striped prawn ( <i>Aristeus virilis</i> ), giant<br>scarlet prawn ( <i>Aristaeopsis edwardsiana</i> ), red<br>carid prawn ( <i>Heterocarpus woodmasoni</i> ) and<br>white carid prawn ( <i>Heterocarpus sibogae</i> ). | Demersal trawl seaward of the 200m<br>isobath, but no current effort in vicinity of<br>the operational area and limited effort<br>within EMBA. Only 1 vessel active in<br>2014/15                                                                                                             |
| Western Deepwater<br>Trawl | Deepwater bugs and ruby snapper are the target species.                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Demersal trawl seaward of the 200m<br>isobath, and west of North-West Cape –<br>does not overlap operational area, but<br>small overlap of EMBA. No fishing was<br>undertaken in the 14/15 season, and prior<br>to that, effort was south off Shark Bay and<br>limited to only three vessels. |
| Western Skipjack           | Skipjack tuna ( <i>Katsuwonus pelamis</i> ) is the only<br>target species. Landings of species other than<br>skipjack (may include bigeye ( <i>Thunnus obesus</i> ),<br>and yellowfin tuna ( <i>T. albacares</i> ), frigate<br>mackerel ( <i>Auxis thazard</i> ), sharks, mahi mahi,<br>rays and marlins are believed to be much less<br>than 2% of the total landings.                                                                                                                                          | Purse seine November to June. Historically<br>fishing limited to waters off SA and not<br>WA. No fishing effort since 2008-2009<br>(CoA 2016).                                                                                                                                                |



| Fishery                                                       | Target Species                                                                                                                                                               | Fishing Method and Area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|---------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Western Tuna and<br>Billfish                                  | Broadbill swordfish ( <i>Xiphias gladius</i> ), yellowfin<br>tuna, bigeye tuna, albacore tuna ( <i>Thunnus</i><br><i>alalunga</i> ) and longtail tuna ( <i>T. tonggol</i> ). | Pelagic longline year-round. Historically<br>effort has concentrated off south-west<br>WA and SA (CoA 2016). No current effort<br>on the NWS.                                                                                                                                                                                                                                                                                                                                                           |
| Southern Bluefin<br>Tuna                                      | Southern bluefin tuna ( <i>Thunnus maccoyii</i> ).                                                                                                                           | Most of the Australian catch is taken by<br>purse-seine vessels in the Great Australian<br>(CoA 2016). No current effort on the NWS.                                                                                                                                                                                                                                                                                                                                                                    |
| State-managed Fishe                                           | ries                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Onslow Prawn<br>Managed<br>Fishery                            | Western king prawn ( <i>Penaeus latisulcatus</i> ), brown<br>tiger prawns ( <i>Penaeus esculentus</i> ) and endeavour<br>prawns ( <i>Metapenaeus</i> spp.)                   | Otter trawls used within the boundaries of<br>the OPMF being 'all the Western<br>Australian waters between the Exmouth<br>Prawn Fishery and the Nickol Bay prawn<br>fishery east of 114º39.9' on the landward<br>side of the 200m depth isobath. The 2014<br>season opened on 21 April and closed on 8<br>October, and only 1 vessel fished                                                                                                                                                             |
| Nickol Bay Prawn<br>Managed Fishery                           | Primarily targets banana prawns ( <i>Penaeus merguiensis</i> )                                                                                                               | Otter trawls used within the boundaries of<br>the NBPMF being 'all the waters of the<br>Indian Ocean and Nickol Bay between<br>116°45' east longitude and 120° east<br>longitude on the landward side of the 200m<br>isobath. The 2014 season opened on 24<br>March and closed on 31 October. 7 vessels<br>fished intermittently in 2014.                                                                                                                                                               |
| Broome Prawn<br>Managed<br>Fishery                            | Western king prawns ( <i>Penaeus latisulcatus</i> ) and<br>coral prawns (a combined category of small<br>penaeid species)                                                    | Otter trawls used within the boundaries of<br>the BPF being all Western Australian waters<br>of the Indian Ocean lying east of 120° east<br>longitude and west of 123°45' east<br>longitude on the landward side of the 200m<br>isobath. The Fishery opened on 1 June and<br>officially closed on 8 Oct. Fishing effort<br>limited to waters off Broome. No vessels<br>fished in 2014                                                                                                                   |
| The Kimberley<br>Gillnet and<br>Barramundi<br>Managed Fishery | Primarily Barramundi ( <i>Lates calcarifer</i> ), king<br>threadfin ( <i>Polydactylus macrochir</i> ) and blue<br>threadfin ( <i>Eleutheronema tetradactylum</i> )           | Operates in the nearshore and estuarine<br>zones of the North Coast Bioregion from the<br>WA/NT border (129°E) to the top end of<br>Eighty Mile Beach, south of Broome (19°S).<br>In late 2013, Roebuck Bay and the northern<br>end of Eighty Mile Beach to 19°S were<br>closed to commercial fishing. Encompasses<br>the taking of any fish by means of gillnet in<br>inshore waters and and estuarine waters (0-<br>20m) th e taking of barramundi ( <i>Lates</i><br><i>calcarifer</i> ) by anymeans. |
| Northern Demersal<br>Scalefish Managed<br>Fishery (NDSF)      | The main species landed by this fishery are red emperor and goldband snapper                                                                                                 | Demersal traps are used within waters off<br>the north coast of Western Australia east<br>of longitude 120°E. These waters extend<br>out to the edge of the Australian Fishing<br>Zone. 8 Vessels fished in 2014.                                                                                                                                                                                                                                                                                       |
| Fishery                                                            | Target Species                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Fishing Method and Area                                                                                                                                                                                                                                                                                                                                      |
|--------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mackerel Managed<br>Fishery                                        | Spanish and grey mackerel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Trolling or handline year-round in all<br>waters to the 200-nautical mile AFZ<br>between 114° E to 121°. Fishing effort<br>recorded within EMBA for Area 2 (Pilbara).<br>11 vessels operated in 2014.                                                                                                                                                        |
| Pilbara Demersal<br>Scalefish Fishery<br>(Line, Trawl and<br>Trap) | Variety of demersal scalefish including<br>goldband snapper ( <i>Pristipomoides</i><br><i>multidens</i> ), red emperor ( <i>Lutjanus sebae</i> )<br>and bluespotted emperor ( <i>Lethrinus</i><br><i>punctulatus</i> ).                                                                                                                                                                                                                                                                                                                                                                     | Demersal trawl and trap in various zones<br>and operates year-round. Trawl area is<br>closed within operational area, but trap<br>fishing is permitted. Northern portion of<br>EMBA overlies both trawl and trap areas.<br>In 2014 3 vessels used in the Pilbara Fish<br>Trawl Fishery; 3 vessels in the Trap<br>Fishery; and 7 vessels in the line fishery. |
| Pearl Oyster<br>Managed<br>Fishery                                 | Silver-lipped pearl oyster (Pinctada maxima)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Drift diving restricted to shallow divable<br>depths generally less than 35 m. In 2014<br>catch was taken from Zones 1 and 2/3.<br>Main area though is zone 2/3.                                                                                                                                                                                             |
| WA North<br>Coast Shark<br>Fishery                                 | Sandbar (Carcharhinus plumbeus), blacktip<br>(Carcharhinus spp.), tiger (Galeocerdo cuvier)<br>and lemon (Negaprion acutidens) sharks                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Area between North-West Cape and a line<br>of longitude at 120° E and all waters south<br>of latitude 18° S has been closed<br>indefinitely to protect shark stocks.                                                                                                                                                                                         |
| Pilbara<br>Developing<br>Crab Fishery                              | Blue swimmer crab ( <i>Portunus armatus</i> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Hourglass traps used in inshore waters from<br>Onslow through to Port Hedland with most<br>commercial and activity occurring in and<br>around Nickol Bay.                                                                                                                                                                                                    |
| Exmouth Gulf Prawn<br>Fishery                                      | Target western king prawns ( <i>Penaeus latisulcatus</i> ), brown tiger prawns ( <i>Penaeus esculentus</i> ), endeavour prawns<br>( <i>Metapenaeus</i> spp.) and banana prawns<br>( <i>Penaeus merguiensis</i> ).                                                                                                                                                                                                                                                                                                                                                                           | Otter trawls used within Exmouth Gulf. In 2014, 6 boats trawled.                                                                                                                                                                                                                                                                                             |
| Gascoyne Demersal<br>Scalefish Fishery                             | A range of demersal species including pink<br>snapper ( <i>Pagrus auratus</i> ), goldband snapper<br>( <i>Pristipomoides</i> spp., mainly <i>P. multidens</i> ), red<br>emperor ( <i>Lutjanus sebae</i> ), emperors<br>(Lethrinidae, includes spangled emperor,<br><i>Lethrinus nebulosus</i> , and redthroat emperor, <i>L.</i><br><i>miniatus</i> ), cods (Serranidae), ruby snapper<br>( <i>Etelis carbunculus</i> ), pearl perch ( <i>Glaucosoma<br/>burgeri</i> ), mulloway ( <i>Argyrosomus japonicus</i> ),<br>amberjack ( <i>Seriola dumerili</i> ) and trevallies<br>(Carangidae). | The GDSF licensed vessels fish throughout<br>the year with mechanised handlines in the<br>waters of the Indian Ocean and Shark Bay<br>between latitudes 23°07′30″S and 26°30′S.<br>Peak fishing period for pink snapper is<br>June-July when the oceanic stock<br>aggregates to spawn. In 2014, 17 vessels<br>actively fished.                               |
| West Coast<br>Rock Lobster<br>Managed<br>Fishery                   | Western rock lobster ( <i>Panulirus cygnus</i> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Baited pots fished along the west coast of<br>Australia. between Latitudes 21°44′ to<br>34°24′ S                                                                                                                                                                                                                                                             |
| Beche-de-mer<br>Managed<br>Fishery                                 | Sandfish (Holothuria scabra) and deepwater redfish (Actinopyga echinites).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Hand-harvest fishery, animals caught<br>principally by diving (restricted to diving<br>depths) and a smaller amount by wading.                                                                                                                                                                                                                               |



| Fishery         | Target Species                                     | Fishing Method and Area                       |
|-----------------|----------------------------------------------------|-----------------------------------------------|
| Marine          | Fish, coral, algae, live rock                      | Dive based fishery operating all year         |
| Aquarium        |                                                    | throughout WA waters, but restricted          |
| Fish            |                                                    | by diving depths                              |
| Managed         |                                                    |                                               |
| Fishery         |                                                    |                                               |
| Specimen Shell  | Shells (cowries, cones)                            | Dive based fishery operating all year         |
| Managed         |                                                    | throughout WA waters, but restricted          |
| Fishery         |                                                    | by diving depths                              |
| West Coast Deep | Crystal (Snow) crabs (Chaceon albus), Giant (King) | Baited pots in waters lying north of latitude |
| Sea Crustacean  | crabs (Pseudocarcinus gigas) and Champagne         | 34° 24' S (Cape Leeuwin) and west of the      |
| Managed Fishery | (Spiny) crabs (Hypothalassia acerba)               | Northern Territory border on the seaward      |
|                 |                                                    | side of the 150m isobath out to the extent of |
|                 |                                                    | the Australian Fishing Zone, mostly in 500 to |
|                 |                                                    | 800 m of water. Year round.                   |

Source: CoA (2016); Fletcher and Santoro (2015)

## 3.10.7 Socio-Economic Values and Sensitivities within Operational Area and EMBA

Table 3-15 outlines those socioeconomic values that may be affected by routine events at the Stag Field within the Operational Area as well as unplanned events that may arise within a potentially larger area (EMBA).

| Socio-economic value                                       | Sensitivities within<br>Operational Area                                                                    | Sensitivities within EMBA                                                                                                                                                                                                                                   |  |
|------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Commonwealth fisheries                                     |                                                                                                             |                                                                                                                                                                                                                                                             |  |
| North-West Slope Trawl                                     | <b>No</b> – Not within Operational<br>Area, restricted to depths >200<br>m                                  | <b>Yes</b> – Limited effort within EMBA seaward of 200 m isobaths. Oil could disrupt fishing activity and potentially contact eggs and larvae of target species although no direct contact with target species.                                             |  |
| Western Deepwater<br>Trawl Fishery                         | <b>No</b> – Not within Operational<br>Area, restricted to depths >200<br>m and south of Operational<br>Area | <b>Yes</b> – Limited effort within EMBA seaward of 200 m isobaths, unlikely that area of EMBA would be fished. Oil could disrupt fishing activity and potentially contact eggs and larvae of target species although no direct contact with target species. |  |
| Western Skipjack                                           | <b>No</b> - No effort on the NWS                                                                            | No - No effort on the NWS                                                                                                                                                                                                                                   |  |
| Western Tuna and Billfish                                  | <b>No</b> - No effort on the NWS                                                                            | No - No effort on the NWS                                                                                                                                                                                                                                   |  |
| Southern Bluefin Tuna                                      | <b>No</b> - No effort on the NWS                                                                            | No - No effort on the NWS                                                                                                                                                                                                                                   |  |
| State fisheries                                            |                                                                                                             |                                                                                                                                                                                                                                                             |  |
| Onslow Prawn Managed<br>Fishery                            | No - Effort within coastal areas                                                                            | <b>Yes</b> – oil may reach shallow coastal waters and shorelines (most likely in Area 3 of fishery) affecting fishery habitat and fishing activity                                                                                                          |  |
| Nickol Bay Prawn<br>Managed Fishery                        | No - Effort within coastal areas                                                                            | <b>Yes</b> – oil may reach shallow coastal waters and shorelines affecting fishery habitat and fishing activity                                                                                                                                             |  |
| Broome Prawn Managed<br>Fishery                            | No - Effort within coastal areas                                                                            | Yes – oil may reach shallow coastal waters and shorelines affecting fishery habitat and fishing activity                                                                                                                                                    |  |
| The Kimberley Gillnet and<br>Barramundi Managed<br>Fishery | No - Effort within coastal areas                                                                            | <b>Yes</b> – oil may reach shallow coastal waters and shorelines affecting fishery habitat and fishing activity                                                                                                                                             |  |

