

Appendices

Appendix 1:

Commonwealth, State & Territory Legislation

COMMONWEALTH LEGISLATION

Commonwealth Legislation/ Regulation	Scope	Related International Conventions	Administering Authority
Environment Protection and Biodiversity Conservation Act 1999 (EPBC Act) (& Regulations 2000)	Protects matters of national environmental significance (MNES), provides for Commonwealth environmental assessment and approval processes and provides an integrated system for biodiversity conservation and management of protected areas. M NES are: 1. World heritage properties; 2. National heritage places; 3. Wetlands of international importance (Ramsar wetlands); 4. Nationally threatened species and ecological communities; 5. Migratory species; 6. Commonwealth marine environment; 7. The Great Barrier Reef Marine Park; 8. Nuclear actions (including uranium mining); and 9. A water resource, in relation to coal seam gas development and large coal mining development. Relevance to this activity: This EP includes a description and assessment of MNES and migratory species (Item 4 and Item 5 in this list) including the Commonwealth marine environment (Item 6), that may be impacted by the activity.	 Republic of Korea Migratory Birds Agreement 2006 (ROKAMBA). Convention on Biological Diversity and Agenda 21 1992. Agreement between the Government and Australia and the Government of the People's Republic of China for the Protection of Migratory Birds and their Environment 1986 (CAMBA). Convention on the Conservation of Migratory Species of Wild Animals (Bonn Convention) 1979. Agreement between the Government and Australia and the Government of Japan for the Protection of Migratory Birds and Birds in Danger of Extinction and their Environment 1974 (JAMBA). Convention on International Trade in Endangered Species of Wild Fauna and Flora 1973 (CITES). Convention on Wetlands of International Importance especially as Waterfowl Habitat 1971 (RAMSAR). International Convention for the Regulation of Whaling 1946. 	DAWE (National Offshore Petroleum Safety and Environmental Management Authority (NOPSEMA) in the case of this activity)

Commonwealth Legislation/ Regulation	Scope	Related International Conventions	Administering Authority
Offshore Petroleum Greenhouse Gas Storage Act (OPGGSA) 2006 and OPGGS (Environment) Regulations 2009	The Act addresses all licensing and HSE issues for offshore GHG activities extending beyond the 3 nm limit. The Regulations (Part 2) specify that an EP must be prepared for any petroleum activity and that activities are undertaken in an ecologically sustainable manner. Relevance to this activity: The submission and acceptance of this EP satisfies the key requirements of this legislation.	Not applicable.	NOPSEMA
Environment Protection (Sea Dumping) Act 1981 (& Regulations 1983)	Aims to prevent the deliberate disposal of wastes (loading, dumping, and incineration) at sea from vessels, aircraft, and platforms. Relevance to this activity: There will be no dumping at sea within the meaning of the legislation that would require a sea dumping permit to be obtained.	 Protocol on the Prevention of Marine Pollution by Dumping of Waste and Other Matter 1996 [London Protocol] Convention on the Prevention of Marine Pollution by Dumping of Waste and Other Matter 1972 [London Convention] 	DAWE
Australian Maritime Safety Authority Act 1990	Facilitates international cooperation and mutual assistance in preparing and responding to a major oil spill incidents, and encourages countries to develop and maintain an adequate capability to deal with oil pollution emergencies. Requirements are effected through the Australian Maritime Safety Authority (AMSA). AMSA is the lead agency for responding to oil spills in the Commonwealth marine environment and is responsible for implementing the Australian National Plan for Maritime Environmental Emergencies (NatPlan). Relevance to this activity: In the event of a Level 2 or 3 hydrocarbon spill to sea from a vessel in Commonwealth waters, AMSA is the designated Combat Agency and implements the NatPlan. In the event of a spill from a well blowout, AMSA will assist the Drilling Incident Management Team (DIMT)	 Protocol on Preparedness, Response and Cooperation to Pollution Incidents by Hazardous and Noxious Substances 2000 International Convention on Oil Pollution Preparedness, Response and Cooperation 1990 (OPRC). 	AMSA

Commonwealth Legislation/ Regulation	Scope	Related International Conventions	Administering Authority
Underwater Cultural Heritage Act 2018	Protects the heritage values of shipwrecks, sunken aircraft and relics (older than 75 years) in Australian Territorial waters below the low water mark to the outer edge of the continental shelf (excluding the State's internal waterways. It is an offence to interfere with a shipwreck covered by this Act. This Act replaced the <i>Historic Shipwrecks Act</i> 1976 and came into effect on 1 July 2019. Relevance to this activity: No historic shipwrecks have been identified within the operations area through desktop research. In the event of discovery of, and damage to, previously unrecorded wrecks, this legislation may be triggered.	 Convention on Protection of the Underwater Cultural Heritage 2001. Agreement between the Netherlands and Australia concerning old Dutch Shipwrecks 1972. 	DAWE
Ozone Protection and Synthetic Greenhouse Gas Management Act 1989	Regulates the manufacture, importation and use of ozone depleting substances. Relevance to this activity: The MODU and support vessels will have a register of ozone-depleting substances (ODS).	 United Nations Framework Convention on Climate Change 1992. Montreal Protocol on Substances that Deplete the Ozone Layer 1987. 	DAWE
Navigation Act 2012 (& Regulations 2013)	This Act regulates ship-related activities in Commonwealth waters and invokes certain requirements of the International Convention for the Prevention of Pollution from Ships (MARPOL 73/78) relating to equipment and construction of ships. Several Marine Orders (MO) are enacted under this Act relating to offshore petroleum activities, including: • MO Part 21: Safety of navigation and emergency procedures • MO Part 30: Prevention of collisions • MO Part 50: Special purpose ships • MO Part 59: Offshore industry vessel operations • MO Part 70: Seafarer certification. Relevance to this activity: Support vessels will adhere to the relevant MOs while operating within Commonwealth waters.	 International Convention on Standards of Training, Certification and Watchkeeping for Seafarers (STCW) as amended, 1995. United Nations Convention on the Law of the Sea 1982 (UNCLOS). International Convention for the Prevention of Pollution from Ships 1973, as modified by the Protocol of 1978 (MARPOL). International Convention for the Safety of Life at Sea 1974 (SOLAS). Convention on the International Regulations for Preventing Collisions at Sea 1972 (COLREG). 	AMSA

Commonwealth Legislation/ Regulation	Scope	Related International Conventions	Administering Authority
Protection of the Sea (Prevention of Pollution from Ships) Act 1983 Protection of the Sea (Prevention of Pollution from Ships) (Orders) Regulations 1994	Regulates ship-related operational activities and invokes certain requirements of the MARPOL Convention relating to discharge of noxious liquid substances, sewage, garbage, air pollution etc. Requires that ships >400 gross tonnes to have pollution emergency plans. Several MO are enacted under this Act relating to offshore petroleum activities, including: • MO Part 91: Marine Pollution Prevention — Oil • MO Part 93: Marine Pollution Prevention — Noxious Liquid Substances • MO Part 94: Marine Pollution Prevention — Harmful Substances in Packaged Forms • MO Part 95: Marine Pollution Prevention — Garbage • MO Part 96: Marine Pollution Prevention — Sewage • MO Part 97: Marine Pollution Prevention — Air Pollution • MO Part 98: Marine Pollution Prevention — Anti-fouling Systems. Relevance to this activity: The MODU and support vessels > 400 gross tonnes will adhere to the relevant MOs by having a SMPEP, Oil Record Book and Garbage Management Plan in place and implemented, along with international pollution prevention certificates verifying compliance with oil, air pollution and sewage measures.	Various parts of MARPOL.	AMSA

Commonwealth Legislation/ Regulation	Scope	Related International Conventions	Administering Authority
Protection of the Sea (Civil Liability for Bunker Oil Pollution Damage) Act 2008	Sets up a compensation scheme for those who suffer damage caused by spills of oil that is carried as fuel in ships' bunkers. There is an obligation on ships > 1,000 gross tonnes to carry insurance certificates when leaving/entering Australian ports, or leaving/entering an offshore facility within Australian coastal waters. Relevance to this activity: Vessels will hold the required insurance certificates.	International Convention on Civil Liability for Bunker Oil Pollution Damage 2001.	AMSA
Protection of the Sea (Harmful Antifouling Systems) Act 2006	Creates an offence for a person to engage in negligent conduct that results in a harmful anti-fouling compound being applied to a ship. Also provides that Australian ships must hold 'antifouling certificates', provided they meet certain criteria. Relevance to this activity: The MODU and support vessels will hold the required valid anti-fouling certificates.	International Convention on the Control of Harmful Anti-fouling Systems on Ships 2001.	AMSA
Protection of the Sea (Shipping Levy) Act 1981	Provides that where, at any time during a quarter when a ship with tonnage length of no less than 24 m was in an Australia port, there was on board the ship a quantity of oil in bulk weighing more than 10 tonnes, a levy is imposed in respect of the ship for the quarter. Relevance to this activity: The support vessels will adhere to the shipping levy, as required.	Not applicable.	AMSA
Maritime Legislation Amendment (Prevention of Air Pollution from Ships) Act 2007	This Act implements the requirements of MARPOL 73/78 Annex VI for shipping in Commonwealth waters as per: • MO Part 97: Marine Pollution Prevention – Air Pollution. Relevance to this activity: The MODU and support vessels will use low sulfur diesel fuel.	Various parts of MARPOL.	Department of Infrastructure, Transport, Regional Development and Communications

Commonwealth Legislation/ Regulation	Scope	Related International Conventions	Administering Authority
National Greenhouse and Energy Reporting Act 2007 (NGER) (& Regulations 2008)	Establishes the legislative framework for the NGER Scheme, which is a national framework for reporting GHG emissions, GHG projects and energy consumption and production by corporations in Australia. Relevance to this activity: Under the NGER Act, a controlling corporation assesses its reporting obligations by reference to the facilities that are under its 'operational control.' As the MODU and support vessel contractors do not come under EOG's operational control, they will be required to collect and submit their own emissions data under the NGER Act (if triggered).	United National Framework Convention on Climate Change (UNFCCC), entered into force in 1994. Goals under the framework are updated during the annual convention.	Clean Energy Regulator

Commonwealth Legislation/ Regulation	Scope	Related International Conventions	Administering Authority
Biosecurity Act 2015 (& Regulations 2016)	This Act provides the Commonwealth with powers to take measures of quarantine, and implement related programs as are necessary, to prevent the introduction of any plant, animal, organism or matter that could contain anything that could threaten Australia's native flora and fauna or natural environment. The Commonwealth's powers include powers of entry, seizure, detention and disposal. Offshore petroleum installations outside of 12 nm are located outside of Australian territory for the purposes of the Act. While these installations are not subject to biosecurity control, aircraft and vessels (not subject to biosecurity control) that leave Australian territory and are exposed to the installations are subject to biosecurity control when returning to Australian territory. When a vessel or aircraft leaves Australian territory and interacts with an installation or petroleum industry vessel it becomes an 'exposed conveyance' and is subject to biosecurity control when it returns to Australian territory unless exceptions can be met. The person in charge of an exposed conveyance carries the responsibility for pre-arrival reporting under the Act and must arrive at a first point of entry. This Act includes mandatory controls in the use of seawater as ballast in ships and the declaration of sea vessels voyaging into and out of Commonwealth waters. The regulations stipulate that all information regarding the voyage of the vessel and the ballast water is declared correctly to the quarantine officers. Relevance to this activity: The MODU and support vessels sourced from foreign ports will adhere to the DAWE guidelines regarding quarantine clearance to enter Australian waters.	 International Convention for the Control and Management of Ships Ballast Water & Sediments 2004. World Trade Organization Agreement on the Application of Sanitary and Phytosanitary Measures (SPS agreement) 1995. World Organisation for Animal Health and the International Plant Protection Convention 1952. 	DAWE

Commonwealth Legislation/ Regulation	Scope	Related International Conventions	Administering Authority
Marine Safety (Domestic Commercial Vessel) National Law Act 2012 (& Regulations 2013)	This Act provides for a national system for Domestic Commercial Vessels (DCV) between states and territories to ensure their safe operation. This system provides for MO and National Standards to be adopted for DCVs of different classes. Current MO include: • MO 501 (Administration – National Law) 2013 • MO 502 (Vessel Identifiers – National Law) 2013 • MO 503 (Certificates of Survey – National Law) 2013 • MO 504 (Certificates of Operation and Operational Requirements – National Law) 2013 • MO 505 (Certificates of Competency – National Law) 2013 • MO 507 (Load Line Certificates – National Law) 2013. This law does not over-ride state legislation with respect to marine environmental management, dangerous goods management, speed limits, navigation aids, rules for prevention of collisions, monitoring of marine communications systems, workplace health and safety or emergency management and response. Relevance to this activity: The MODU and support vessels will adhere to the relevant MOs while operating within Commonwealth waters.	Not applicable.	AMSA
Native Title Act 1993	Allows for recognition of native title through a claims and mediation process and also sets up regimes for obtaining interests in lands or waters where native title may exist. Relevance to this activity: Native Title Determination area does not cover the operational area, and therefore there is no relevance to this activity.	Not applicable.	National Native Title Tribunal (NNTT)

Commonwealth Legislation/ Regulation	Scope	Related International Conventions	Administering Authority
Fisheries Management Act 1991 (& Regulations 2009)	This Act aims to implement efficient and cost-effective fisheries management on behalf of the Commonwealth, ensure that the exploitation of fisheries resources and the carrying on of any related activities are conducted in a manner consistent with the principles of Ecologically Sustainable Development (ESD), maximise the net economic returns to the Australian community from the management of Australian fisheries, ensure accountability to the fishing industry and to the Australian community in in the Australian Fisheries Management Authority's (AFMA's) management of fisheries resources, and achieve government targets in relation to the recovery of the costs of AFMA. Relevance to this activity: Provides the regulatory and other mechanisms to support any necessary fisheries management decisions in the event of a hydrocarbon spill in Commonwealth waters.	Not applicable.	AFMA
Aboriginal and Torres Strait Islander Heritage Protection Act 1984	This Act provides for the preservation and protection from injury or desecration areas and objects that are of significance to Aboriginal people, under which the Minister may make a declaration to protect such areas and objects. Under the Act, discovery of Aboriginal remains must be reported to the Environment Minister. Relevance to this activity: No known sites of Aboriginal heritage significance occur within the operational area. May be relevant in the event of a hydrocarbon spill requiring shoreline access for clean-up purposes.	Not applicable.	DAWE

WESTERN AUSTRALIAN LEGISLATION

WA Legislation/ Regulation	Scope	Relevance to activity	Administering Authority
Conservation and Land Management Act 1984	This Act makes provision for the use, protection and management of certain public lands and waters and the flora and fauna. It establishes authorities responsible for such protection. This Act covers the management of Nationally Important Wetlands that are present along the coast of the EMBA.	This Act would be triggered in the event of a hydrocarbon spill that threatens coastal marine parks, or that access to respond to a hydrocarbon spill is required through such parks.	Conservation and Parks Commission
Contaminated Sites Act 2003 (& Regulations 2006)	This Act provides for the identification, recording, management and remediation of contaminated sites. Under the Act, a 'site' is an area of land or water in WA, including surface water, groundwater and offshore areas out to 3 nm. A site is 'contaminated' if it has a substance in it at above background concentrations, which presents or has the potential to present a risk of harm to human health or the environment.	This Act would be triggered in the event that a hydrocarbon spill contaminates shorelines and requires remediation.	Department of Water and Environmental Regulation (DWER)
Environmental Protection Act 1986	This is the principal Act relating to environmental protection in WA. It establishes the EPA and gives the EPA overall responsibility for the prevention, control and abatement of environmental pollution and for the conservation, preservation, protection, enhancement and management of the environment. Part 5 of the Act states that a person who causes pollution or environmental harms or allows pollution or environmental harm to be caused commits an offence.	Hydrocarbons are listed in Schedule 1 of the Act as a Listed Waste. The Act would be triggered in the event of a hydrocarbon spill that reaches the coast, particularly with regard to waste treatment, transport and disposal.	Office of the EPA
Environmental Protection (Controlled Waste) Regulations 2004	These regulations detail the appropriate management and handling of controlled wastes in respect to the environment. Schedule 1 of the regulations lists waste oil and water, or hydrocarbons and water, mixtures or emulsions as a controlled waste.	These regulations may be triggered in the event that a hydrocarbon spill enters state waters and reaches shorelines, requiring collection and onshore handling, transport and disposal.	DWER