## Table 3-15: Summary of Socio-economic Values and Sensitivities



| Socio-economic value                                                                                 | Sensitivities within<br>Operational Area                                                                                                                                                                                                      | Sensitivities within EMBA                                                                                                                                                                                                                                                                                                     |
|------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Northern Demersal<br>Scalefish Managed<br>Fishery                                                    | <b>No</b> – No overlap with fishing zones                                                                                                                                                                                                     | <b>Yes</b> – Oil may enter Area 1 and 2 of the fishery. Oil may interact with demersal fish, eggs and larvae within the plankton assemblage. Oil may interfere with fishing activities.                                                                                                                                       |
| Mackerel Managed<br>Fishery                                                                          | Yes - Area 2 overlaps<br>Operational Area but<br>interaction unlikely as fishery<br>targets coastal reefs and<br>headlands <40 m and 500 m<br>restricted zone exists around<br>Stag Facility.                                                 | <b>Yes</b> – Areas 1, 2 and 3 may be impacted by oil. Adult fish unlikely to be impacted due to depth of their habitat but eggs and larvae within plankton assemblage and shallow coastal juvenile fish habitat may be contacted by oil.                                                                                      |
| Pilbara Demersal<br>Scalefish Fishery (Line,<br>Trap and Trawl)                                      | Yes – Trap fishing zone only<br>overlaps Operational Area but<br>interaction unlikely as fishery<br>targets reef areas (no reef areas<br>exist near Operational Area)<br>and 500 m restricted zone exists<br>around Stag Facility.            | <b>Yes</b> – Trawl, Trap and Line fishing activities may be disrupted by an oil spill. Adult demersal fish unlikely to be impacted due to depth of their habitat but eggs and larvae within plankton assemblage and shallow coastal juvenile fish habitat may be contacted by oil.                                            |
| Pearl Oyster Managed<br>Fishery                                                                      | No – Zone 1 overlaps<br>Operational Area but collection<br>of pearl oysters is performed by<br>diving and Operational Area is<br>beyond dive- able depths for<br>the fishery. A 500 m restricted<br>zone also exists around Stag<br>Facility. | <b>Yes</b> – Fishing activity in Zones 1, 2 and 3 could be disrupted by an oil spill. Shallow water habitats and pearls could bedirectly impacted by oil but most likely would remain underneath floating oil.                                                                                                                |
| WA North Coast Shark<br>Fishery                                                                      | No – Shark fishery closed in vicinity of the Operational Area                                                                                                                                                                                 | No – fishery has been closed since 2009.                                                                                                                                                                                                                                                                                      |
| Pilbara Developing Crab<br>Fishery.                                                                  | No – Fishing occurs in coastal<br>waters inshore of the<br>Operational Area                                                                                                                                                                   | <b>Yes</b> - Fishing activity between Onslow and Port<br>Hedland could be disrupted by an oil spill and oil could<br>contact the shallow coastal habitats used by blue<br>swimmer crabs.                                                                                                                                      |
| Exmouth Gulf Prawn<br>Fishery                                                                        | <b>No</b> – Fishing occurs within<br>Exmouth Gulf only                                                                                                                                                                                        | <b>Yes</b> – EMBA boundaries indicate small degree of overlap only possible with the fishery. Fishing activity could be disrupted by an oil spill and oil could contact prawn eggs and larvae in upper water column.                                                                                                          |
| Gascoyne Demersal<br>Scale Fishery                                                                   | No – Restricted to Gascoyne<br>waters and so permitted<br>fishery management area does<br>not overlap operational area.                                                                                                                       | <b>Yes</b> – EMBA boundaries indicate small degree of overlap possible with the fishery. Fishing activity could be disrupted by an oil spill and oil could contact demersal fish eggs and larvae in upper water column although no direct contact with target species.                                                        |
| West Coast Rock Lobster<br>Fishery                                                                   | <b>No</b> – Restricted south of<br>North-West Cape                                                                                                                                                                                            | <b>Yes</b> – EMBA boundaries indicate small degree of overlap possible with the fishery if fishing occurs off Ningaloo coastline. Fishing activity could be disrupted by an oil spill and oil could contact lobster eggs and larvae in upper water column although benthic juveniles and adults are unlikely to be contacted. |
| Beche-de-mer Managed<br>Fishery<br>Marine Aquarium Fish<br>Managed Fishery<br>Specimen Shell Fishery | No – Restricted to shallow<br>diveable depths or wading<br>depths                                                                                                                                                                             | <b>Yes</b> - Fishing activity between could be disrupted by<br>an oil spill and oil could contact the shallow coastal<br>habitats used by beche-de-mer, marine aquarium fish<br>and specimen shell species.                                                                                                                   |



| Socio-economic value                                 | Sensitivities within<br>Operational Area                                                                                                                                                                                       | Sensitivities within EMBA                                                                                                                                                                                                                                 |
|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| West Coast Deep Sea<br>Crustacean Managed<br>Fishery | <b>No</b> – Fishery extends from 150 m contour therefore no overlap with Operational Area.                                                                                                                                     | <b>Yes</b> – Fishing activities may be disrupted by an oil spill.<br>Adult crabs unlikely to be impacted due to depth of<br>their habitat but eggs and larvae within plankton<br>assemblage may be contacted by oil.                                      |
| Other                                                |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                           |
| Recreational fishery                                 | No – Usually closer to land                                                                                                                                                                                                    | <b>Yes</b> - Fishing activities may be disrupted by an oil spill.<br>Target species and habitat or target species may be<br>directly impacted by oil. Eggs and larvae of target<br>species within the plankton community may also be<br>contacted by oil. |
| Aquaculture                                          | <b>No</b> - None within Operational<br>Area                                                                                                                                                                                    | <b>Yes</b> – Pearl farming occurs within the EMBA at<br>Montebello Islands. Oil could interfere with the<br>production process or impact on pearl oysters directly<br>through reduced water quality.                                                      |
| Oil and Gas                                          | <b>No</b> - None within Operational Area                                                                                                                                                                                       | Yes - oil and gas activities within the EMBA could be disrupted by an oil spill.                                                                                                                                                                          |
| Shipping                                             | Yes - No designated shipping<br>route within operational area<br>with nearest located ~ 5 km<br>northwest, other vessels may<br>wish to transit the area<br>although shipping traffic<br>excluded from the Operational<br>Area | <b>Yes</b> - Shipping routes are located within the EMBA. Shipping activities could be disrupted by an oil spill.                                                                                                                                         |
| Tourism                                              | <b>No</b> - None within operational area.                                                                                                                                                                                      | <b>Yes</b> - Tourist activities within coastal areas of EMBA could be disrupted and longterm impact to tourism could occur if tourist areas (e.g. coral reefs, beaches) are impacted by oil.                                                              |
| Cultural Heritage                                    | <b>No</b> - None within or near the Operational Area                                                                                                                                                                           | <b>Yes</b> –oil entrained oil could potentially contact the subsea <i>Tryal</i> shipwreck at Trial Rocks NW of the Montebelloislands                                                                                                                      |



# 4. CONSULTATION WITH RELEVANT PERSONS

Jadestone Energy has developed a Consultation Plan specific to the Stag EP, which outlines the process for:

- Identification and classification of stakeholders;
- Justification for sufficiency of information; and,
- Ongoing consultation.

Stag is an existing facility that has been in operation since 1998. The previous operator had a Consultation Strategy that incorporated updates to relevant persons of Stag related activities. As a result, relevant persons identified for Stag have been informed and consulted on a regular basis for some time. There are no new risks or changes to operations due to Jadestone Energy becoming operator that have been identified. The scope of the Stakeholder Consultation Plan is limited to the ongoing consultation required to support the acceptance and duration of the EP, and covers ongoing Stag operations and planning for consultation in the event of any unplanned events as identified in the EP.

Relevant persons were classified according to criteria outlined in the consultation plan based on their interest/ activity/ function (Table 4-1).

As a result of applying the processes set out in the Stag EP Consultation Plan, no objections or claims about adverse impact were received in relation to the operation of the Stag Field.

Some feedback and clarification was received which is summarised in Table 4-2.

Ongoing consultation to ensure relevant persons are aware of activities includes:

- Relevant persons provided a minimum 4-week period to respond to proposed planned activities;
- If there is a potential change in the risks or impacts to relevant persons due to planned activities relevant persons are to be consulted prior to the activity commencing; and
- Charter operators will receive a mail-out advising on operations of the Stag Facility within two months of acceptance of this EP.



| Table 4-1: | Relevant Persons Identified for the Stag Field Operations |
|------------|-----------------------------------------------------------|
|------------|-----------------------------------------------------------|

| Relevant persons                                                                                   | Classification                   | Level of engagement |
|----------------------------------------------------------------------------------------------------|----------------------------------|---------------------|
| Department of Defence (ADF Airspace, Australian Hydrographic<br>Service (AHS) and Australian Navy) | Government                       | Involve             |
| Department of Environment and Energy                                                               | Government                       | Consult             |
| Department of Industry and Science                                                                 | Government                       | Inform              |
| NOPSEMA                                                                                            | Government                       | Involve             |
| Western Australian Department of Transport                                                         | Government/Response organisation | Consult             |
| Australian Maritime Safety Authority                                                               | Government/Response organisation | Collaborate         |
| Australian Marine Oil Spill Centre (AMOSC)                                                         | Government/Response organisation | Collaborate         |
| Hon Josh Frydenberg<br>Minister for Environment & Energy                                           | Government                       | Inform              |
| Senator the Hon Matt Canavan<br>Minister for Resources and Northern Australia                      | Government                       | Inform              |
| Hon Greg Hunt<br>Minister for Industry, Innovation & Science                                       | Government                       | Inform              |
| Melissa Price<br>Member for Durack                                                                 | Government                       | Inform              |
| WA Department of Mines and Petroleum                                                               | Government                       | Consult             |
| WA Department of Fisheries (now Department of Primary Industries and Regional Development)         | Government                       | Consult             |
| Department Parks and Wildlife                                                                      | Government                       | Inform              |
| Hon Sean L'Estrange MLA<br>Minister for Mines & Petroleum                                          | Government                       | Inform              |
| Hon Joe Francis MLA<br>Minister for Fisheries                                                      | Government                       | Inform              |
| Hon Albert Jacob MLA<br>Minister for Environment                                                   | Government                       | Inform              |
| Hon Bill Marmion MLA<br>Minister for State Development; Transport                                  | Government                       | Inform              |
| Bill Johnston<br>Shadow Minister for State Development; Energy; Mines and<br>Petroleum; Ports      | Government                       | Inform              |
| Chris Tallentire MLA<br>Member for Gosnells<br>Shadow Minister for Environment                     | Government                       | Inform              |
| Hon Brendon Grylls MLA<br>Member for Pilbara                                                       | Government                       | Inform              |
| Hon Ken Baston MLC<br>Member for Mining and Pastoral                                               | Government                       | Inform              |
| Hon Jacqui Boydell MLC<br>Member for Mining and Pastoral                                           | Government                       | Inform              |



| Relevant persons                                            | Classification                                  | Level of engagement |
|-------------------------------------------------------------|-------------------------------------------------|---------------------|
| Hon Stephen Dawson MLC                                      | Government                                      | Inform              |
| Member for Mining and Pastoral                              |                                                 |                     |
| Hon Mark Lewis MLC                                          | Government                                      | Inform              |
| Member for Mining and Pastoral                              |                                                 |                     |
| Hon Robin Chapple MLC                                       | Government                                      | Inform              |
| Member for Mining and Pastoral                              |                                                 |                     |
| Hon Dave Grills MLC                                         | Government                                      | Inform              |
| Member for Mining and Pastoral                              |                                                 |                     |
| Australian Fisheries Management Authority (AFMA)            | Government                                      | Inform              |
| BHP                                                         | Interested party                                | Inform              |
| Chevron Australia                                           | Interested party                                | Inform              |
| Eni Australia                                               | Interested party                                | Inform              |
| Quadrant Energy                                             | Interested party                                | Inform              |
| Vermillion Engergy Inc                                      | Interested party                                | Inform              |
| A Raptis and Sons                                           | Potentially affected party –<br>unplanned event | Consult             |
| Austral Fisheries                                           | Potentially affected party –<br>unplanned event | Consult             |
| Australian South Bluefin Tuna Industry Association (ASBTIA) | Interested party                                | Consult             |
| Commonwealth Fisheries Association (CFA)                    | Interested party                                | Consult             |
| Marine Tourism WA                                           | Interested party                                | Inform              |
| MG Kailis Group                                             | Potentially affected party – unplanned event    | Consult             |
| Ocean Wild Tuna                                             | Potentially affected party –<br>unplanned event | Consult             |
| Pearl Producers Association                                 | Potentially affected party –<br>unplanned event | Consult             |
| Recfishwest                                                 | Interested party                                | Consult             |
| W.A. Seafoods Direct                                        | Potentially affected party –<br>unplanned event | Consult             |
| Western Australian Fishing Industry Council (WAFIC)         | Interested party                                | Consult             |
| WestMore Seafoods & Shark Bay Seafoods                      | Potentially affected party –<br>unplanned event | Consult             |
| Pilbara Port Authority                                      | Government                                      | Inform              |
| Dampier Port Authority                                      | Government                                      | Inform              |
| City of Karratha                                            | Interested parties                              | Inform              |
| Karratha Chamber of Commerce and Industry                   | Interested parties                              | Inform              |
| Mackerel Managed Fishery (State)                            | Potentially affected parties - operations       | Consult             |
| Pearl Oyster Fishery (State)                                | Potentially affected parties<br>– operations    | Consult             |
| Onslow Prawn Managed Fishery (State)                        | Potentially affected parties<br>– operations    | Consult             |
| Beche-de-mer Fishery (State)                                | Potentially affected parties<br>– operations    | Consult             |