WA Legislation/ Regulation	Scope	Relevance to activity	Administering Authority
Environmental Protection (Unauthorised Discharges) Regulations 2004	These regulations make it an offence to cause pollution through unauthorised discharges, particularly with regard to dark smoke (anything darker than shade 1 on the Australian Miniature Smoke Chart, AS 3543, 1989). It may be a defence to cause dark smoke to prevent irreversible damage to a significant part of the environment. Schedule 1 of the regulations lists hydrocarbon as a material that must not be	This Act would be triggered in the event that a hydrocarbon spill enters state waters and/or in-situ burning is a response consideration.	DWER
Emergency Management Act 2005	discharged to the environment. This Act provides for prompt and coordinated organisation of emergency management in the State. Hazards captured under the Act include events that result in destruction of or damage to the environment. It establishes the State Emergency Management Committee (SEMC), which is the key plan in responding to emergencies of state significance.	This Act would be triggered in the event that a hydrocarbon spill threatens state waters and shorelines. The SEMC would implement the State Emergency Management Plan on behalf of the state.	SEMC
Aquatic Management Resources Act 2016 (ARMA)	This Act provides for the ecologically sustainable development and management of the State's aquatic resources including management of aquatic biosecurity.	This Act would be triggered in the event that a hydrocarbon spill enters state waters and has the potential to impact commercial fishing activities (e.g., closures).	Department of Primary Industry and Regional Development (DPIRD)
Harbours and Jetties Act 1928	This Act relates to the liability of owners of ships for damage to harbours and jetties, and works connected therewith.	This Act may be triggered in the event that a support vessel used for the project causes loss or damage to a harbor or jetty.	Department of Transport (DoT)
Pollution of Waters by Oil and Noxious Substances Act 1987 (& Regulations 1993)	This Act provides for the protection of the sea and certain waters from pollution by oil and other noxious substances discharged from ships (as defined in the WA Marine Act, see below). This Act prohibits the discharge of oil or noxious substances into State waters and provides for the removal of oil or any mixture containing oil from affected waters.	This Act may be triggered in the event that a hydrocarbon spill enters state waters.	EPA & DoT
Western Australian Marine Act 1982 (& (Infringements) Regulations 1985)	This Act regulates navigation and shipping in WA waters.	Activity vessels traversing WA state waters (e.g., in the event of hydrocarbon spill) must abide by the requirements of the Act with regard to marine safety requirements.	DoT

WA Legislation/ Regulation	Scope	Relevance to activity	Administering Authority
Biodiversity Conservation Act 2016 (& Regulations 2018)	This Act provides for the conservation and protection of wildlife. Licences to take (i.e., for fauna, to kill, capture, disturb, hunt and for flora to gather, pluck, dig up, destroy, etc) protected flora and fauna on Crown land (e.g., coastal parks) are required under this act. The regulations provide for the issuing of licences to take, keep, import and export flora and fauna, and for the caring of sick or injured fauna.	This Act would be triggered in the event that native wildlife rescue and treatment is required in the event of a hydrocarbon spill, or that native habitat on the coast may be damaged in the process of responding to coastal stranding of hydrocarbons.	Department of Biodiversity, Conservation and Attractions (DBCA)
Animal Welfare Act 2002 (& Animal Welfare (General) Regulations 2003)	This Act is established to provide for the welfare, safety and health of animals, to regulate the use of animals for scientific purposes and for related purposes. The Act is focused on prohibiting cruelty to, and other inhumane or improper treatment of, animals.	This Act would be triggered in the event that wildlife rescue and treatment is required in the event of a hydrocarbon spill.	DPIRD

NORTHERN TERRITORY LEGISLATION

NT Legislation/ Regulation	Scope	Relevance to activity	Administering Authority
Environment Protection Act 2019 (& Regulations 2020)	This Act provides the requirement for operators in the Northern Territory to hold an 'environmental approval' for proposed actions that will have a significant impact on the environment or require referral under a 'referral trigger'.	The Act would be triggered in the event of a hydrocarbon spill that reaches the shoreline, particularly with regard to pollution and waste containment, avoidance and abatement.	NT EPA
Waste Management and Pollution Control Act 1998 (& (Administration) Regulations 1998)	Legislation protecting the environment through the encouragement of effective waste management, pollution prevention and control practices (relevant for waste disposal and transfer).	This Act and its regulations may be triggered in the event that a hydrocarbon spill enters state waters.	NT EPA
Dangerous Goods Act 1998 (& Regulations 1985)	This Act provides for the safe storage, handling and transport of certain Dangerous Goods.	This Act and its regulations may be triggered in the event that a hydrocarbon spill enters state waters, with regard to incident reporting requirements.	NT Worksafe
Marine Pollution Act 1999 (& Regulations 2003)	This Act provides protection of the marine and coastal environment by minimising intentional and negligent discharges of ship sourced pollutants to coastal waters. It also enacts Annexures 1, 2, 3 and 5 of MARPOL.	This Act and its regulations may be triggered in the event that a hydrocarbon spill enters state waters.	NT Department of Environment, Parks and Water Security (DEPWS)

Appendix 2: Project Information Flyers

Beehive-1 Exploration Well

Information Flyer #1 17 September 2021

EOG Resources Inc (EOG) is planning to drill the Beehive-1 exploration well ('the project') in Exploration Permit WA-488-P in the Joseph Bonaparte Gulf in Western Australia (WA) (Figure 1, over page).

Why We're Consulting You

EOG has identified you, your group, organisation or company as a 'relevant person', defined under the Offshore Petroleum and Greenhouse Gas (Environment) Regulations 2009 as someone whose functions (power, duty, authority or responsibility), activities (things you do or have done) or interests (your rights, advantages, duties and liabilities, or concerns) may be affected by the project. Relevant persons typically include Commonwealth, State and Territory government agencies, commercial and recreational fisheries, asset owners and environment groups.

This information flyer aims to introduce you to EOG and provide information about the project and invites you to submit questions or concerns about the project. This process will assist to inform the preparation of the project's Environment Plans (EPs), which are currently in preparation for regulatory submission.

Who is EOG?

EOG is one of the largest independent crude oil and natural gas exploration and production companies in the United States of America (USA).

EOG is in the process of acquiring the WA-488-P exploration permit from Finniss Offshore Exploration Pty Ltd, which is expected to complete in September or October 2021. EOG has operated offshore since 1992, with a history of nearly 30 years in Trinidad & Tobago, the UK North Sea and the USA Gulf of Mexico.

In the past 10 years, EOG has drilled nearly 40

offshore wells, with an excellent safety and environment record.

The Project

EOG aims to explore a known hydrocarbon prospect in WA-488-P located in the Bonaparte Basin. The project is divided into two phases; geophysical and geotechnical (G&G) investigations, followed by drilling.

This information flyer is focused on the first phase of work, the G&G investigations. Additional information flyers will be issued as the project progresses.

Geophysical and Geotechnical Investigations

The G&G investigations are planned to commence any time between the start of February and end of June 2022 (contingent on the receipt of EP acceptance, vessel and equipment availability). They will be undertaken within a 440 km² envelope, which is located 163 km from the nearest WA shoreline and 73 km from the nearest Northern Territory (NT) shoreline. Water depths in the project area range from 40 m to 50 m.

The G&G investigations (Figure 2) collect seabed and shallow geological information to inform the safe location of a jack-up drilling rig. The G&G investigations are divided into two phases, as outlined here.

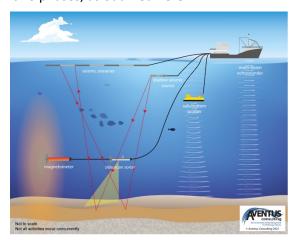


Figure 2. Geophysical investigations

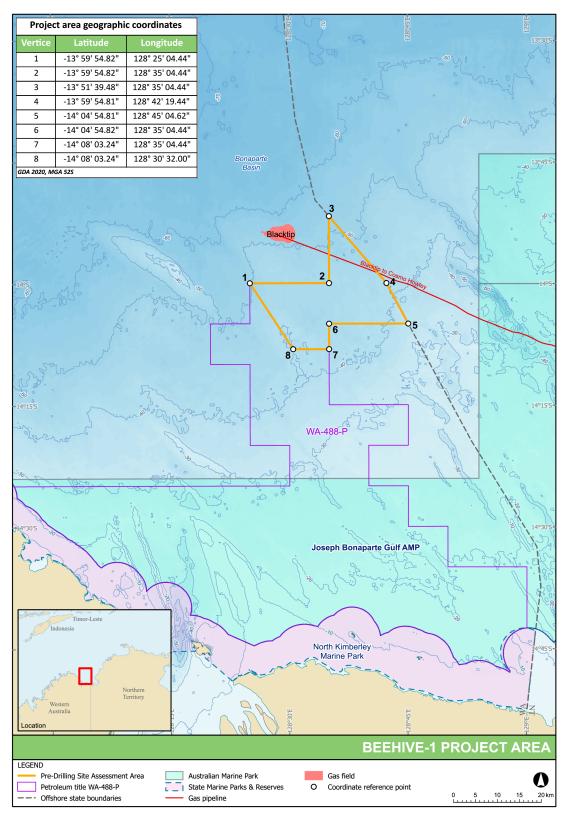


Figure 1. Beehive-1 project area

Information Flyer #1 - 2 -

Geophysical investigations involve the following suite of tests:

- Assess water depths (bathymetry) using a multi-beam echo sounder (MBES).
- Detect seabed hazards such as pipelines, shipwrecks, reefs and anchors – using a side scan sonar (SSS).
- Map the structure and thickness of uppermost seabed sediments (shallow geology) – using a sub-bottom profiler (SBP).
- Detect metallic objects on or below the seabed, such as cables, anchors, chains, buried pipelines – using a magnetometer.
- Map the near-surface geological hazards, such as shallow gas pockets – using a mini-airgun or sparker system.

The geophysical activities are likely to be conducted using a small, locally-based vessel (as depicted in Figure 2) and is likely to take up to two weeks to complete.

Geotechnical investigations acquire physical measurements and samples of the local shallow geology at and around the potential drill location, using the following techniques:

- Geological analysis of unconsolidated seabed sediments – using grab sampling.
- Geological analysis of formations below the seabed – using coring.
- Determine seabed strength using piezo cone penetrometer testing (PCPT) and borehole sampling.

The geotechnical investigations are undertaken using a specialised medium-sized vessel, as depicted in Figure 3, and is likely to take up to two weeks to complete. This may be the same vessel as that used to undertake the geophysical investigations.

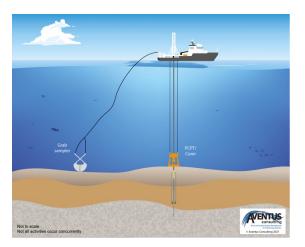


Figure 3. Geotechnical investigations

Drilling

Planning for the drilling campaign is underway. The Beehive-1 well is targeting the Sunbird Formation and anticipates the presence of a light oil or gas condensate.

A jack-up drill rig will drill the well vertically to a depth of about 5,000 m using a water-based mud system, which will take 40-50 days. In the event that hydrocarbons are discovered, well testing (that involves flaring) may take place.

It is anticipated that drilling may commence as early as Q3 2022 (contingent on the receipt of EP acceptance, vessel and equipment availability), but ideally no later than Q2 2023. Further details about the drilling campaign will be provided in future information flyers as planning progresses.

Environment Plans

Preparation of a G&G Investigations EP and a Drilling EP are underway. These will be submitted to the National Offshore Petroleum Safety and Environmental Management Authority (NOPSEMA) for assessment.

The full EPs will be made available on NOPSEMA's website for public exhibition prior to formal assessment by NOPSEMA.

An EP is a comprehensive document that describes the project, outlines stakeholder feedback, details the existing marine and socio-economic environment, describes and assesses impacts and risks and outlines the

control measures to avoid, minimise and mitigate environmental impacts and risks to be acceptable and ALARP (As Low As Reasonably Practicable).

The project will be subject to industry best practice standards and undertaken in accordance with all relevant environmental and safety legislation and regulations.

Features of the Project Area

Features in the project area include:

- Dominated by the Indonesian Throughflow current and strong tides.
- A seabed dominated by flat featureless plains comprising sand and gravel, with localised reefs and outcrops supporting sponge gardens. The G&G investigations will provide more detail about the type of seabed in the project area. The plains contain diverse infaunal communities (e.g., crustaceans and polychaete worms).
- Seasonal presence or likely presence of threatened migratory species including turtles, sharks, sawfish, whales, dolphins and seabirds.
- Low-intensity commercial fishing by the Commonwealth-managed Northern Prawn Fishery (the project area has a 0.06% overlap with the fishery).
- Some commercial fishing by the WAmanaged Northern Demersal Scalefish Managed Fishery (mostly goldband snapper and red emperor) and Mackeral Managed Fishery.
- An absence of NT-managed commercial fisheries.
- An absence of known shipwrecks.
- Low commercial shipping traffic.
- An overlap by the Department of Defence North Australian Exercise Area.

Distances from the project area to the following features are:

- The Carbonate bank and terrace system of the Sahul Shelf Key Ecological Feature (KEF) – 13 km.
- The Blacktip unmanned wellhead platform 13 km.
- Joseph Bonaparte Australian Marine Park (AMP) – 16 km.
- WA North Kimberley Marine Park –
 50 km.

A summary of key impacts and risks of the G&G investigations is presented in the following pages.

How to Provide Feedback

EOG encourages you to ask questions or provide feedback on the project using the following contact details:

Email: australia@eogresources.com

Phone: 0409 772 170

EOG will respond to feedback in a timely fashion.

Background project information (and this information flyer) is also available on the EOG website at:

https://www.eogresources.com/australia

Ongoing Consultation

Consultation with relevant persons will be ongoing throughout the project planning phase, with additional information flyers to be distributed at various milestones.

Information Flyer #1 - 4 -

Preliminary environmental impact and risk assessment for the Beehive-1 geophysical and geotechnical investigations (WA-488-P)

Hazard	Potential impacts & risks	Avoidance, management and mitigation measures		
Planned events	Planned events			
Generation of underwater sound from G&G investigations and vessels	Temporary disruption to migration, feeding or breeding patterns for sound-sensitive fauna, such as cetaceans (whales and dolphins).	 In accordance with the EPBC Act Policy Statement 3.1, a 500-m shutdown zone will be maintained during operation of the geophysical equipment to minimise impacts on cetaceans. Vessel engines and thrusters will be maintained in accordance with planned maintenance system to ensure they are operating efficiently. 		
	Damage to the Blacktip gas pipeline from sound pulses.	Shallow gas investigations, using a mini-airgun or sparker system, will not be undertaken over the pipeline.		
Seabed disturbance from geotechnical activities	Temporary and localised seabed turbidity. Smothering of seabed habitat by disturbed sediments.	The vessel will not anchor during geotechnical investigations (it will remain on location using dynamic positioning).		
		 Very low volumes of cuttings and drilling fluids will be discharged during borehole sampling. 		
		 Seabed grab sampling and coring activities are extremely localised. 		
		 Cored holes are very narrow and will collapse in on themselves and small surface 'craters' will quickly fill in with sediments and recolonise with benthic fauna. 		
		Large bulky items will be securely fastened or stored on the vessel deck to prevent loss to sea.		
		Any dropped objects will be recovered (where safe to do so).		
Routine vessel o	discharges and emissions			
Atmospheric emissions	Temporary reduction in air quality in the local air shed.	 Vessels >400 gross tonnes will have in place a current International Air Pollution Prevention (IAPP) certificate and Ship Energy Efficiency Management Plan (SEEMP). 		
		 Only marine-grade low sulphur diesel (no greater than 0.5% m/m) will be used. 		
		Waste incineration will not take place.		
		All fuel-burning equipment will be maintained in accordance with planned maintenance systems.		
Light glow	Attractant to fauna, temporary increase in predation rates on fauna attracted to lights.	Vessel lighting will be kept to the minimum required but in accordance with navigational standards and personnel safety requirements for night-time work.		