| Relevant persons                                  | Classification                                  | Level of engagement |
|---------------------------------------------------|-------------------------------------------------|---------------------|
| Marine Aquarium Managed Fishery (State)           | Potentially affected parties<br>– operations    | Consult             |
| Specimen Shell Managed Fishery (State)            | Potentially affected parties<br>– operations    | Consult             |
| Pilbara Trawl Managed Fishery (State)             | Potentially affected parties<br>– operations    | Consult             |
| Pilbara Trap Managed Fishery (State)              | Potentially affected parties<br>– operations    | Consult             |
| Pilbara Line Fishery (State)                      | Potentially affected parties<br>– operations    | Consult             |
| Pilbara Developing Crab Fishery (State)           | Potentially affected parties<br>– operations    | Consult             |
| Karajarri People                                  | Potentially affected party – unplanned event    | Inform              |
| Ngarluma/Yindjibarndi                             | Potentially affected party – unplanned event    | Inform              |
| Rubibi Community                                  | Potentially affected party – unplanned event    | Inform              |
| Ngarla                                            | Potentially affected party – unplanned event    | Inform              |
| Yaburara & Mardudhunera People                    | Potentially affected party – unplanned event    | Inform              |
| Gnulli                                            | Potentially affected party –<br>unplanned event | Inform              |
| Jabirr Jabirr                                     | Potentially affected party –<br>unplanned event | Inform              |
| Goolarabooloo People                              | Potentially affected party –<br>unplanned event | Inform              |
| Bindunbur                                         | Potentially affected party –<br>unplanned event | Inform              |
| Kimberley Land Council Aboriginal Corporation     | Potentially affected party – unplanned event    | Inform              |
| Yamatji Marlpa Aboriginal Corporation             | Potentially affected party –<br>unplanned event | Inform              |
| Australian Specimen Collectors Associated of WA   | Interested party                                | Inform              |
| Professional Specimen Shell Fishermen Association | Potentially affected party –<br>unplanned event | Inform              |
| North-West Slope Trawl (Commonwealth)             | Potentially affected party – unplanned event    | Inform              |
| Western Deepwater Trawl Fishery (Commonwealth)    | Potentially affected party –<br>unplanned event | Inform              |
| Exmouth Game Fishing Club                         | Potentially affected party –<br>unplanned event | Inform              |
| Nickol Bay Sport Fishing Club                     | Potentially affected party –<br>unplanned event | Inform              |
| Onslow Visitor Centre                             | Potentially affected party –<br>unplanned event | Inform              |



| Relevant persons                          | Classification                                  | Level of engagement |
|-------------------------------------------|-------------------------------------------------|---------------------|
| Port Hedland Game Fishing Club            | Potentially affected party –<br>unplanned event | Inform              |
| Conservation Council of Western Australia | Interested party                                | Inform              |



| Stakeholder                                                                                                                                              | Stakeholder Concern, Objection or Claim                                                                                                                                                                                                                                          | Jadestone Energy Assessment of merit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Jadestone Energy's Response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| WA Department of<br>Fisheries (now<br>Department of Primary<br>Industries and Regional<br>Development)<br>Carli Telfer<br>(Policy officer)<br>1 Dec 2017 | DPIRD acknowledged that the procedures and plans referenced in the<br>EP including the Scientific Monitoring Plan would be Jadestone<br>Energy's responsibility, however DPIRD confirmed it was happy to<br>provide advice during the development of these documents if desired. | No objection, concern or claim.<br>Request only:<br>DPIRD is the key regulatory agency for the<br>management of State fisheries and provides<br>significant input for EP consideration.<br>Jadestone Energy considers these<br>comments and DPIRD input into the SMPs<br>have merit.                                                                                                                                                                                                                                       | DPIRD is listed as relevant person and<br>will be advised of updates to the project,<br>in addition to ongoing requests for<br>advice as requested.<br>DPIRD would be consulted during the<br>implementation of any relevant SMP.                                                                                                                                                                                                                                                                                                                                                              |
| WA Department of<br>Fisheries<br>Victoria Aitken (Director                                                                                               | Key items raised by DPIRD regarding the Stag operational area were:                                                                                                                                                                                                              | DPIRD is the key regulatory agency for the management of State fisheries and provides significant input for EP consideration.                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Policy and Strategic<br>Services) 19 Jul 2017                                                                                                            | <ul> <li>Consultation</li> <li>Request for Jadestone Energy to consult with: <ul> <li>WAFIC, PPA, Recfishwest, and TOs</li> <li>Individual commercial fishers and charter operators with entitlement to fish in the affected area</li> </ul> </li> </ul>                         | <ul> <li>Jadestone Energy agrees with DPIRD comments and has undertaken consultation with the representative bodies requested. Consultation with TO's will be triggered in event of spill. This is consistent with the approach applied to other stakeholders in the larger EMBA area.</li> <li>Consultation with individual commercial operators has been undertaken. Charter operators were omitted from the original consultation in error and an additional mail-out to these operators will be undertaken.</li> </ul> | Additional triggered consultation<br>included in traditional owners in the<br>event of a spill.<br><b>Trigger</b> – Oil spill event<br><b>Action</b> - Notification of DPIRD via<br><u>environment@fish.wa.gov.au</u> within 24<br>hours of incident report.<br>Notification of traditional owners and all<br>other stakeholders identified in Table 4<br>within 72 hours of event.<br>Attempt to electronically notify all<br>relevant persons listed in Stag EP<br>Consultation plan within 72 hours of<br>spill.<br>Jadestone Energy will implement<br>consultation with Charter operators. |

# Table 4-2: Assessment of Merit of Concerns, Objections and Claims



| Stakeholder | Stakeholder Concern, Objection or Claim                                                                                                                                                                                                                                                                                                                                                                                                                                     | Jadestone Energy Assessment of merit                                                                | Jadestone Energy's Response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|             | <ul> <li>Timeframes</li> <li>Advice provided valid for duration of activity commencing within six months of the date this letter is signed.</li> <li>Request to be advised of actual commencement date and any changes to this proposal a minimum of three months prior to the commencement of any activity.</li> <li>Response to any updated advice provided at this time required.</li> </ul>                                                                             | Jadestone Energy considers these<br>comments have merit and have<br>incorporated these into the EP. | <ul> <li>Timeline for validity of advice<br/>noted.</li> <li>Item included in implementation<br/>section of EP to ensure notification<br/>within three months of<br/>commencement.</li> </ul>                                                                                                                                                                                                                                                                                                                          |
|             | <ul> <li>Pollution Emergency Plans</li> <li>Request for notification of any oil spill or discharge of any other pollutant within 24 hours.</li> <li>Request that when developing Oil Pollution Emergency Plan (OPEP) Jadestone Energy collects baseline marine data to compare against post spill monitoring. Baseline data should be made available to the Department.</li> <li>Consideration of spawning grounds and nursery areas should be included in OPEP.</li> </ul> | Jadestone Energy considers these<br>comments have merit and have<br>incorporated these into the EP. | <ul> <li>Item included in implementation section of EP to ensure notification within 24 hrs of spill or discharge.</li> <li>Pollution emergency plans and spill contingency plans Baseline sampling was undertaken by Apache (Kinhill 1997, 1998) and as part a more contemporary work by Oceanica (2015). These reports can be made available to the DPIRD.</li> <li>Fish spawning and nursery areas have been considered in the EP and in selection of spill response strategies:</li> </ul>                         |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                     | Fish spawning is described in the EP in<br>identifies the Spawning Dates for Key<br>Fish Species which are likely to spawn in<br>the EMBA.<br>The EP identifies the spill response<br>strategies that have been considered<br>(and either adopted or rejected) and the<br>environmental benefits, of which fish<br>life cycles are a part of. Specific<br>strategies for mitigation of risks to<br>spawning grounds and nursery areas<br>include: source control, operational<br>monitoring, containment and recovery, |



| Stakeholder | Stakeholder Concern, Objection or Claim                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Jadestone Energy Assessment of merit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Jadestone Energy's Response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | shoreline clean-up and scientific monitoring.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | The EP identifies the rationale for the determination of Fish spawning and identifies the Spawning Dates for Key Fish Species which are likely to spawn in the EMBA.                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | The EP identifies the spill response<br>strategies that have Protection Priorities<br>for Spill Response allowing for the<br>varying types of contact that an oil spill<br>can have on the marine environment:<br>floating oil, entrained oil, dissolved oil.<br>Entrained and dissolved oil can have an<br>impact on fish spawning and nursery<br>areas via direct contact, although<br>duration and concentration of contact is<br>highly variable and intermittent. '                                                                                                                                                                 |
|             | <ul> <li>Biosecurity <ul> <li>Jadestone Energy must take reasonable measures to minimise the biosecurity risk. Two ways to demonstrate commitment:</li> <li>Utilise the Departments Vessel Check tool and complete actions to manage any activity related to vessels to a low/acceptable risk rating.</li> <li>Actively use a biofouling management plan and record book that meets requirements under International Organisation's Guidelines for the Control and Management of Ships' biofouling to minimise the Transfer of Invasive Aquatic Species.</li> <li>Recommendation that residual risk after using above measures is managed. Recommended this could be achieved by follow-up marine pest inspection around 75 days after arrival if the vessel is still in WA waters.</li> </ul> </li> </ul> | Jadestone Energy considers these<br>comments have merit and have<br>incorporated these into the EP.<br>The residual risk is considered low and<br>follow-up inspections of vessels is not<br>considered practical or required. The FSO is<br>moored at the Stag Field and consequently<br>ballast water is ordinarily taken up and<br>discharged from the Stag location. It is<br>unlikely that any invasive marine pests<br>entering the Operational Area will establish<br>on the natural benthic habitat (soft<br>sediments at the seabed). The depth of the<br>Operational Area (49 m), open ocean<br>conditions and lack of available light at this<br>depth provides a very different<br>environment to that within sheltered port | ALARP assessment of biosecurity risk<br>included, including management of<br>residual risks. This includes a<br>performance standard that all vessels<br>sourced from outside WA must use the<br>DPIRD Vessel check process and for this<br>assessment to indicate low/acceptable<br>risk rating. Vessels mobilised from<br>international waters will have DAWR<br>approval and Ballast Management Plans<br>and Ballast Record Books.<br>Item included in implementation section<br>of EP to ensure notification within 24 hrs<br>of biosecurity incident.<br><b>Trigger</b> - Biosecurity incident: suspected<br>marine pest or disease |



| Stakeholder                                                                                                                                     | Stakeholder Concern, Objection or Claim                                                                                                                                                                                                                                                     | Jadestone Energy Assessment of merit                                                                                                                          | Jadestone Energy's Response                                                                                                                                                                                           |
|-------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                 | <ul> <li>Request that any suspected marine pest or disease be<br/>reported within 24 hours.</li> </ul>                                                                                                                                                                                      | and shallow coastal areas which have<br>historically been colonised by invasive<br>marine pests.                                                              | Action - Notification of DPIRD via<br>biosecurity@fish.wa.gov.au or 1800 815<br>507 within 24 hours.                                                                                                                  |
| Department of Mines<br>and Petroleum (State)<br>Stan Bowes<br>29 Nov 2016                                                                       | Request notification when EP accepted by the regulator and Jadestone Energy is the operator of the asset.                                                                                                                                                                                   | No objection, concern or claim.<br>Request only:<br>Key State government agency.                                                                              | Jadestone Energy notes the<br>Department's request to be notified<br>when EP accepted by NOPSEMA and<br>action included in implementation<br>section of EP to ensure this is done<br>within three months of approval. |
| Australian Maritime<br>Safety Authority (AMSA)<br>Luke Pugsley (Senior<br>Advisor Nautical and<br>Hydrographic System<br>Safety)<br>12 Dec 2016 | Noted Stag Facilities long history in the area.<br>Noted 3 nm cautionary zone and shipping fairway 5.7km to the South<br>of the facility, which is predominantly support vessel traffic for the oil<br>and gas industry.                                                                    | No objection, concern or claim.<br>Request only:<br>AMSA is the key regulatory agency for the<br>management of shipping and maritime<br>safety in Australia.  | Shipping traffic advice from AMSA is noted and referenced in the EP.                                                                                                                                                  |
| David Imhoff<br>22 Nov 2017                                                                                                                     | Arrangements need to be in place regarding access to national plan resources including chemical dispersants and the FWADC.                                                                                                                                                                  | No objection, concern or claim.<br>Request only:<br>MOU needs to be in place to ensure access<br>to logistical support                                        | MOU in place with AMSA outlining access arrangements to national plan resources.                                                                                                                                      |
| WAFIC<br>Mannie Shae<br>(Executive Officer)<br>1 Dec 2016                                                                                       | WAFIC accepts 500m restricted zone around the facility for safety reasons, with additional cautionary zone as charted where vessels should 'avoid navigating, anchoring or fishing' however are not excluded from the area.                                                                 | No objection, concern or claim.<br>Request only:<br>Peak industry body for commercial fishing in<br>Western Australia.                                        | Jadestone Energy notes acceptance of restricted zone.                                                                                                                                                                 |
| Australian Marine Oil<br>Spill Centre (AMOSC)<br>Phil Starkins (D/GM)<br>22 Nov 2016                                                            | AMOSC advised they are able to support the response requirements<br>identified for the activity however membership will not be finalised<br>until first board meeting of 2017. Noted requirement for Jadestone<br>Energy to have a service arrangement with AMOSC as an interim<br>measure. | No objection, concern or claim.<br>Request only:<br>AMOSC is a key and respected source of<br>input in the EP in relation to response to<br>unplanned events. | MSA agreement in place 1 July 2017.                                                                                                                                                                                   |



| Stakeholder                                                                                     | Stakeholder Concern, Objection or Claim                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Jadestone Energy Assessment of merit                                                                                                                                                                                                                                                                                                                       | Jadestone Energy's Response                                                                                                                                                                                             |
|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Phil Starkins (D/GM)<br>5 Dec 2016                                                              | AMOSC response to Jadestone Energy specific questions on capability<br>assessment support as requested.<br>Technical and editorial advice on OPEP including suggestions to<br>improve implementation of OPEP, reference material and technical<br>corrections.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | No objection, concern or claim.<br>Response only<br>AMOSC is the key agency for the<br>coordination of spill response and provides<br>significant input for OPEP consideration.<br>Jadestone Energy considers these<br>comments and editorial corrections have<br>merit.                                                                                   | Jadestone Energy has noted AMOSC<br>response and incorporated advice<br>where appropriate in developing the<br>OPEP capability assessment support.<br>Jadestone Energy incorporated all<br>comments on OPEP from AMOSC. |
| Department of Transport<br>Jade Herwig (cc Matt<br>Verney and Emily<br>Gifford)<br>29 June 2017 | DoT noted separate IMT arrangements for cross jurisdiction spills.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | DoT is a key regulatory agency and response agency in an unplanned event.                                                                                                                                                                                                                                                                                  | Jadestone Energy will continue to work<br>with DoT regarding spill response<br>arrangements, as outlined in the activity<br>OPEP.                                                                                       |
|                                                                                                 | Comments on OPEP and supporting documents provided 8 June 2017, including:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Jadestone Energy considers these<br>comments and editorial corrections have<br>merit and have incorporated them as<br>outlined below:                                                                                                                                                                                                                      | A written response to comments was provided to DoT.                                                                                                                                                                     |
|                                                                                                 | There are a number of references throughout the OPEP and<br>supporting documentation that appear to rely on Department of<br>Transport (DoT) resources and decision making as part of the primary<br>response capabilities. In accordance with the DoT Offshore Petroleum<br>Industry Guidance Note – Marine Oil Pollution: Response and<br>Consultation Arrangements (January 2017) (IGN), while DoT may opt<br>to deploy members of the State Response Team, request deployment<br>of members of the National Response Team and use DoT resources<br>during a cross-jurisdictional spill event, it is an expectation that<br>Jadestone Energy is suitably prepared independent of DoT resources.<br>This includes Jadestone Energy providing an appropriate number of<br>qualified persons and having sufficient contracts/arrangements in<br>place for resourcing, as required for their given activity. | Jadestone Energy acknowledges the<br>expectation that capability independent of<br>DoT and AMSA is in place. Jadestone<br>Energy has identified SRT and NRT<br>resources as potential capability however<br>the primary capability for personnel rests<br>within arrangements held with AMOSC<br>(core group and mutual aid) and labour hire<br>providers. | MSA agreement in place with AMOSC 1<br>July 2017. Arrangements in place with<br>various logistics companies as outlined<br>in stakeholder log.                                                                          |
|                                                                                                 | There is insufficient clarification of the minimum number of personnel required to be provided by Jadestone Energy to the DoT Incident                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | The OPEP has been developed for a worst-<br>case spill scenario of an instantaneous spill                                                                                                                                                                                                                                                                  | Information updated.                                                                                                                                                                                                    |



| Stakeholder | Stakeholder Concern, Objection or Claim                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Jadestone Energy Assessment of merit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Jadestone Energy's Response     |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
|             | Management Team (IMT) and Forward Operations Base in the event<br>of a cross-jurisdictional spill event as outlined in the IGN. In addition,<br>please show references as to the roles required to be filled, the<br>number of personnel required and the time and locations that they<br>are to be deployed to. It is not clear that Jadestone Energy have<br>sufficient personnel, contracts and resources in place to deal with a<br>spill event and to resource DoT's IMT and response. | of Stag Crude. Operationally, once the spill<br>moves from Commonwealth waters into<br>State Waters, the majority of the Jadestone<br>Energy IMT will be working on response<br>activities in conjunction with DoT meaning<br>that a skeleton IMT for Commonwealth<br>issues will only be required to be populated<br>by Jadestone Energy. Forward Operating<br>Bases will be managed by AMOSC on behalf<br>of Jadestone Energy. AMOSC core group<br>and mutual aid arrangements will be used<br>to supplement Jadestone Energy IMT<br>functions. |                                 |
|             | Ensure that Table 4-1 of the Oil Spill Response Arrangements<br>document (OSRA) correctly aligns with Western Australian State<br>Hazard Plan for Marine Oil Pollution: WestPlan – Marine Oil Pollution<br>regarding the responsible Jurisdictional Authorities and Controlling<br>Agencies.                                                                                                                                                                                                | Comment of merit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Correction made.                |
|             | Include some diagrams to illustrate the Control and Coordination<br>structure and IMT structure for a cross-jurisdictional spill event. DoT is<br>happy to meet with Jadestone Energy to discuss IMT arrangements<br>and ensure there is clarity around cross jurisdictional arrangements.                                                                                                                                                                                                  | Comment of merit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Updated diagrams included.      |
|             | Will assessment of dispersant use applicable to the location and<br>conditions at the time of a spill be undertaken prior to initial<br>dispersant application? Or is it just assumed that chemical dispersant<br>will be used as a response in all relevant scenarios and then a NEBA<br>will be done after application to determine whether continuing with<br>this option is viable?                                                                                                     | A NEBA is conducted before the application of dispersant as part of the IAP process.                                                                                                                                                                                                                                                                                                                                                                                                                                                              | No update to document required. |
|             | If dispersant is to be used in Commonwealth waters, but is likely to<br>enter State waters, DoT request to be notified prior to dispersant<br>application.                                                                                                                                                                                                                                                                                                                                  | DoT is listed on the notification list in the<br>OSRA document and will be kept appraised<br>through SITREPS.                                                                                                                                                                                                                                                                                                                                                                                                                                     | No update to document required. |



| Stakeholder | Stakeholder Concern, Objection or Claim                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Jadestone Energy Assessment of merit                                                                                    | Jadestone Energy's Response                                                                                                                                                                                                                                                                                                                                                                    |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|             | There is very little detail in the way of communication equipment<br>available for use or what communication equipment can be sourced<br>in the event of a spill.                                                                                                                                                                                                                                                                                                                                                         | Comment of merit and clarification provided.                                                                            | Communication support for radios,<br>mobile phones, satellite phones,<br>computers and tablets will be provided<br>by existing arrangements with Telstra<br>and if required additional service<br>providers at the time. Additional<br>support for communications equipment<br>and operators can be accessed through<br>groups such as the Pilbara District<br>Emergency Management Committee. |
|             | Is there an Incident Management System in place to help with the<br>document and records part of managing an incident? For example, a<br>way to manage standardised notification and reporting procedures,<br>tracking and logging of communications, decision making, record<br>keeping etc?                                                                                                                                                                                                                             | Jadestone Energy uses systems in accordance with the incident management plan.                                          | No change required                                                                                                                                                                                                                                                                                                                                                                             |
|             | There are a number of references in the OPEP back to the OSRA,<br>particularly in the initial response part of the document. Jadestone<br>Energy is reviewing structure and ergonomics of the OPEP and OSRA<br>documents to ensure ease of use.<br>However, it is not clear which sections of the OSR they are referring to<br>which would make it time consuming and possibly confusing in a spill<br>event. Consider cross-referencing specific sections for both<br>documents to make it easy to use in a spill event. | Comment of merit.                                                                                                       | Jadestone Energy is reviewing structure<br>and ergonomics of the OPEP and OSRA<br>documents to ensure ease of use.                                                                                                                                                                                                                                                                             |
|             | The OSR states that the Stag Field Environment Plan Permit WA-15-L –<br>Framework for Scientific Monitoring Plan is attached; however, this<br>appears to be missing from the document. Does this document detail<br>the termination criteria for ongoing scientific monitoring?                                                                                                                                                                                                                                          | This was an omission and has now been corrected.                                                                        | Determining end points for scientific<br>monitoring is addressed in this<br>document.                                                                                                                                                                                                                                                                                                          |
|             | Are there any media plans in place in the event of a spill incident?                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Media arrangements for all emergencies sit<br>within the Jadestone Energy Incident<br>Management Response Plan document | No change required                                                                                                                                                                                                                                                                                                                                                                             |
|             | There is very little detail regarding any insurance measures in place to deal with cost recovery in a spill event.                                                                                                                                                                                                                                                                                                                                                                                                        | Jadestone Energy's insurance for oil spill<br>response activities is aligned with the                                   | No change required.                                                                                                                                                                                                                                                                                                                                                                            |



| Stakeholder | Stakeholder Concern, Objection or Claim | Jadestone Energy Assessment of merit                                                                                                                                                                                                            | Jadestone Energy's Response |
|-------------|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
|             |                                         | financial assessment method developed by<br>APPEA. NOPSEMA considers the method<br>developed by APPEA to be generally<br>suitable for determining the level of                                                                                  |                             |
|             |                                         | financial assurance for most circumstances<br>in Australia's offshore areas. The APPEA<br>method considers reasonably estimable<br>costs, expenses and liabilities associated<br>with responding to an incident, cleaning up<br>and monitoring. |                             |



# 5. EVALUATION OF ENVIRONMENTAL IMPACTS AND RISKS

## 5.1 Methodology

The environmental impacts and risks associated with operational activities of Stag Field operations have been assessed using the Jadestone Energy Risk Management Framework and methods consistent with HB 203:2012 and AS/NZS ISO 31000:2009.

Impact is evaluated in terms of the extent, duration, severity and certainty pertaining to the effect that will or may occur in the environment due to a planned or accidental event associated with the activity.

Risk is evaluated in terms of likelihood and consequence, where likelihood is defined as the probability or frequency of the event occurring, while consequence, like impact, is defined as the extent, duration, severity and certainty pertaining to the effect that will or may occur in the environment due to a planned or accidental event associated with the activity.

The assessment methodology provides a framework to demonstrate:

- That the identified impacts and risks are reduced to as low as reasonably practicable (ALARP) (Regulation 10A(b)); and
- The impacts and risks are acceptable (Regulation 10A(c)).

The impact and risk management process is shown in Figure 5-1.



Image source: NOPSEMA (N4700-GN1074 Rev 1 2013)

Figure 5-1: Impact and Risk Evaluation Process



## 5.2 Risk Ranking Process

# 5.2.1 Risk Matrix

Impacts and risks are ranked using the Jadestone Energy Qualitative Risk Matrix (Table 5-1). Environmental ranking of a measure between Low to Extreme is determined by combining the expected severity of the impact (consequence level) with the likelihood of the impact occurring after implementation of control measures. In the case of planned events or impacts, the likelihood level is not considered as the event is intended to occur, and so a consequence level is assigned to determine the nature and scale of the impact.

| Rating  |          | Consequence |        |          |         |          |
|---------|----------|-------------|--------|----------|---------|----------|
|         |          | Negligible  | Minor  | Moderate | Major   | Critical |
|         | Expected | Medium      | Medium | High     | Extreme | Extreme  |
| p       | Probable | Medium      | Medium | Medium   | High    | Extreme  |
| (elihoo | Likely   | Low         | Medium | Medium   | Medium  | High     |
| 5       | Unlikely | Low         | Low    | Medium   | Medium  | Medium   |
|         | Rare     | Low         | Low    | Low      | Medium  | Medium   |

 Table 5-1:
 Jadestone Energy Qualitative Risk Matrix

Consequence levels for events are assigned on the basis of the expected extent of area that will or may be affected, the duration of effect and the severity of the effect. A consequence level of Negligible to Critical may be assigned (Table 5-2).

| Consequence   |                                                                           |
|---------------|---------------------------------------------------------------------------|
| 5. Critical   | Massive effect; recovery in decades; ecosystem collapse                   |
| 4. Major      | Major effect; recovery in 1 to 2 years; impact to population              |
| 3. Moderate   | Local effect; recovery in months to a year; impact to localised community |
| 2. Minor      | Minor effect; recovery in weeks to months; death of individuals           |
| 1. Negligible | Slight effect; recovery in days to weeks; injury to organism              |

Likelihood levels for accidental or unplanned events are assigned on the basis of preceding performance in relation to the activity at the Facility, in the region or in the industry. A likelihood level of Rare to Expected maybe be assigned to accidental or unplanned events (Table 5-3). A likelihood level is not assigned to planned events.

| Likelihood  |                                                                                |
|-------------|--------------------------------------------------------------------------------|
| 5. Expected | Happens several times a month in similar exploration and production operations |
| 4. Probable | Happens several times a year in similar exploration and production operations  |



| 3. Likely   | Event has occurred in similar exploration and production operations |
|-------------|---------------------------------------------------------------------|
| 2. Unlikely | Heard of in the exploration and production industry                 |
| 1. Rare     | Never heard of in the exploration and production industry           |

Once assessed and treated, an assessment as to whether the impacts and risks recorded can be demonstrated as being (ALARP and acceptable. The processes for determining if risks and impacts have been reduced to ALARP and acceptable levels are described below.

# 5.2.2 Demonstration of ALARP

Regulation 10A(b) of the Environment Regulations requires a demonstration that environmental impacts and risks are reduced to ALARP.

The ALARP principle states that it must be possible to demonstrate that the cost involved in reducing the impact or risk further would be grossly disproportionate to the benefit gained. The ALARP principal arises from the fact that infinite time, effort and money could be spent attempting to reduce a risk or impact to zero. An iterative evaluation process is employed until such time as any further reduction in the residual ranking is not reasonably practicable to implement. Impacts and risks are reduced to ALARP where:

- The residual rank is LOW:
  - Good industry practice or comparable standards have been applied to control the impact or risk, because any further effort towards reduction is not reasonably practicable without sacrifices grossly disproportionate to the benefit gained.
- The residual rank is MEDIUM or HIGH:
  - o Good industry practice is applied for the situation/ impact/ risk; or
  - Alternatives have been identified and the control measures selected to reduce the impacts and risks to ALARP. This may require assessment of Company and industry benchmarking, review of local and international codes and standards, consultation with stakeholders, etc.
- The residual rank is EXTREME:
  - The impact/ risk is unacceptable and the activity cannot continue as described. Further control measures must be applied such that acceptable impact/ risk is demonstrated and the residual risk is reduced. Final business sign off is required affirming the acceptability of the revised residual risk prior to proceeding.

The process of evaluating the reduction of impacts and risks to ALARP is illustrated in Figure 5-2.





Figure 5-2: ALARP Triangle

# 5.2.3 Demonstration of Acceptability

Regulation 10A(c) of the Environment Regulations require a demonstration that environmental impacts and risks are of an acceptable level.

Environmental impacts and risks cover a wider range of issues, multiple species, persistence, reversibility, resilience, cumulative effects and variability in severity. The degree of environmental impact/ risk and the corresponding threshold for acceptability has been adapted to include principles of ecological sustainability (given as an objective in the Environment Regulations and defined in the EPBC Act), the Precautionary Principle and the corresponding environmental threshold decision-making principles used to determine acceptability.