Information Flyer #1 -5-

Hazard	Potential impacts &	Avoidance, management and mitigation measures	
Hazaru	risks	Avoidance, management and mitigation measures	
Discharge of treated sewage and	Temporary and localised reduction in water quality.	 Sewage and grey water will be treated in a MARPOL Annex IV- compliant sewage treatment plant prior to discharge (or taken back to port for disposal). 	
grey water		 Vessels >400 gross tonnes will have in place a current International Sewage Pollution Prevention (ISPP) certificate. 	
		 In the event of a sewage treatment plant malfunction, untreated sewage will only be discharged when > 12 nm from shore or will be offloaded onshore for treatment. 	
Discharge of cooling water	Temporary and localised elevation in surface water temperature and salinity levels.	 Low impact biocides (chlorine) are used in optimised concentrations in the cooling system. 	
and reverse osmosis (brine)		 Engines and associated equipment that require cooling by water will be maintained in accordance with the planned maintenance system so that they are operating within accepted parameters. 	
		 Only low-toxicity chemicals (ONCS 'Gold'/'Silver' (CHARM) or 'D'/'E' (non-CHARM)-rated) chemicals are used in the cooling and brine water systems. 	
Discharge of putrescible	Temporary and localised increase in nutrient content of surface and nearsurface water quality.	 Putrescible waste will be macerated to <25 mm prior to discharge (or taken back to shore for disposal). 	
waste nutrient content of surface and near-surface water qualit Temporary increase in scavenging		 In the event of macerator malfunction, un-macerated putrescible waste will take place will be discharged when >12 nm of land or returned to shore. 	
	behaviour of pelagic	 Non-putrescible galley waste will be returned to shore for disposal. 	
Discharge of bilge water and deck	Temporary and localised reduction in water quality.	 Vessels >400 gross tonnes will have in place a MARPOL Annex I- compliant oily water separator set to limit oil-in-water content to <15 ppm prior to discharge. 	
drainage		 Vessels >400 gross tonnes will have a current International Oil Pollution Prevention (IOPP) certificate. 	
		 No whole residual bilge oil is discharged overboard (residual oil from the oily water separator is pumped to tanks and disposed of onshore). 	
		 Chemical storage areas will be bunded and drain to the bilge tank. 	
		 Portable bunds and/or drip trays are used to collect spills or leaks from equipment that is not contained within a permanently bunded area (non-process areas). 	
		 Deck cleaning detergents will be biodegradable. 	
		Spills to decks will be cleaned immediately using Shipboard Marine Pollution Emergency Plan (SMPEP) kits.	
Unplanned even	nts		
Accidental overboard release of	Marine pollution (litter and a temporary and	Vessels >100 gross tonnes or certified to carry more than 15 people will have in place and implement a vessel-specific Garbage Management Plan.	
hazardous	localised reduction in	Vessel crew and visitors will be inducted into the waste	

Information Flyer #1 - 6 -

Hazard	Potential impacts &	Avoidance management and mitigation measures
пагаги	risks	Avoidance, management and mitigation measures
and/or non- hazardous waste from the vessels	water quality). Injury and entanglement of individual animals (such as seabirds and turtles) and smothering or pollution of benthic habitats.	 management procedures. A waste manifest will be maintained. Only small volumes of chemicals will be kept on board and will be stored in secured drums in bunded areas away from open drains. Bunded areas will drain through a closed system, processed through the oily water separator. Safety Data Sheets (SDS) will be available in appropriate locations. SMPEP kits will be available on board for rapid deck clean-up response.
Introduction of invasive marine species from the vessel hulls and/or ballast water	Reduction in native marine species diversity and abundance. Displacement of native marine species. Socio-economic impacts on commercial fisheries. Reduction of conservation values of protected areas.	 Vessels will carry a low risk of invasive marine species introduction (as determined through a vessel contractor prequalification report). Vessels >400 gross tonnes will carry a current International Antifouling System (IAFS) Certificate and comply with Marine Order Part 98 (Anti-fouling Systems). The vessel/s will comply with the: Australian Ballast Water Management Requirements (DAWR, 2020); and National Biofouling Guidance for the Petroleum Production & Exploration Industry (AQIS, 2009). Towed/submersible equipment will be cleaned (e.g., fouling is removed) prior to initial use in the project area.
Damage to Blacktip subsea gas pipeline (e.g., dropped objects, anchoring)	Loss of pipeline integrity and lost field production.	 Vessel anchoring will not be permitted. EOG will consult with ENI Australia (pipeline operator) to understand the implications of operating over the pipeline. The geophysical investigations will be undertaken prior to geotechnical investigations in order to accurately locate the pipeline and put in place geotechnical exclusion buffer around it. EOG will ensure that the geotechnical vessel contractor has the coordinates of the Blacktip pipeline marked in its navigation system (confirmed during the geophysical survey) to ensure that no geotechnical work is conducted within a nominated buffer around the pipeline.
Vessel strike or entanglement with megafauna (e.g., whales, dolphins, turtles)	Injury or death of individual animals.	 The Australian Guidelines for Whale and Dolphin Watching (DEWHA, 2005) for sea-faring activities will be implemented, which includes caution and no-approach zones around whales and dolphins. Vessel strike causing injury to or death of a cetacean is reported via the online National Ship Strike Database within 72 hours of the incident. Entanglement of megafauna in towed equipment is reported to the NT Marine Wildwatch on 1800 453 941 (or WA's Wildcare on 08-9474 9055) as soon as possible. No attempts to disentangle megafauna will be made by project personnel unless instructed

Information Flyer #1 -7-

Hazard	Potential impacts & risks	Avoidance, management and mitigation measures
		 by Wildwatch or Wildcare. Vessel crew will complete an environmental induction covering the above-listed requirements.
Displacement of or interference with third-party vessels	Temporary loss of fishing grounds around the vessel safety zone. Trawling gear snagging on towed or submerged equipment.	 The project area is located in an area with low levels of shipping traffic and low fishing effort. A 'Notice to Mariners' will be issued. Standard maritime safety precautions will be in place, including: Radar and other anti-collision monitoring equipment to detect other vessels. Display of lights and day shapes. The ability to quickly move off location to avoid other vessels. Warnings issued (radio, flares, lights and horns) to avoid collisions. The Vessel Master will be qualified in accordance with AMSA Marine Orders Part 3 (Seagoing qualifications) (e.g., International Convention of Standards of Watchkeeping for Seafarers, STCW95, GMDSS Proficiency). The tail buoy on the shallow seismic streamer will have flashing lights and radar reflectors so it is visible to other marine users. The vessel master will sound the general alarm, manoeuvre the vessel to minimise the effects of the collision and implement all other measures as outlined in the vessel collision procedure. Vessel collisions will be reported to AMSA if that collision has or is likely to affect the safety, operation or seaworthiness of the vessel or involves serious injury to personnel.
Diesel release due to a vessel-to- vessel collision	Temporary and localised reduction in water quality. Tainting of commercial fisheries species. Injury and/or death of marine fauna and seabirds. Pathological effects on fish larvae and plankton.	 As per 'displacement of or interference with third-party vessels', plus: No refuelling will take place on location. Vessel crew will be trained in spill response techniques in accordance with the SMPEP and vessel training matrix. Diesel spill trajectory modelling indicates a very small area of ecological impact in the event of the loss of a whole tank of fuel. An Oil Pollution Emergency Plan (OPEP) will be developed based on the spill modelling results. Vessel-specific SMPEP and project-specific OPEP will be implemented in the event of a large spill. EOG will report the spill to regulatory authorities within 2 hours of becoming aware of the spill.

Information Flyer #1 -8-

Beehive-1 Exploration Well

Information Flyer #2 01 December 2021

Update on the Pre-Drill Seabed Assessment

EOG Resources, Inc. (EOG) advises that the Beehive Pre-Drill Seabed Assessment (PDSA) Environment Plan (EP) is now available on the National Offshore Petroleum Safety and Environmental Management Authority's (NOPSEMA) website for public exhibition and comment at https://info.nopsema.gov.au/home/open_for_comment

The following updates have occurred since Information Flyer #1 was issued:

- EOG Resources Australia Block WA-488 Pty Ltd, a subsidiary of EOG, is now the sole titleholder of the WA-488-P Exploration Permit;
- The activity window has been amended and is now April to August 2022 (exact timing dependent on the receipt of EP acceptance, weather, and vessel/equipment availability), rather than February to June 2022 as previously stated; and
- The PDSA activity area has been reduced by 100 km² from 440 km² to an area of 340 km².

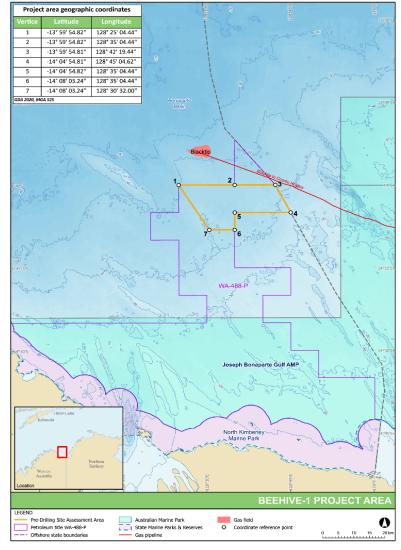


Figure 1. Updated Beehive PDSA location

Information Flyer #2 - 1 -

How to Provide Feedback

EOG encourages you to provide feedback on the activity using the following contact details:

Email: australia@eogresources.com

Phone: 0409 772 170

EOG will respond to feedback in a timely fashion.