The following process has been applied to demonstrate acceptability in the reduction of impacts and risks:

- LOW residual impacts and risks are Tolerable, if they meet legislative requirements, industry codes and standards, regulator expectations, the Jadestone Energy Environmental Policy and industry guidelines;
- MEDIUM/ HIGH residual impacts and risks are Broadly Acceptable if ALARP can be demonstrated using good industry practice, risk based analysis, if societal concerns are accounted for and the alternative control measures are disproportionate to the benefit gained; and
- EXTREME residual impacts and risks are Intolerable and therefore Unacceptable. Impacts and risks will require further investigation and mitigation to reduce them to a lower and more acceptable level. If after further investigation the impact or risk remains in the severe category, the risk requires appropriate business sign-off to accept the impact or risk.

The process for evaluating the reduction of impacts and risks to an acceptable level is detailed in Table 5-4.



| Criteria                           | Question                                                                                                                                                                                                                                                           | Acceptability demonstrated                                                                                                                                              |
|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Policy compliance                  | Is the proposed management of the impact or risk<br>aligned with the Jadestone Energy Environmental<br>Policy?                                                                                                                                                     | The impact or risk must be compliant with the objectives of the company policies.                                                                                       |
| Management<br>System<br>compliance | Is the proposed management of the impact or risk<br>aligned with the Jadestone Energy Management<br>System?                                                                                                                                                        | Where specific Jadestone Energy procedures<br>and work instructions are in place for<br>management of the impact or risk in question,<br>acceptability is demonstrated. |
| Social<br>acceptability            | Have stakeholders raised any concerns about activity impacts or risks, and if so, are measures in place to manage those concerns?                                                                                                                                  | Stakeholder concerns must have been adequately addressed and closed out.                                                                                                |
| Laws and<br>standards              | Is the impact or risk being managed in accordance with<br>existing Australian or international laws or standards,<br>such as EPBC Policy Statements, MARPOL, AMSA<br>Marine Orders, Marine Notices etc.?                                                           | Compliance with specific laws or standards is demonstrated.                                                                                                             |
| Industry best<br>practice          | Is the impact or risk being managed in line with industry<br>best practice, such as APPEA Code of Environmental<br>Practice, IAGC guidelines etc.?                                                                                                                 | Management of the impact or risk complies with relevant industry best practice.                                                                                         |
| Environmental<br>context           | Is the impact or risk being managed pursuant to the<br>nature of the receiving environment (e.g. sensitive or<br>unique environmental features generally require more<br>management measures to protect them than<br>environments widely represented in a region)? | The proposed impact or risk controls, EPO and EPS must be consistent with the nature of the receiving environment.                                                      |
| ALARP                              | Are there any further reasonable and practicable controls that can be implemented to further reduce the impact or risk?                                                                                                                                            | There is a consensus that residual risk has been demonstrated to be ALARP.                                                                                              |

 Table 5-4:
 Acceptability Assessment Criteria

## 5.3 Impact and Risk Assessment for Hydrocarbon Spills Response

## 5.3.1 Approach

The impact and risk assessment approach for the worst-case hydrocarbon spill response follows the process as described above, with additional steps and considerations to determine an environmentally acceptable oil spill response strategy and an ALARP level of response preparedness:

- 1. Determine threshold concentrations to be used in oil spill modelling;
- 2. Determine the EMBA;
- 3. Identify sensitive receptors;
- 4. Determine Protection Priorities; and
- 5. ALARP and Acceptability evaluation for spill response.

## 5.3.2 ALARP and Acceptability Evaluation

Jadestone Energy applies a robust and systematic process to ensure that credible spill scenarios are adequately evaluated, to promote a clear link between the nature and scale and the Protection Priorities, and, to ensure that effective control measures exist to mitigate environmental risks and impacts to a level that is ALARP.



# 6. ENVIRONMENTAL HAZARDS AND CONTROLS

## 6.1 Risk Evaluation Summary

The assessment process undertaken by Jadestone Energy in November 2016 for operational activities at the Stag Field identified nine planned hazards and seven unplanned hazards and their associated environmental impacts and risks that will or may occur during operation of the Stag Field.

| Table 6-1: | Summary of Environmental Im | pact and Risk Assessment Rankings |
|------------|-----------------------------|-----------------------------------|
|------------|-----------------------------|-----------------------------------|

| Hazard                         |                                 | Pre-treatment<br>Ranking | Residual Ranking |
|--------------------------------|---------------------------------|--------------------------|------------------|
| Planned events                 |                                 |                          |                  |
| 1. Light                       |                                 | 1                        | 1                |
| 2. Noise                       |                                 | 1                        | 1                |
| 3. Atmospheric emissio         | ns                              | 1                        | 1                |
| 4. Discharge of produce        | ed water                        | 2                        | 1                |
| 5. Discharge of liquid w       | astes                           | 2                        | 1                |
| 6. Interaction with othe       | er users                        | 1                        | 1                |
| 7. Interaction with faur       | а                               | 2                        | 1                |
| 8. Physical footprint          |                                 | 1                        | 1                |
| 9. Spill response activit      | es                              | 5                        | 3                |
| Unplanned events               |                                 |                          |                  |
| 1. Marine pest introduc        | tion                            | М                        | L                |
| 2. Non-hazardous and l         | nazardous solid waste           | М                        | М                |
| 3. Non-hydrocarbon liq         | uid hazardous materials         | М                        | L                |
| 4. Unplanned release o diesel) | f hydrocarbons (Stag crude oil, | М                        | L                |
| 5. Dropped Objects             |                                 | L                        | L                |

## 6.2 Environmental Impacts, Risks and Control Measures

A summary of environmental impacts and risks and their control measures for planned (Table 6-1) and unplanned (Table 6-2) events are provided below.



#### **Planned Events** 6.2.1

Table 6-2:

# Summary of Environmental Impacts, Risks and Controls for Planned Events

| Event                          | Potential Impacts                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Consequence | Management Controls                                                                                                                                                                                                                                                                                                                                                                                        | Effectiveness of Controls                                                                                                                                                                         |
|--------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. Light emissions             | Light is emitted from the central platform facility,<br>the FSO, support vessels, and flaring. Continuous<br>lighting for extended periods may create a<br>disruption in natural behavioural patterns and<br>cycles in marine fauna.                                                                                                                                                                                                                                 | Negligible  | Lighting will be maintained to meet safety, navigational and operational requirements.                                                                                                                                                                                                                                                                                                                     | Emissions of light from the<br>facility are managed to levels<br>as low as reasonably<br>practicable to minimise light<br>impacts to marine fauna                                                 |
| 2. Noise<br>emissions          | Noise is generated by vessels (including the FSO<br>and support vessels), helicopters and equipment<br>such as generators and pumps. Noise emissions<br>may result in physiological or behavioural<br>impacts to marine fauna.                                                                                                                                                                                                                                       | Negligible  | Support vessels and helicopters comply<br>with relevant parts of Part 8 of EPBC<br>Regulations.<br>Planned maintenance, routine inspections<br>and surveys of machinery and equipment.                                                                                                                                                                                                                     | Noise emissions from the<br>facility are managed to levels<br>as low as reasonably<br>practicable to reduce impacts<br>to marine fauna.                                                           |
| 3. Atmospheric<br>emissions    | Atmospheric gases are emitted from engine<br>exhausts, production gas and flaring, venting and<br>fugitive emissions and from power generation<br>and process heating. Atmospheric emissions will<br>reduce air quality in the immediate vicinity of the<br>facility.                                                                                                                                                                                                | Negligible  | Continuous metering of flare emissions.<br>International air pollution prevention<br>certificates and planned maintenance.                                                                                                                                                                                                                                                                                 | No unplanned emissions to the atmosphere                                                                                                                                                          |
| 4. Produced<br>water discharge | Water produced during the recovery of<br>hydrocarbon from the reservoir and during the<br>oil/ water separation process, is discharged to<br>the marine environment.<br>Produced water from the Stag field contains a<br>mixture of dissolved hydrocarbons and<br>suspended oil droplets, naturally occurring<br>radioactive materials (NORMs), dissolved<br>inorganic salts, dissolved metals, dissolved gases<br>as well as low residual concentrations of a small | Negligible  | Monitoring of the discharge volume, oil in<br>water concentration, and discharged oil<br>loads, of produced water with planned<br>contingency and adaptive control measures<br>to manage excursions from planned<br>operations / performance.<br>Holding times on the FSO prior to<br>commencement of discharge<br>Characterisation of contaminants, Whole<br>Effluent Toxicity (WET) testing and microtox | PFW discharges from the<br>facility are managed to levels<br>as low as reasonably<br>practicable. No persistent<br>environmental impacts will<br>occur due to the discharge of<br>produced water. |



| Event | Potential Impacts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Consequence | Management Controls                                                                                                                                                                                | Effectiveness of Controls |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
|       | <ul> <li>number of chemical additives that are introduced during the production process such as corrosion and scale inhibitors, and biocides.</li> <li>A continuous produced water stream is discharged overboard at the CPF at an average rate of approximately 3,816 kL per day.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                        |             | testing, verification study of numerical<br>modelling<br>Calibration of monitoring equipment and<br>third party quality control checks.<br>Chemical Selection Evaluation and Approval<br>Procedure |                           |
|       | Produced water is also occasionally discharged<br>from the FSO. Produced water discharges are<br>intermittent and short term (over a matter of<br>hours), with volume of discharge to be maximum<br>66 kL per day.                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             | Measurement of chemicals in water<br>samples from production equipment<br>Management of change procedure                                                                                           |                           |
|       | Numerical modelling of the produced water<br>discharge stream predicts water quality impacts<br>may occur within an area of up to 70m from the<br>facility discharge point (or up to 20m from the<br>FSO discharge point), within the top metre of the<br>water column. There is the possibility that fine<br>particles (smaller than a sand grain) within the<br>discharge stream may fall to the sediments 50m<br>below sea surface and any contaminants<br>associated with these particles will become<br>incorporated into the local sediments. The area<br>over which sediments may be affected by this<br>process is up to 250m from the facility and FSO<br>discharge points. |             |                                                                                                                                                                                                    |                           |
|       | The discharge footprint of the produced water<br>overlaps with the BIAs for the humpback whale,<br>blue pygmy whale, wedge tailed shearwater and<br>flatback turtle.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             |                                                                                                                                                                                                    |                           |



| Event                           | Potential Impacts                                                                                                                                                                                                                                                                                                                                                                           | Consequence | Management Controls                                                                                                                                                                                      | Effectiveness of Controls                                                                                                                                                                                      |
|---------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5. Discharge of liquid wastes   | A localised reduction in water quality, including a temporary increase in nutrient concentrations, temperature and salinity will be associated with the discharge of liquid wastes including sewage, deck drainage and bilge water, cooling water and desalination brine.                                                                                                                   | Negligible  | International pollution prevention<br>certificates<br>MARPOL requirements<br>Planned maintenance of systems and<br>equipment                                                                             | Liquid discharges from the<br>facility are managed to levels<br>as low as reasonably<br>practicable. No unplanned<br>discharges of liquid wastes                                                               |
| 6. Interaction with other users | The presence of the 500 m radius Restricted Zone<br>(the Operational Area) and 3 nm Cautionary Zone<br>creates a localised disturbance for other users of<br>the area including commercial and recreational<br>fishers, and shipping traffic.                                                                                                                                               | Negligible  | Navigational aids and communication<br>Consultation of relevant persons<br>maintained during the activity                                                                                                | Recreational and commercial<br>fishers and shipping traffic are<br>aware of the facility and<br>activities to minimise any<br>potential disturbance/ impacts<br>to them.                                       |
| 7. Interaction<br>with fauna    | The physical presence of infrastructure and the<br>movement of vessels and helicopters may result<br>in physical and behavioural impacts to marine<br>fauna.<br>The Operational Area overlaps the humpback<br>whale 'species core range', is adjacent to the<br>whale shark BIA and overlaps the flatback turtle<br>internesting BIA.                                                       | Negligible  | Vessels operating within the restricted zone<br>must not exceed a speed of five (5) knots.<br>Online inductions<br>Incident reporting procedure                                                          | As vessels will travel at <5<br>knots risk to megafaua is<br>considered low and acceptable;<br>with minimal vessel activity in<br>the area, the risk of mortality<br>from a low-speed vessel strike<br>is low. |
| 8. Physical<br>footprint        | Disturbance to marine habitats and the seabed<br>may occur in the event subsea infrastructure<br>needs to be modified or repaired.<br>The presence of infrastructure may result in<br>localised physical damage to, or loss of, soft<br>sediment benthic habitats and associated biota. In<br>addition, infrastructure provides an artificial<br>habitat for benthic and pelagic organisms. | Negligible  | Visual seabed survey using ROV/ AUV prior<br>to commencement of integrity,<br>maintenance, repair works<br>No well fluids are recovered to surface<br>during well workover or intervention<br>activities | Disturbance will be localised to<br>immediately under or near to<br>the footprint of Stag Facility<br>subsea infrastructure within<br>the Operational Area.                                                    |



| Event                           | Potential Impacts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Consequence | Management Controls                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Effectiveness of Controls                                                                                                                                                                                                                                                                                           |
|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                 | The Operational Area overlaps the flatback turtle internesting area.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                     |
| 9. Spill response<br>activities | There is the potential for spill response activities<br>to exacerbate or create additional environmental<br>impacts.<br>Impacts to the environment from implementing<br>source control, monitoring and evaluation, oiled<br>wildlife response and scientific monitoring<br>include those operational impacts from vessels<br>and aircraft. In addition, implementing oiled<br>wildlife response may cause additional distress,<br>habitat disturbance, physical and behavioural<br>impacts, separation and increased predation to<br>wildlife if not undertaken correctly. | Moderate    | Oil pollution emergency plan include:<br>Light spill onto shorelines and coastal<br>waters is reduced to ALARP during spill<br>response<br>Noise emissions reduced to ALARP during<br>spill response<br>Spill response vessel emissions meet<br>MARPOL requirements<br>Impacts from spill response operational<br>discharges are reduced to ALARP<br>Prevention of secondary contamination of<br>oily waste and litter during spill response<br>Disturbance to habitats, fauna and<br>culturally sensitive areas during spill<br>response is reduced to ALARP Additional<br>impacts from dispersant application are<br>reduced to ALARP Reduce disruption to<br>other users of marine and coastal areas and<br>townships during spill response is reduced<br>to ALARP | The mutual interests of<br>responding and protecting<br>sensitive receptors from<br>further impact due to response<br>activities is managed through<br>the use of the net<br>environmental benefit analysis<br>during response strategy<br>planning in preparedness<br>arrangements as well as during<br>a response |