Background project information (and this information flyer) is also available on the EOG website at:

https://www.eogresources.com/australia

Ongoing Consultation

Consultation with relevant persons will be ongoing throughout the project planning and during preparation of the Beehive-1 Drilling EP.

Beehive-1 Exploration Well

Information Flyer #3 28 February 2022

EOG Resources Australia Block WA-488 Pty Ltd, a subsidiary of EOG Resources, Inc. (together 'EOG') is the Titleholder of Exploration Permit WA-488-P in the Joseph Bonaparte Gulf in Western Australia (WA).

EOG is planning to drill the Beehive-1 exploration well ('the project') (Figure 1, over page). The Beehive-1 well is targeting the Sunbird Formation and anticipates the presence of a light crude oil.

Why We're Consulting You

EOG has identified you, your group, organisation or company as a 'relevant person', defined under the Offshore Petroleum and Greenhouse Gas (Environment) Regulations 2009 as someone whose functions (power, duty, authority or responsibility), activities (things you do or have done) or interests (your rights, advantages, duties and liabilities, or concerns) may be affected by the project. Relevant persons typically include Commonwealth, State and Territory government agencies, commercial and recreational fisheries, asset owners and environment groups.

This information flyer aims to introduce you to EOG and provide information about the project and invites you to submit questions or concerns about the project. This process will assist to inform the preparation of the project's drilling Environment Plan (EP), which is currently in preparation for regulatory submission and acceptance.

Who is EOG?

EOG is the one of the largest independent crude oil and natural gas exploration and production companies in the United States of America (USA). EOG acquired the WA-488-P exploration permit from Finniss Offshore Exploration Pty Ltd in November 2021 with the aim of exploring known hydrocarbon prospects in the Bonaparte Basin.

EOG has operated offshore since 1992, a history of 30 years with assets in Trinidad and Tobago, UK North Sea, and the US Gulf of Mexico. In the past 10 years, EOG has drilled nearly 40 offshore wells with an excellent safety and environmental record.

The Project

The Beehive-1 exploration well is situated within Commonwealth marine waters 83 kilometres (km) off the WA coastline and 300 km southwest of Darwin in a water depth of 40 m. Drilling of the Beehive-1 exploration well is the second phase of work following the geophysical and geotechnical (G&G) investigations that are planned to occur over 4-6 weeks between April and August 2022.

This information flyer is focused on the proposed drilling activities. Additional information flyers will be issued as the project progresses.

Drilling Activities

Drilling is planned to occur between Q4 2022 and Q3 2023 (contingent on the receipt of EP acceptance, including drill rig and equipment availability).

Drilling activities are estimated to take approximately 50 to 90 days. The duration of drilling may be subject to change based on geological conditions and potential for operational challenges (e.g., sea state). Operations will be conducted 24 hours per day, seven days per week.

Information Flyer #3 - 1 -

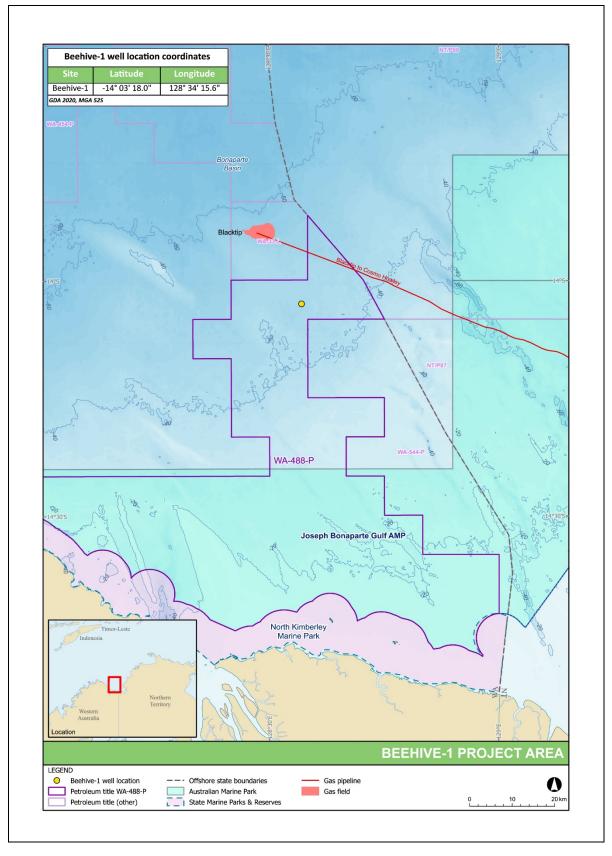


Figure 1. Beehive-1 Location map

Information Flyer #3 - 2 -

Approach and Equipment

EOG proposes to undertake the activity using a jack-up mobile offshore drilling unit (MODU) with a 500 m exclusion zone. There will also be auxiliary activities including the use of support vessels and helicopters.

EOG is currently evaluating the availability of drill rigs for this activity. Further information on the nominated drill rig will be made available as part of EOG's ongoing consultation.

The approach to and setup of the jack-up MODU on location is summarised in Figure 2, over page.

Drilling Program

The following phases describe the planned drilling activity:

- Move the MODU to location, position MODU, pre-load and jack-up to operational elevation.
- Drill conductor hole and run conductor pipe.
- Drill surface hole section.
- Run and cement surface casing.
- Install the surface wellhead and blowout preventor (BOP).
- Perform a pressure test.
- Drill intermediate hole section(s).
- Run and cement intermediate pipe (casing) strings.
- Drill remaining sections to well total depth (TD).
- Run well evaluation program (wireline logging, sidewall cores, vertical seismic profiling [VSP] and possibly a drill stem test).
- Plug and abandon (P&A) or temporarily suspend the well.
- Demobilise the MODU and tow it away.

Environment Plan

Preparation of a Drilling EP is underway. This will be submitted to the National Offshore Petroleum Safety and Environmental Management Authority (NOPSEMA) for assessment.

The full EP will be made available on NOPSEMA's website for public exhibition prior to formal assessment by NOPSEMA.

The EP is a comprehensive document that describes the project, outlines stakeholder feedback, details the existing marine and socio-economic environment, describes and assesses impacts and risks (see Table 1) and outlines the control measures to avoid, minimise and mitigate environmental impacts and risks to be acceptable and ALARP (As Low as Reasonably Practicable).

The project will be subject to industry best practice standards and undertaken in accordance with all relevant environmental and safety legislation and regulations.

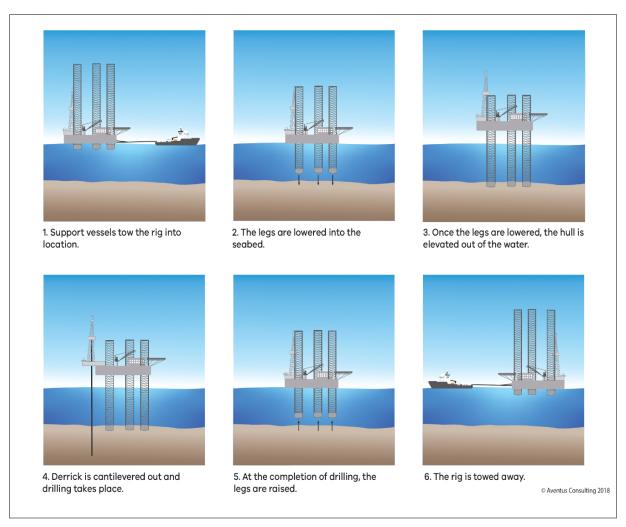


Figure 2. Overview of the jack-up MODU setup

Ongoing Consultation

Consultation with relevant persons will be ongoing throughout the project planning phase, with additional information flyers to be distributed at various milestones.

How to Provide Feedback

EOG encourages you to provide feedback on the project using the following contact details:

Email: australia@eogresources.com

Phone: 0409 772 170

EOG will respond to feedback in a timely

fashion.

Additional background project information (and this information flyer) is available on the EOG website at:

https://www.eogresources.com/australia

Information Flyer #3 - 4 -

Table 1. Preliminary environmental impact and risk assessment for Beehive-1 exploration well drilling

Hazard	Potential impacts & risks	Preliminary avoidance, mitigation & management strategies
Planned Events		
Physical presen	ce	
Seabed disturbance	 Physical removal or disturbance of seabed sediments. Increase in turbidity of the water column near the seabed. 	 Seabed disturbance will be kept to the minimum area necessary for safe operations. Procedures will be in place to avoid objects being dropped overboard. If large objects are dropped overboard, they will be retrieved wherever possible.
Displacement of other marine users	 Diversion from a planned travel route and additional time to rejoin the planned route. Increased fuel use (and cost) as a result of this diversion. Temporary exclusion from fishing grounds. 	 The exclusion zone will be reduced to the lowest area possible for safe operations. The required area of displacement for the duration of the activity will be communicated to commercial fisheries and authorities.
Routine emissi	ons and discharges	
Light	 Light glow may act as an attractant to light-sensitive species, in turn affecting predator-prey dynamics (due to attraction to or disorientation from light). Continuous lighting may result in localised alterations to normal marine fauna behaviours. 	 MODU and support vessel external lighting will be kept to levels required for navigation and safety of deck operations. Blinds on portholes and windows will be lowered on support vessels at night. Lighting will be directed to working areas only (i.e., not overboard, unless in an emergency). The duration of flaring will be kept to the minimum time necessary.
Air	 Localised and temporary decrease in air quality due to emissions from diesel combustion. Addition of greenhouse gas (GHG) to the atmosphere (influencing climate change). 	 Only low sulphur (<0.5% m/m) marine diesel oil will be used. A planned maintenance system (PMS) will be implemented for combustion equipment. International Air Pollution Prevention (IAPP) certification will be maintained. A Ship Energy Efficiency Management Plan (SEEMP) will be in place and implemented. An Ozone Depleting Substances (ODS) procedure will be in place and implemented. Waste incineration will be managed in accordance with MARPOL and Marine Orders. The duration of flaring will be kept to the minimum time necessary. Fuel use will be monitored for abnormal consumption.

Information Flyer #3 - 5 -

Hazard	Potential impacts & risks	Preliminary avoidance, mitigation & management strategies
Noise	 Behavioural effects to sound-sensitive species (e.g., whales). Temporary or permanent threshold shift in sound-sensitive species (e.g., whales). 	 EPBC Policy Statement 2.1 – Part A (Standard management procedures) will be implemented during VSP activities. Environmental awareness induction will be provided for all crew. Vessels and helicopters will comply with EPBC Regulations 2000. Vessel engines and thrusters will be well maintained.
Drill cuttings and muds	 Localised and temporary increase in total suspended solids in the water column. Smothering of benthic habitat and fauna. Alteration of benthic substrate. Potential toxicity impacts to fauna. Reduction of visual amenity from turbidity plumes. 	 Water-based mud (WBM) will be used for drilling (rather than synthetic- or oil-based muds). Only low-toxicity additives will be added to the WBM system. Mud operations will be managed to minimise discharge volumes. For example, shaker screens are used to maximise mud separation prior to overboard discharge.
Cement	 Localised and temporary increased turbidity of the water column. Smothering of benthic habitat and fauna. Alteration of benthic substrate. Potential toxicity impacts to fauna. 	 Cement operations will be managed to minimise discharge volumes. For example, once good returns are noted at the seabed, the mixing and pumping of cement will cease and displacement of the string with drilling fluid will begin. Only low-toxicity additives will be added to the cement system.
Putrescible waste	 Temporary and localised increase in the nutrient content of waters surrounding the discharge point. An associated increase in scavenging behaviour of marine fauna and seabirds (at the sea surface or within the water column). 	 A Garbage Management Plan will be in place and implemented. Putrescible waste will be treated as per MARPOL Annex V requirements prior to discharge. Environmental awareness induction will be provided for all crew.
Sewage and grey water	 Increase in the nutrient content of surface waters around the MODU and support vessels. An associated increase in scavenging behaviour of marine fauna and seabirds (at the sea surface or within the water column). 	 Treatment will be via a MARPOL-compliant sewage treatment plant prior to overboard discharge. The sewage treatment plant will be maintained in accordance with the PMS.
Cooling and brine water	Increase in sea water temperature, causing thermal stress to marine biota.	Engines and associated equipment that require cooling by water will be maintained in accordance with the PMS so they are operating within accepted parameters.

Information Flyer #3

Hazard	Potential impacts & risks	Preliminary avoidance, mitigation & management strategies
	 Increase in sea surface salinity, potentially causing harm to fauna unable to tolerate higher salinity. Potential toxicity impacts to marine fauna from the ingestion of residual biocide and scale inhibitors. 	Only low-toxicity biocide will be used.
Bilge water and deck drainage	 Temporary and localised reduction of surface water quality around the discharge point. Acute toxicity to marine fauna through ingestion of contaminated water in a small mixing zone. 	 All bilge water passes through a MARPOL-compliant oily water system set to limit oily-in-water to <15 ppm prior to overboard discharge. The oily water system is maintained in accordance with the PMS. Bunding of hydrocarbons and chemical storage areas. Shipboard Marine Pollution Emergency Plan (SMPEP) is in place. Use of non-toxic, biodegradable deck cleaning products. Spill kits are availability on deck and crew are trained in spill response.
Unplanned Ever	nts	
Accidental discharge of waste to the ocean	 Marine pollution. Acute toxicity to marine fauna through ingestion or absorption. Injury and entanglement of individual animals (such as seabirds and seals). Smothering or pollution of benthic habitats. 	 Waste is managed in accordance with the Garbage Management Plan. Recover accidentally discharged wastes or lost equipment. Chemical lockers are in place and used. Follow established handling and storage procedures. All crew are inducted in waste management procedures.
Vessel collision with megafauna	 Injury or death of marine megafauna (e.g., whales, dolphins, turtles). 	 Australian National Guidelines for Whale and Dolphin Watching (2017) are implemented by the support vessels. All vessel crew are inducted in the guidelines. Incident reporting procedure will be in place.
Introduction and establishment of invasive marine species (IMS)	 Reduction in native marine species diversity and abundance. Depletion of commercial fish stocks (and associated socioeconomic effects). Changes to conservation values of protected areas. 	 A MODU and support vessels already in Australia are likely to be used (reducing the risk of introducing IMS). An IMS risk assessment will be undertaken. The International Anti-fouling System (IAFS) Certification will be maintained. Implement a Biofouling Management Plan and Biofouling Record Book. Implement a Ballast Water Management Plan. Incident reporting procedure will be in place.

Information Flyer #3 - 7 -

Hazard	Potential impacts & risks	Preliminary avoidance, mitigation & management strategies
Interference with other marine users	 Damage to third-party vessels in the case of collision. Damage to or loss of fishing equipment and/or loss of commercial fish catches. 	 An Exclusion (Safety) zone will be designated around the MODU. Navigation equipment and associated procedures will be used, including constant bridge watch. Crew will be appropriately qualified. Stakeholder notification process will be in place.
Marine diesel oil spill	 Temporary and localised reduction in water quality. Injury or death of exposed marine fauna and seabirds. Habitat damage where the spill reaches shorelines. Changes to the functions, interests or activities of other users (e.g., commercial fisheries). 	 As per 'Interference with other marine users.' A bunkering procedure for any at-sea refuelling will be used. Crews will be trained in spill prevention and response. The following plans will be implemented in the event of a spill: SMPEP. Project-specific Oil Pollution Emergency Plan (OPEP). Project-specific Operational and Scientific Monitoring Program (OSMP).
Loss of well containment	 Temporary but potentially widespread reduction in water quality. Tainting of commercial fisheries species. Injury and death of species such as seabirds. Pathological effects on fish larvae and plankton. Pollution of shoreline habitats such as sandy beaches, mudflats and mangroves. 	 Well design (including casing) will be based on geotechnical data and previously drilled wells in the area (i.e., review of offset well data). Continuous monitoring of mud weight and other mud flow parameters will occur to ensure primary well control barrier is operating as designed. Blow out preventer (BOP) will be tested and installed before entering the hydrocarbon zone. Well casing will be pressure tested after drilling prior to drilling ahead. Well control exercises will be undertaken. An approved Well Operations Management Plan (WOMP) and Safety Case Revision will be in place. A blowout contingency plan will be in place. EOG will be a member of the Australian Marine Oil Spill Centre (AMOSC), who would be called upon to assist in spill response.
Hydrocarbon spill response activities	 Routine and non-routine impacts and risks associated with vessel operations. Noise disturbance to marine fauna and shoreline species by aircraft and vessels. 	 Maintain access to spill response capabilities (including capable personnel and equipment) and implement as required. An appropriate distance will be maintained from marine fauna during spill response activities.

Information Flyer #3 -8-

Beehive-1 Exploration Well

Information Flyer #4 11 May 2022

EOG Resources Australia Block WA-488 Pty Ltd, a subsidiary of EOG Resources, Inc. (together 'EOG') is the Titleholder of Exploration Permit WA-488-P in the Joseph Bonaparte Gulf in Western Australia (WA).