# 6.2.2 Unplanned Events

# Table 6-3: Summary of Environmental Impacts, Risks and Controls for Unplanned Events

| Event                              | Potential Impacts                                                                                                                                                                                                                                                                   | Risk   | Management Controls                                                                                                                                                                                                                                                                                                                                                                                                                 | Effectiveness of Controls                                                                                                                |
|------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| 1. Introduction<br>of marine pests | The introduction and establishment of marine pests can result in a localised impact on native marine fauna and flora.                                                                                                                                                               | Low    | DAWR/ WA DPIRD approvals including:<br>Vessel Contractors are required to conduct an IMS risk<br>assessment for support vessel(s) that have been sourced<br>from outside Western Australia. Where applicable, the<br>Contractor will use the WA Department of Fisheries 'Vessel<br>Check' process.                                                                                                                                  | Reduce risk of introduced marine<br>species from vessels and<br>equipment used in water.                                                 |
|                                    |                                                                                                                                                                                                                                                                                     |        | All vessels from international waters have a valid DAWR certificate                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                          |
|                                    |                                                                                                                                                                                                                                                                                     |        | In accordance with marine pest management guidelines (as<br>enforced under the WA Fish Resources Management Act<br>1994; and Fish Resources Management Regulations 1995):                                                                                                                                                                                                                                                           |                                                                                                                                          |
|                                    |                                                                                                                                                                                                                                                                                     |        | <ul> <li>Vessels must be clean before entering WA waters; and</li> <li>Any suspected or confirmed marine pests are reported to DPIRD.</li> </ul>                                                                                                                                                                                                                                                                                    |                                                                                                                                          |
|                                    |                                                                                                                                                                                                                                                                                     |        | Prior to arrival in Australia Ballast management plan                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                          |
|                                    |                                                                                                                                                                                                                                                                                     |        | All ballast transfers and exchanges made during the voyage need to be recorded.                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                          |
| 2. Release of solid wastes         | Non-hydrocarbon solids such as plastics<br>have the potential to smother benthic<br>environments and harm marine fauna<br>through entanglement or ingestion.<br>Release of hazardous solids (e.g. wastes)<br>may result in the pollution of the<br>immediate receiving environment. | Medium | <ul> <li>Facility waste management procedures including;</li> <li>Waste Management Plan which directs:</li> <li>All food waste is disposed of ashore</li> <li>Solid waste materials are stored in fit for purpose storage containers and/or lifting skips, labelled and equipped with lids / covers to prevent loss of material during storage and handling.</li> <li>Produced Sands will be double-bagged (bulki bags).</li> </ul> | Reduce the risk of release of<br>solid waste to the marine<br>environment to minimise any<br>potential disturbance/impacts<br>from them. |



| Event                          | Potential Impacts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Risk | Management Controls                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Effectiveness of Controls                                                                                                                                                                                                                                                                                                          |
|--------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | <ul> <li>Hazardous solid wastes will be managed in accordance<br/>with Marine Orders – Part 94 (Marine Pollution<br/>Prevention – Packaged Harmful Substances), Navigation<br/>Act 2012 and Protection of the Sea (Prevention of<br/>Pollution from Ships) Act 1983 (Part III) requirements,<br/>and Environmental Protection Regulations (controlled<br/>waste)</li> <li>FSO: Garbage Management Guidelines when Stationed<br/>at Stag Oilfield</li> <li>Competency and training system</li> </ul> |                                                                                                                                                                                                                                                                                                                                    |
| 3. Release of<br>liquid wastes | An accidental release of non-<br>hydrocarbon liquids to the marine<br>environment may occur due to the<br>transfer and use of liquids during<br>operating activities.<br>If hazardous materials are accidentally<br>lost overboard, potential impacts will<br>include a temporary and highly localised<br>decline in water quality with limited<br>potential for toxicity to marine fauna<br>due to the temporary exposure and low<br>toxicity resulting from the rapid dilution<br>in the marine environment. | Low  | Dropped object prevention procedures<br>Bulk liquid transfer procedures<br>Hazardous substances and dangerous goods standards<br>Chemical selection procedure<br>Vessel SOPEP                                                                                                                                                                                                                                                                                                                       | Minimises drop object risk<br>during lifting operations that<br>may cause secondary spill<br>(discharges) resulting in<br>reduction in water quality<br>Reduces risk of accidental<br>discharge to sea<br>Reduces the risk of spills and<br>leaks (discharges) to the sea by<br>controlling the storage, handling<br>and clean up. |
| 4. Hydrocarbon<br>spill        | Accidental loss of fuel and other<br>hydrocarbons (used or stored onboard<br>the Stag facility and support vessels) to<br>the marine environment may result in a<br>reduction of water quality and potential<br>impacts to local marine fauna and flora<br>including; chemical (e.g. toxic) and<br>physical (e.g. coating of emergent                                                                                                                                                                          | Low  | Diesel Fuel Bunkering Procedure<br>Crude oil import procedures<br>Competency and training system<br>Subsea inspection procedure<br>Stag Facility Operating procedure<br>SOPEP                                                                                                                                                                                                                                                                                                                       | Management controls<br>implemented to reduce the risk<br>of accidental hydrocarbon spill<br>to the marine environment.<br>OPEP environmental benefit see<br>section 8.                                                                                                                                                             |



| Event                 | Potential Impacts                                                                                                                                                                                                                                                                                                                                   | Risk | Management Controls                                                          | Effectiveness of Controls                                                                                                                                                                                                  |
|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                       | habitats, oiling of wildlife at sea surface<br>and ingestion).<br>The environmental consequences of a<br>hydrocarbon spill are highly variable,<br>dependant on the characteristics of the<br>hydrocarbon released, the dynamics of<br>the receiving environment and the<br>proximity of the release point to sensitive<br>environmental receptors. |      | OPEP<br>Facility Safety Cases                                                | Vessels have and implement a<br>Shipboard Oil Pollution<br>Emergency Plan (SOPEP), or<br>Shipboard Marine Pollution<br>Emergency Plan (SMPEP),<br>pursuant to MARPOL Annex I to<br>ensure Jadestone Energy is<br>prepared. |
| 5. Dropped<br>objects | Damage or loss to marine habitats may<br>occur due to objects dropped from the<br>CPF, FSO and support vessels. The<br>Operational Area is within a habitat<br>critical to survival for flatback turtles                                                                                                                                            | Low  | Competent personnel<br>Lifting Operations Procedure<br>Facility Safety Cases | Management controls<br>implemented to reduce the risk<br>of dropped objects to the marine<br>environment, and thereby<br>damage to the benthos.                                                                            |



## 7. HYDROCARBON SPILL RESPONSE ARRANGEMENTS

## 7.1 Credible Worst Case Hydrocarbon Spill

The credible worst case hydrocarbon spill scenarios for the Stag Field identified in Table 7-1.

 Table 7-1:
 Credible Worst Case Oil Spill Scenarios for the Stag Field

| Hydrocarbon    | Release point | Credible Worst Case                                                          |
|----------------|---------------|------------------------------------------------------------------------------|
| Diesel         | At surface    | Short term (5 hours) with total release = 350 m <sup>3</sup>                 |
| Stag crude oil | At surface    | Short-term release (5 hours) with total release volume = $7,253 \text{ m}^3$ |
|                | Subsea        | Short-term release (12 hours) with total release volume = 546 m <sup>3</sup> |

## 7.2 Net Environmental Benefit Analysis

Net Environmental Benefit Analysis (NEBA) is a structured approach used by the spill response community and stakeholders to select spill response strategies that will effectively remove oil, are feasible to use safely in particular conditions, and will reduce the impact of an oil spill on the environment.

The NEBA process is used during pre-spill planning (Strategic NEBA) and during a response (Operational NEBA). A Strategic NEBA is an integral part of the contingency planning process and is used to ensure that response strategies for scenarios are well informed. An Operational NEBA is used to ensure that evolving conditions are understood, so that the response strategy can be adjusted as necessary to manage individual response actions and end points.

Balancing trade-offs may involve differing and conflicting priorities, values and perceptions of the importance of sensitive receptors. There is no universally accepted way to assign perceived value or importance and is not a quantitative process. Overall, the NEBA process provides an estimate of potential environmental effects which are sufficient to allow the parties to compare and select preferred combinations of response strategies to reduce environmental impacts to ALARP.

## 7.3 Evaluation of Spill Response Strategies

The evaluation of the suitable response strategies was conducted based on the credible spill scenarios. Key considerations evaluated were:

- The properties and weathering profile of the oil;
- The philosophy of the responses, that is, what is aim of the response based on the hydrocarbon properties. In the case of Stag crude: prevention of shoreline contact and application of chemical dispersant to entrain and enhance biodegradation;
- The Net Environmental Benefit of undertaking the response strategy;
- The nature and scale of the maximum credible worst case scenario; and
- The potential safety and environmental aspects and impacts involved with the selected responses.

Spill response strategies considered for the mitigation of hydrocarbon, including summary of benefits and decision to adopt or reject are outlined in Table 7-2.

| Strategy          | Description                                         | Environmental Benefits                                   | Decision |
|-------------------|-----------------------------------------------------|----------------------------------------------------------|----------|
| Source<br>control | Implementation of the FSO SOPEP                     | Reduce the volume of oil entering the marine environment | Adopt    |
|                   | Implementation of Emergency Pipeline<br>Repair Plan | Cease loss of containment event as soon as practicable.  | Adopt    |

 Table 7-2:
 Spill Response Strategies Considered for the Mitigation of Hydrocarbon Spills



| Strategy                          | Description                                                                                                                                                                                                                                                                                                                                                                                                                      | Environmental Benefits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Decision |
|-----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| Operational<br>Monitoring         | Surveillance actions are used to<br>monitor and evaluate the trajectory<br>and fate of the released hydrocarbon,<br>to determine the effectiveness of<br>response strategies and to identify and<br>report on any potential/actual contacts<br>to flora, fauna, or any other sensitive<br>receptor that occurs. Surveillance<br>results are used to assist in escalating<br>or de-escalating response strategies as<br>required. | There are various specific control measures (vessel/<br>aerial surveillance, tracking buoys, oil spill modelling,<br>fluorometry) within this response strategy which may<br>be suitable. Their use, in combination or individually,<br>will be determined based on the spill distribution as<br>well as other considerations such as access to<br>locations, environmental and metocean conditions.<br>This strategy is vital to ensure that there is sufficient<br>information to gain situational awareness and make<br>informed decisions on response planning, execution<br>and termination.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Adopt    |
| Surface<br>chemical<br>dispersion | Chemical dispersant is applied to break<br>down the hydrocarbons and<br>allow/enhance dispersion into the<br>water column, thereby<br>preventing/reducing potential<br>shoreline contact and increasing<br>biodegradation.                                                                                                                                                                                                       | Surface chemical dispersant may be viable, either by<br>vessel or plane.<br>Based upon previous dispersant efficacy testing<br>undertaken on Stag crude, there is a Window of<br>Opportunity (WoO) up to 72 hours post spill, prior to<br>Stag crude weathering beyond the ability of potential<br>effective chemical dispersion, in which surface<br>chemical dispersant could be applied (refer Section 10<br>of the OPEP).<br>Chemical dispersants applied at sea surface can reduce<br>the amount of floating oil but increase the oil<br>concentrations in the water column, thereby increasing<br>the risk of exposure to organisms that live in the water<br>column (refer Section 8.5.2 and Table 8-7).<br>The OSTM output comparing dispersant and non-<br>dispersant models indicated oil loading at the closest<br>onshore receptors, may be reduced through the<br>surface application of chemical dispersants particularly<br>in the summer months, however, does show a<br>localised increase in entrained oil (refer Section 7.9.2).<br>Entrained oil concentrations are not constant; they are<br>subject to frequent fluctuations due to metocean<br>influences, mobility of receptors and the dilution of the<br>dispersed oil by the sea. Subsequent potential contact<br>to organisms in the water column and nearshore<br>marine habitats is infrequent, of varying concentration,<br>duration and consequence. Therefore, Jadestone<br>Energy consider that any potential shoreline loading<br>reduction is more beneficial than the potential impact<br>to organisms from entrained oil and this strategy is<br>worth keeping in the toolbox as an option.<br>Chemical dispersion will only be undertaken when<br>there is a net environmental benefit. Applicability of<br>chemical dispersant is limited to the conditions,<br>locations and circumstances described in the OPEP. | Adopt    |
| Physical<br>dispersion            | Physical dispersion is undertaken by<br>running vessels through the<br>hydrocarbon plume and using the<br>turbulence developed by the propellers<br>or hydro-blasting from vessel hydrants<br>to break up the slick. Once dispersed in<br>the water column in the form of<br>smaller droplet sizes, biodegradation<br>processes are enhanced.                                                                                    | In general, this strategy is considered an opportunistic<br>strategy; used on targeted, small, breakaway areas,<br>especially patches close to shorelines. Given that oil is<br>expected to emulsify by the time it approaches<br>shorelines, and chemical dispersant application would<br>be preferred as a means of dispersing bulk oil; this<br>strategy has limited effectiveness, and is not<br>considered to be a strategy requiring further planning<br>and associated control measures.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Reject   |



| Strategy                            | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Environmental Benefits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Decision |
|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| Containment<br>and recovery         | Containment and recovery of<br>hydrocarbons can offer a preventive<br>form of protection to sensitive<br>receptors. Skimmers (mechanical) and<br>booms will be used at sea.<br>This strategy is only effective in calm<br>conditions.                                                                                                                                                                                                                                                      | For a spill of Stag crude, this is the preferred way to<br>remove hydrocarbons from the water surface before<br>the risk of contacting shorelines/sensitive receptors.<br>Containment and recovery may be applicable once<br>evaporation of highly volatile components has<br>occurred. Based on the Stag crude oil assay, a solidified<br>residual is expected which can be collected using<br>containment and recovery methods. Given that<br>shoreline booming and shoreline clean-up are<br>expected to be difficult across some locations within<br>the EMBA (e.g. Dampier Archipelago and the<br>Montebellos) this strategy is considered important to<br>the overall spill response. | Adopt    |
| Protection<br>and<br>deflection     | <ul> <li>Protection and deflection activities<br/>involve the use of booms to:</li> <li>1. Protect sensitive receptors;</li> <li>2. Deflect spills away from sensitive<br/>receptors or shorelines; or</li> <li>3. Deflect spills to an area that<br/>provides increased opportunity for<br/>recovery activities.</li> <li>This strategy is typically not effective in<br/>areas experiencing large tidal variations<br/>and associated currents.</li> </ul>                               | Activities are focused on areas of high protection value<br>in low energy environments based upon real time<br>operational surveillance provided the environmental<br>and metocean conditions are favourable for an<br>effective implementation. Consequently, this strategy<br>may not be applicable across all shorelines identified<br>as being contacted by oil.                                                                                                                                                                                                                                                                                                                        | Adopt    |
| Shoreline<br>clean-up               | During a spill response, clean-up of the<br>oiled shorelines will be implemented<br>using suitable methods, provided it will<br>be beneficial to the environment based<br>on the NEBA performed on the affected<br>areas based on actual site conditions.                                                                                                                                                                                                                                  | Contacted shorelines will be assessed for their<br>shoreline clean-up potential. This response has the<br>potential to cause secondary disturbance associated<br>with the clean-up, so applicability of the strategy is<br>based on aerial surveillance reconnaissance, shoreline<br>assessments and NEBA in the shoreline clean-up<br>assessment.                                                                                                                                                                                                                                                                                                                                          | Adopt    |
| Oiled wildlife<br>response<br>(OWR) | Responding to an oiled wildlife incident<br>will involve an attempt to prevent<br>wildlife from becoming oiled and/or<br>the treatment of animals that do<br>become oiled.                                                                                                                                                                                                                                                                                                                 | Within the EMBA, areas with importance for wildlife<br>have been identified to be threatened by the oil spill<br>and mobilisation of a wildlife response will likely be<br>necessary. Mobilisation of experts, trained work<br>forces, facilities and equipment will then be needed.<br>Wildlife response activities may take place at sea, on<br>shorelines and in specialised facilities further inland.<br>Options for wildlife management are considered and a<br>strategy determined guided by the Western Australian<br>Oiled Wildlife Response Plan (WAOWRP).                                                                                                                        | Adopt    |
| In-situ<br>burning                  | In situ burning is a technique<br>sometimes used in responding to an oil<br>spill. In situ burning involves the<br>controlled burning of oil that has spilled<br>(from a vessel or a facility), at the<br>location of the spill. The oil has to be<br>amenable to lighting e.g. unweathered,<br>high lighter oil fractions and not prone<br>to emulsification.<br>When conditions are favourable and<br>conducted properly, in situ burning will<br>reduce the amount of oil on the water. | Operational and oil constraints expected during a spill<br>from the Stag Operations suggest in-situ burning is not<br>applicable. For in-situ burning to be undertaken, oil has<br>to be thicker than 1-2 mm but diesel tends to have<br>high evaporation rate and spreads into very thin films<br>rapidly. Stag crude is a highly-weathered oil, with little<br>light fractions and prone to emulsification. In addition,<br>in-situ burning requires containment.<br>Due to operational constraints and the expected<br>hydrocarbon not being suitable for in-situ burning, this<br>response strategy is deemed inapplicable for Stag<br>Operations.                                      | Reject   |
| Scientific<br>Monitoring            | This is the main tool for determining<br>the extent, severity and persistence of<br>environmental impacts from an oil spill                                                                                                                                                                                                                                                                                                                                                                | Scientific monitoring is especially beneficial for monitoring entrained and dissolved oil impacts as                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Adopt    |



| Strategy | Description                                                                                                                                                                                                      | Environmental Benefits                                                        | Decision |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------|
|          | and allows operators to determine<br>whether their environmental<br>protection outcomes have been met<br>(via scientific monitoring activities).<br>This strategy also evaluates the<br>recovery from the spill. | response strategies are generally targeted to manage the surface oil impacts. |          |

# 7.4 Oil Spill Response Arrangements and Capability

Jadestone Energy has adequate arrangements and capability in place to implement the oil spill control measures proposed to manage a significant oil pollution emergency in a timely manner. In the event of a spill, initial actions will be undertaken by the OIM/Vessel Master in line with the vessel's Shipboard Oil Pollution Emergency Plan (SOPEP) and/or Stage Incident Response Plan. Should the spill require further action, the IMT in Jadestone Energy (Perth) will mobilise, in accordance with the Oil Pollution Emergency Plan (OPEP).

Oil spill response equipment and resources are a combination of Jadestone Energy, AMOSC, AMSA, DoT, National Plan (NatPlan), and other operator resources available through the AMOSPlan mutual aid arrangements. Under the MOU between AMSA and Jadestone Energy, AMSA will provide all resources available through NatPlan to support a Jadestone Energy spill response. The DoT coordinates the State Response Team (SRT) oil spill response personnel and equipment resources. The DoT will work with Jadestone Energy in an oil spill response and will lead the response where the spill is within State waters. Where oil contacts shorelines managed by the Commonwealth government, Jadestone Energy will work with the Department of the Environment to establish shoreline clean-up priorities, activities and termination criteria.

In the event of an oiled wildlife response, Jadestone Energy will activate the West Australian Oiled Wildlife Response Plan (WAOWRP) and work with Department of Biodiversity, Conservation and Attractions (DBCA) in determining resources and capability requirements. DBCA and Industry (AMOSC) Oiled Wildlife Advisors (OWAs) ensure minimum standards for oiled wildlife response, as outlined within the WAOWRP, are met and ensure timely mobilisation of appropriate resources (equipment and personnel) through communication with the wildlife logistics team. Jadestone Energy has access to:

- AMOSC core group responders;
- DBCA staff and approved volunteers/SMEs;
- Additional local resources under current contracts and suppliers; and

During and post-spill scientific response monitoring activities require resources external to Jadestone Energy and include specialist technical capabilities. Jadestone Energy has contracts in place for obtaining primary control support agency for scientific response monitoring activities. If additional support is required, the primary contractor has MOUs with other service providers to support scientific response monitoring activities.

Response planning and preparedness undertaken in accordance with:

- NatPlan (AMSA, 2014)
- AMOSCPlan (AMOSC, 2014)
- WestPlan MOP (2010)

A summary of the management controls and performance standards in place to maintain preparedness to implement response arrangements in the event of an oil pollution emergency is provided in Table 7-3.



| Management Control                                                                                                                                                                             | Performance Standards                                                                                                                                                                                                                                      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Contracts valid and maintained in accordance with Jadestone Energy Contractor Management Framework to ensure access to competent personnel and appropriate equipment to support spill response | Contracts for the supply of personnel and materials meeting the minimum requirements of spill response planning in place and current with competent service providers and suppliers                                                                        |
| AMOSC Master Services Contract (MSC) and AMSA Memorandum of Understanding (MOU) maintained and valid for life of the EP                                                                        | AMOSC membership allowing access to mutual aid arrangements for<br>spill response crew and equipment via a Master Services Contract<br>(MSC)                                                                                                               |
|                                                                                                                                                                                                | AMSA MOU (access to NRT and resources)                                                                                                                                                                                                                     |
| Response personnel competent and trained in accordance<br>with Jadestone Energy Training and Competency<br>Management System and OPEP                                                          | Assessment of proposed / rostered response personnel as being competent and trained according to the requirements of response roles                                                                                                                        |
| Jadestone Energy Audit Manual includes emergency response and spill preparedness                                                                                                               | Scheduled audit of Jadestone Energy's emergency response and spill preparedness                                                                                                                                                                            |
| Spill response exercise and training completed in accordance with Jadestone Energy Incident Management Team Response Plan to maintain spill preparedness                                       | Training and exercising current and completed as required by the Incident Management Team Response Plan                                                                                                                                                    |
| OPEP risk register maintained to ensure spill response is appropriate to nature and scale of risk                                                                                              | Spill response planning and preparedness aligned with nature and scale of risk                                                                                                                                                                             |
| Teekay Shipboard Oil Pollution Emergency Plan valid and tested to ensure ability to respond to spills                                                                                          | In line with MARPOL Annex 1, support vessels over 400 gross tonnage will have a current Shipboard Oil Pollution Emergency Plan (SOPEP)/<br>Shipboard Marine Pollution Emergency Plan (SMPEP) and International Oil Pollution Prevention (IOPP) certificate |
|                                                                                                                                                                                                | FSO spill exercises are conducted monthly                                                                                                                                                                                                                  |
| Oil Spill Response Arrangements maintained to ensure ability to respond to spills                                                                                                              | Provides current information for Jadestone Energy spill response resources and matches risk                                                                                                                                                                |

requirements.

| Table 7-3: | Spill Response Preparednes |
|------------|----------------------------|
|------------|----------------------------|

Personnel aware of roles and responsibilities in the event

of a response in accordance with Stag Incident Response

Quadrant Energy MOU for support for emergency and oil

spill response for life of the EP

Plan

Instructs offshore response roles and responsibilities and training

Quadrant Energy MOU allowing access to personnel and resources for

emergency and oil spill response via an MOU for life of the EP

# 8. MANAGEMENT APPROACH

J A D E S T 🍘 N E

## 8.1 Overview

The Stag Field will be managed in compliance with all measures and controls detailed within the EP accepted by NOPSEMA under the OPGGS (E) Regulations, other relevant environmental legislation and Jadestone Energy's Business Management System.

The objective of the EP is to ensure that potential adverse environmental impacts associated with unplanned events and planned events associated with the survey, are identified and assessed, and to stipulate mitigation measures to avoid and/or reduce any adverse impacts to the environment to ALARP.

The EP details specific performance outcomes, standards and procedures, and identifies the range of controls to be implemented (consistent with the standards) to achieve the performance outcomes. The controls for the activities are summarised in Sections 6 and 7. The EP also identifies the specific measurement criteria and records to be kept, to demonstrate the achievement of each performance outcomes.

## 8.2 Implementation Strategy

To meet the requirements of Regulation 14(1) of the OPGGS (E) Regulations the implementation strategy includes the following:

- Details on the systems, practices and procedures to be implemented;
- Key roles and responsibilities;
- Training, competencies and ongoing awareness;
- Monitoring, auditing, management of non-conformance and review;
- Incident response including Oil Pollution Emergency Plan;
- Reporting and Record keeping; and
- Stakeholder consultation.

## 8.2.1 Environmental Performance Monitoring

As required under subregulation 14(6), Jadestone provides sufficient monitoring, recording, audits, management of non-conformance and review of Jadestone's environmental performance and implementation strategy to ensure that environmental performance outcomes and standards in the EP are being met and continue to minimise impacts to the environment.

The collection of data from environmental performance monitoring activities forms the basis of demonstration that the commitments as listed are being met, that specified mitigation measures are in place to manage environmental risks, and that they remain working, and contribute to continually reducing risks and impacts to ALARP and acceptable levels.

Quantitative records are maintained for emissions and discharges during routine or emergencies within the Operational Area as per Regulation 14(7) of the Offshore Petroleum and Greenhouse Gas Storage (Environment) Regulations 2009.

Audits are Jadestone Energy's primary tool for:

- Determining whether management systems are suitable, available where required, implemented and effective in accomplishing the documented policies and objectives of the organisation;
- Verifying conformance with legal and contractual requirements;
- Obtaining and maintaining confidence in the capability of suppliers; and
- Contributing to the improvement of the Business Management System (BMS).
# JADESTONE

## 8.2.2 Management of Change

Jadestone Energy's Change Management Procedure (MoC) provides the means for identifying, tracking, responding, progressing and closing out any change requests or queries raised by any party involved in Jadestone Energy operations. In particular, the MoC procedure provides for Regulation 17 of the Offshore Petroleum Greenhouse Gas Storage (Environment) Regulations 2009, i.e. revision because of a change, or proposed change, of circumstances or operations. This includes consideration of new activities, changes to existing activities, or and new or increased environment impact and risk. The procedure provides for proper consideration of temporary or permanent changes to activities, including an impact and risk assessment, approved and communicated to all appropriate stakeholders together with providing a record of the change.

## 8.2.3 Management of Non-conformance

Non-conformances from audits, inspections, regular monitoring or response testing are communicated immediately to the OIM and tracked and monitored by the General Manager until closed.

The findings, opportunities for improvement and corrective actions from audits are formally documented in the inspection or audit report which is distributed to responsible roles and are entered into Jadestone Energy's online Hazard and Incident reporting program (Bassnet).

## 8.2.4 Roles, responsibilities, training and competency

As per Regulations 14(4) and 14(5), a clear chain of command setting out the roles and responsibilities of personnel involved in operation of the Stag Field, is provided in the EP as well as detail on what measures are in place to ensure personnel are aware of their role requirements and how Jadestone Energy evaluates their competency and training needs in these roles.

## 8.3 Incident Notification and Reporting

Incident notification and reporting to NOPSEMA and other regulators will be conducted as per Regulations 26, 26A, 26AA and 26B.

## 8.4 Annual Performance Review

The annual performance review process contributes directly to the annual performance reporting activity of the EP including the implementation strategy. The review of environmental performance includes an assessment of:

- Review of compliance with environmental performance outcomes and performance standards, and adequacy of measurement criteria;
- Function of environmental management controls relevant to reportable and/or recordable incidents;
- Monitoring data and trends;
- Results of audits and incident investigations;
- Inspection and checklist approaches; and
- Adequacy of monitoring, inspections and audits.

The Annual Review is also an opportunity to ensure new information is incorporated into the EP.

The results of the review and any identified improvements or recommendations will be incorporated into processes and procedures used to operate the Stag facility, or the EP, to facilitate continuous improvement in environmental performance.



#### 9. **REFERENCES**

AFMA (Australian Fisheries Management Authority) (2011). Annual Report 10/11. Australian Government, Canberra, Australia

Allen, G.R. (1997). *Marine Fishes of Tropical Australia and South-East Asia - A field guide for anglers and divers. Third Revised Edition*. Perth, Western Australia: Western Australian Museum

APASA (2012a). Quantitative Oil Spill Exposure Modelling – Stag Production Facilities. Report prepared for Apache Energy by Asia-Pacific Applied Sciences Associates (Doc no. J0135).

Bannister, J.L., C.M. Kemper and R.M. Warneke (1996). The Action Plan for Australian Cetaceans. [Online]. Canberra: Australian Nature Conservation Agency.

Bejder M, Johnston D.W, Smith J, Friedlaender A, Bejder L (2015) Embracing conservation success of recovering humpback whale populations: Evaluating the case for downlisting their conservation status in Australian. Marine Policy.

BHPB (2005). Pyrenees Development: Draft Environmental Impact Statement. BHP Billiton, Perth, Western Australia.

BHPB (2011). Proposed Outer Harbour Development, Port Hedland Public Environmental Review/Draft Environmental Impact Statement. BHP Billiton, Perth, Western Australia.

Blaber S.J.M., Young J.W. and M.C. Dunning (1985). Community structure and zoogeographic affinities of the coastal fishes of the Dampier region of north-western Australia. *Australian Journal of Marine and Freshwater Research* 36(2): 247–266.

BoM (2013). Cyclone Climatology. Bureau of Meteorology, Canberra, ACT.

Branch TA, Stafford KM, Palacios DM, Allison C, Bannister JL, Burton CLK, Cabrera E, Carlson CA, Galletti Vernazzani B, Gill PC, Hucke-Gaete R, Jenner KCS, Jenner MNM, Matsuoka K, Mikhalev YA, Miyashita T, Morrice MG, Nishiwaki S, Sturrock VJ, Tormosov D, Anderson RC, Baker AN, Best PB, Borsa P, Brownell Jr RL, Childerhouse S, Findlay KP, Gerrodette T, Ilangakoon AD, Joergensen M, Kahn B, Ljungblad DK, Maughan B, McCauley RD, McKay S, Norris TF and Rankin S (2007). Past and present distribution, densities and movements of blue whales Balaenoptera musculus in the Southern Hemisphere and northern Indian Ocean. Mammal Review 37:116–175.

Cailliet, G.M. (1996). An Evaluation of Methodologies to Study the Population Biology of White Sharks. In: Klimley, A.P. & D.G. Ainley, eds. Great White Sharks The biology of Carcharodon carcharias. Page(s) 415-416. United States of America: Academic Press Limited.

CALM (2004). Indicative Management Plan for the Proposed Montebello/Barrow Islands Marine conservation Reserves, 2004. Marine Conservation Branch, Department of Conservation and Land Management.

Chittleborough RG (1965). Dynamics of two populations of the humpback whale, *Megaptera novaeangliae* (Borowski). Australian Journal of Marine and Freshwater Research 16:33–128.

CITES (2004). Convention of International Trade in Endangered Species of Wild Fauna and Flora - Appendix II Listing of the White Shark (revision 1).

CMAR (2007). North-West Shelf Joint Environmental Management Study: Final Report. CSIRO Marine and Atmospheric Research, Hobart, Tasmania.

Colman JG (1997). A review of the biology and ecology of the Whale Shark. The Fisheries society of the British Isles. Journal of Fish Biology 51(6):1219–1234.

Commonwealth of Australia (2017), Recovery Plan for Marine Turtles in Australia,



Condie S., Andrewartha J., Mansbridge J. and Waring J. (2006). Modelling circulation and connectivity on Australia's North-West Shelf. North-West Shelf Joint Environmental Management Study: Technical Report No. 6. CSIRO Marine and Atmospheric Research, Hobart, Tasmania

CSIRO (2001). Analysis of monitoring data from the Stag Field (1997 – 1998). Report to Apache Energy.

Dames and Moore (1995). Geotechnical investigation. Stag Development, North-West Shelf, Western Australia. A report for Apache Energy Limited. 23 November 1995.

DEC (2007a) Management Plan for the Montebello/Barrow Islands Marine Conservation Reserves 2007–2017: Management Plan No. 55. Department of Environment and Conservation, Perth, Western Australia

DEH (2005). *Blue, Fin and Sei Whale Recovery Plan 2005 - 2010*. [Online]. Department of the Environment and Heritage. Canberra, Commonwealth of Australia.

DEWHA (2008a). The North-west Marine Bioregional Plan: Bioregional profile: A Description of the Ecosystems, Conservation Values and Uses of the North-West Marine Region. Department of the Environment Water, Heritage and the Arts, Canberra, ACT.

DEWHA (2008b). The South-West Marine Bioregional Plan: Bioregional Profile: A Description of the Ecosystems, Conservation Values and Uses of the South-West Marine Region. Department of the Environment Water, Heritage and the Arts, Canberra, ACT.

DEWHA (2009). DEWHA Fact Sheet – Three sharks listed as migratory species under the EPBC Act. Department of the Environment, Water, Heritage and the Arts, Canberra, Australia.

DSEWPaC (2012a). North-west Commonwealth Marine Reserves Network: Montebello Commonwealth Marine Reserve. Department of Sustainability, Environment, Water, Population and Communities, Canberra, ACT. Available at <a href="http://www.environment.gov.au/marinereserves/north-west/montebello/index.html">http://www.environment.gov.au/marinereserves/north-west/montebello/index.html</a>.

DSEWPaC (2012b). Marine bioregional plans Available at <u>http://www.environment.gov.au/coasts/</u> marineplans/about.html

DSEWPaC (2012c). Marine bioregional plan for the North-west Marine Region. Department of Sustainability, Environment, Water, Population and Communities, Canberra, ACT.

DSEWPaC (2012d). *Balaenoptera musculus* — Blue Whale. Department of Sustainability, Environment, Water, Population and Communities, Canberra, ACT. Available at <u>http://www.environment.gov.au/cgi-bin/sprat/public/publicspecies.pl?taxon\_id=36</u>.

DSEWPaC (2012e). *Megaptera novaeangliae* — Humpback Whale. Department of Sustainability, Environment, Water, Population and Communities, Canberra, ACT. Available at <u>http://www.environment.gov.au/cgi-bin/sprat/public/publicspecies.pl?taxon\_id=38</u>.

DSEWPaC (2012f). Species group report card – marine reptiles: Supporting the marine bioregional plan for the North-west Marine Region. Department of Sustainability, Environment, Water, Population and Communities, Canberra, ACT.

DSWEWPaC (2012g). Species group report card – bony fishes. Supporting the marine bioregional plan for the North-west Marine Region. Department of Sustainability, Environment, Water, Population and Communities, Canberra, ACT.

Environment Australia (2003). Recovery Plan for Marine Turtles in Australia. Prepared by the Marine Species Section, Approvals and Wildlife Division, Environment Australia, Canberra, ACT.

Fletcher WJ and Santoro K (eds) (2012). Status Reports of the Fisheries and Aquatic Resources of Western Australia 2011/12: The State of the Fisheries. Department of Fisheries, Perth, Western Australia.

Hedley, SL, Dunlop, RA & Bannister, JL (2011). *Evaluation of WA humpback surveys 1999, 2005, 2008: where to from here?*, project 2009/23, report to the Australian Marine Mammal Centre, Kingston, Tasmania.



Holloway P.E. and H.C. Nye (1985). Leeuwin current and wind distributions on the southern part of the Australian North-West Shelf between January 1982 and July 1983. *Australian Journal of Marine and Freshwater Research* 36(2): 123–137.

IRCE (2001) Environmental monitoring of Stag... Report to Apache Energy Limited, June 2003.

IUCN (2012). The IUCN Red List of Threatened Species: 2012.2. International Union for Conservation of Nature and Natural Resources.

Jenner KCS, Wilson S, Hunt Y and Jenner MN (2002). Evidence of blue whale feeding in the Perth Canyon, Western Australia. Unpublished Note.

King B. (1994). The application of OILMAP oil spill model for the North-West Shelf. A report to Apache Energy.

Kinhill (1997). East Spar First Post-Commissioning Survey Report. Prepared for Apache Energy Ltd by Kinhill Pty Ltd, Report EA-00-RI-9981/B, Perth, Western Australia, October 1997.

Kinhill (1998). East Spar Benthic Survey. Biological Monitoring Program. Prepared for Apache Energy Ltd by Kinhill Pty Ltd, Report EA-66-RI-006/B, Perth, Western Australia, October 1998.

Last PR and Stevens JD (2009). *Sharks and Rays of Australia*.2nd Edition. CSIRO Publishing Melbourne, Australia.550 pp.

McAuley, R. (2004). Western Australian Grey Nurse Shark Pop Up Archival Tag Project. Final Report to Department of Environment and Heritage. Page(s) 55.

McKinnon A.D., Meekan M.G., Carleton J.H., Furnas M.J., Duggan S. and Skiring W. (2003). Rapid changes in shelf water and pelagic communities on the southern Northwest Shelf, Australia, following a tropical cyclone. Continental Shelf Research 23: 93–111.

McLoughlin R.J. and Young P.C. (1985). Sedimentary provinces of the fishing grounds of the North-West Shelf of Australia: Grain-Size frequency analysis of surficial sediments. *Australian Journal of Marine and Freshwater Research* 36: 671–81.

Meekan MG, Bradshaw CJA, Press M, McLean C, Richards A, Quasnichka S and Taylor JG (2006). Population size and structure of whale sharks *Rhincodon typus* at Ningaloo Reef, Western Australia. *Marine Ecology - Progress Series*, vol. 319, pp. 275-285.

Morrice, M.G, P.C. Gill, J. Hughes & A.H. Levings (2004). Summary of aerial surveys conducted for the Santos Ltd EPP32 seismic survey, 2-13 December 2003. Report # WEG-SP 02/2004, Whale Ecology Group-Southern Ocean, Deakin University. Unpublished.

Neptune Geomatics (2011b). Stag-A Platform Debris Clearance Survey Report. Report to Apache Energy Ltd by Neptune Geomatics Pty Ltd, August 2011.

NSR (1995). Wandoo full field development. Public Environmental Report for Ampolex Ltd, NSR Environmental Consultants Pty Ltd. November 1995.

Native Title Tribunal (NTT) (2017).

Oceanica (2015). Stag Operations Produced Formation Water Monitoring Survey 2014. Prepared for Apache Energy Ltd by BMT Oceanica Pty Ltd. Revision 1, September 2015.

Parker, D.A.A. (1978). Observations of Whales on Australian National Antarctic Research Expeditions (ANARE) Voyages between Australia and Antarctica. *Australian Wildlife Research*. 5:25-36.

Peverell, S., N. Gribble & H. Larson (2004). 'Sawfish'. In: National Oceans Office, Description of Key Species Groups in the Northern Planning Area. [Online]. Hobart, Tasmania: Commonwealth of Australia.



Pogonoski, J.J., D.A. Pollard & J.R. Paxton (2002). Conservation Overview and Action Plan for Australian Threatened and Potentially Threatened Marine and Estuarine Fishes. [Online]. Canberra, ACT: Environment Australia.

Pollard, D.A., M.P. Lincoln-Smith & A.K. Smith (1996). The biology and conservation of the grey nurse shark (*Carcharias taurus* Rafinesque 1810) in New South Wales, Australia. Aquatic Conservation: Marine and Freshwater Ecosystems.

Racal (1994). Analogue site survey report for Apache Energy Ltd. Stag-8. Report A2267G. December 1994.

Rainer S.F. (1991). High species diversity in demersal polychaetes of the North-West Shelf of Australia. *Ophelia. Supplement 5. Systematics, Biology and Morphology of World Polychaeta:* 497 – 505.

RPS (2010). Technical Appendix – Marine Mammals. Wheatstone Project EIS/ERMP. Unpublished report for Chevron Australia Pty Ltd, March 2010.

SSE (1991). Normal and extreme environmental design criteria. Campbell and Sinbad locations, and Varanus Island to Mainland Pipeline. Volume 1. Prepared for Hadson Energy Limited by Steedman Science and Engineering. Report E486. March 1991.

SSE (1993). Review of oceanography of North-West Shelf and Timor Sea regions pertaining to the environmental impact of the offshore oil and gas industry. Vol I prepared for Woodside Offshore Petroleum and the APPEA Review Project of Environmental Consequences of Development Related to the Petroleum Production in the Marine Environment: Review of Scientific Research, Report E1379, October 1993.

Stead, D.G. (1963). Sharks and rays of Australian seas. Sydney, NSW: Angus and Robertson

Stevens, J.D., R.D. Pillans & J. Salini (2005). *Conservation Assessment of* Glyphis *sp. A (Speartooth Shark),* Glyphis *sp. C (Northern River Shark),* Pristis microdon (*Freshwater Sawfish*) and Pristis zijsron (*Green Sawfish*). [Online]. Hobart, Tasmania: CSIRO Marine Research.

Thorburn, D.C., S. Peverell, S. Stevens, J.D. Last & A.J. Rowland (2004). Status of Freshwater and Estuarine Elasmobranches in Northern Australia. *Report to Natural Heritage Trust*. [Online]. Canberra, ACT: Natural Heritage Trust.

Ward T.J. and Rainer S.F. (1988). Decapod crustaceans of the North-West Shelf, a tropical continental shelf of North-western Australia. *Australian Journal of Marine and Freshwater Research* 39: 751–765.

Wilson, S Polovina, J Stewart, B and Meekan, M (2006). 'Movements of whale sharks (*Rhincodon typus*) tagged at Ningaloo Reef', Marine Biology, vol. 147, pp. 1157-1166.

WNI (1995). Preliminary report on ambient and non-cyclonic design criteria for the Stag location. WNI Science & Engineering. December 1995.

WNI (1996). Metocean Conditions on the North-West Shelf of Australia, Cape Lambert to the North-West Cape Relating to Jack-up Drilling Operation (DR-50-ED-001). July 1996.

Woinarski, J., Burbidge, A. and Harrison, P. (2014). The Action Plan for Australian Mammals 2012. CSIRO Publishing.

Woodside Offshore Petroleum Pty Ltd, (1988). *Physical, Chemical and Biological Characteristics of the Goodwyn Field.* Woodside Offshore Petroleum Pty Ltd, 1988. A review of the petroleum geology and hydrocarbon potential of the Barrow-Dampier Subbasin and environs. Petroleum in Australia, The First Century. *APEA Journal*: 213-31.

Woodside (1990). Preliminary environmental impact assessment Report. Cossack Field Development. Woodside Offshore Petroleum Pty Ltd. September 1990.

Woodside (2005). The Vincent Development. Draft EIS. EPBC Referral 2005/2110. Woodside Energy. Perth.