EOG is planning to drill the Beehive-1 exploration well ('the project') (see attached map). The Beehive-1 well is targeting the Sunbird Formation and anticipates the presence of a light crude oil.

Why We're Consulting You

EOG has previously consulted with you, your group, organisation or company as a 'relevant person', defined under the Offshore Petroleum and Greenhouse Gas (Environment) Regulations 2009 as someone whose functions (power, duty, authority or responsibility), activities (things you do or have done) or interests (your rights, advantages, duties and liabilities, or concerns) may be affected by the project. Relevant persons typically include Commonwealth, State and Territory government agencies, commercial and recreational fisheries, asset owners and environment groups.

This information flyer provides an update on project planning.

Who is EOG?

EOG is the one of the largest independent crude oil and natural gas exploration and production companies in the United States of America (USA). EOG acquired the WA-488-P exploration permit from Finniss Offshore Exploration Pty Ltd in November 2021 with the aim of exploring known hydrocarbon prospects in the Bonaparte Basin.

EOG has operated offshore since 1992, a history of 30 years with assets in Trinidad and Tobago, UK North Sea, and the US Gulf of Mexico. In the past 10 years, EOG has drilled nearly 40 offshore wells with an excellent safety and environmental record.

The Project

The Beehive-1 exploration well is situated within Commonwealth marine waters 83 kilometres (km) off the WA coastline and 300 km southwest of Darwin in a water depth of approximately 40 metres (m).

Drilling of the Beehive-1 exploration well is the second phase of work following the predrilling seabed assessment (PDSA) (also known as geophysical and geotechnical investigations) that are planned to occur between June and August 2022.

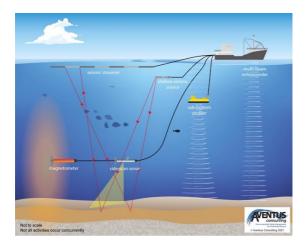
Geophysical Investigations

The G&G Environment Plan (EP) was accepted by the National Offshore Petroleum Safety and Environmental Management Authority (NOPSEMA) in March 2022 (see this link).

The geophysical survey is scheduled to commence in early June 2022. EOG has contracted Fugro to undertake the survey, using the vessel *MV Outer Limit*. The survey is scheduled to take place from 1st June to 1st July 2022 in the area shown in Figure 1.

EOG has issued advice about the survey to the Australian Hydrographic Office to enable the Notice to Mariners to include the survey details. The vessel will be towing equipment approximately 100 m behind the vessel and EOG kindly requests other vessels to maintain a 500 m separation from the *MV Outer Limit* while it is undertaking survey operations.

The MV Outer Limit


Information Flyer #4 - 1 -

The MV Outer Limit is a 35 m long vessel and its contact details are as follows:

- Call sign VJN3640
- Communications using VHF Channel 16, displaying flags India over Romeo during survey operations.

A simplified representation of the geophysical survey techniques is shown in the diagram below.

Geophysical survey techniques

Geotechnical Investigations Update

The geotechnical investigation work will soon be awarded and is scheduled to commence in August 2022. Further information on this phase of work will be provided once the choice of contractor and vessel is confirmed.

Drilling Update

Drilling is planned to occur between Q1 and Q3 2023 (contingent on the receipt of EP acceptance, including drill rig and equipment availability).

Drilling activities are estimated to take approximately 50 to 90 days.

The drilling EP is now available on NOPSEMA's website for public exhibition for 30 days, until 8th June 2022. The EP can be accessed at this link. After this time, the EP will then be submitted to NOPSEMA for assessment.

The EP is a comprehensive document that describes the project, outlines feedback from relevant persons, details the existing marine and socio-economic environment, describes and assesses impacts and risks and outlines the control measures to avoid, minimise and mitigate environmental impacts and risks to be acceptable and ALARP (As Low as Reasonably Practicable).

Ongoing Consultation

Consultation with relevant persons will be ongoing throughout the project planning phase, with additional information flyers to be distributed at various milestones.

How to Provide Feedback

EOG encourages you to provide feedback on the project using the following contact details:

General Inquiries:

australia@eogresources.com

PDSA Specific Inquiries:

australia pdsa@eogresources.com

Phone: 0409 772 170

EOG will respond to feedback in a timely fashion.

Additional background project information (and this information flyer) is available on the EOG website at:

https://www.eogresources.com/australia

Information Flyer #4 - 2 -

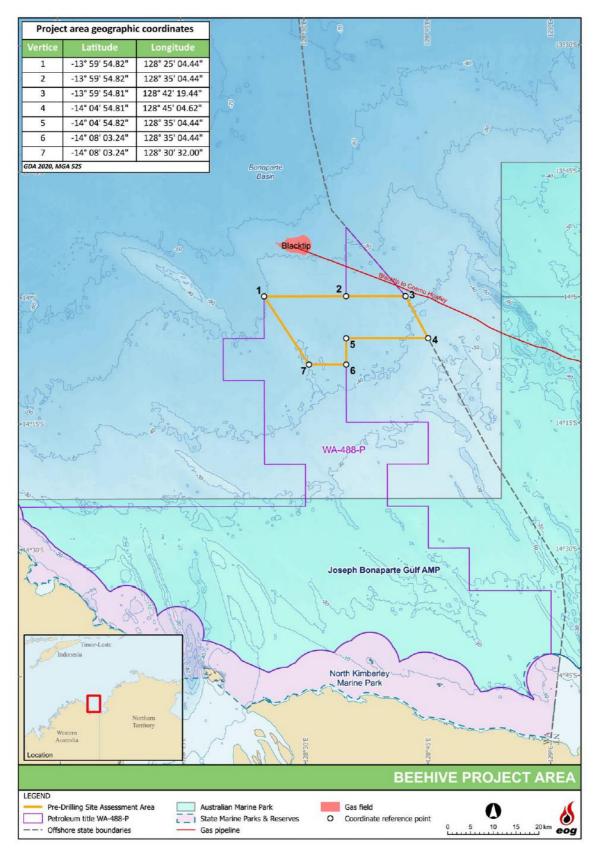


Figure 1. The Beehive-1 Project Area

Information Flyer #4

Beehive-1 Exploration Well

Information Flyer #5 27 June 2022

EOG Resources Australia Block WA-488 Pty Ltd, a subsidiary of EOG Resources, Inc. (together 'EOG') as the Titleholder of Exploration Permit WA-488-P is planning to drill the Beehive-1 exploration well ('the project') in the Joseph Bonaparte Gulf in Western Australia (WA) (Figure 1, over page).

Why We're Consulting You

EOG has previously consulted with you, your group, organisation or company as a 'relevant person', defined under the Offshore Petroleum and Greenhouse Gas (Environment) Regulations 2009 as someone whose functions (power, duty, authority or responsibility), activities (things you do or have done) or interests (your rights, advantages, duties and liabilities, or concerns) may be affected by the project. Relevant persons typically include Commonwealth, State and Territory government agencies, commercial and recreational fisheries, and asset owners.

This information flyer provides an update on the project.

Who is EOG?

EOG is one of the largest independent crude oil and natural gas exploration and production companies in the United States of America (USA). EOG acquired the WA-488-P exploration permit from Finniss Offshore Exploration Pty Ltd in November 2021 with the aim of exploring known hydrocarbon prospects in the Bonaparte Basin.

EOG has operated offshore since 1992, with a history of nearly 30 years in Trinidad & Tobago, the UK North Sea and the USA Gulf of Mexico. In the past 10 years, EOG has drilled nearly 40 offshore wells, with an excellent safety and environment record.

The Project

EOG aims to explore a known hydrocarbon prospect in WA-488-P located in the Bonaparte Basin. The project includes geophysical and geotechnical investigations to characterise the seabed (collectively known as Pre-Drill Seabed Assessment or PDSA), prior to drilling an exploration well.

The Beehive PDSA Environment Plan (EP) for the geophysical and geotechnical investigations was accepted by the National Offshore Petroleum Safety and Environmental Management Authority (NOPSEMA) on 2 March 2022 (link) and is approved for activities up till August 2022. The geophysical investigations are currently underway and are expected to be completed soon.

The geotechnical investigations are now expected to commence by Q2 2023, therefore EOG will prepare and submit a new EP for submission to NOPSEMA.

This information flyer is focused on the new EP for the geotechnical investigations. Additional information flyers will be issued as the project progresses.

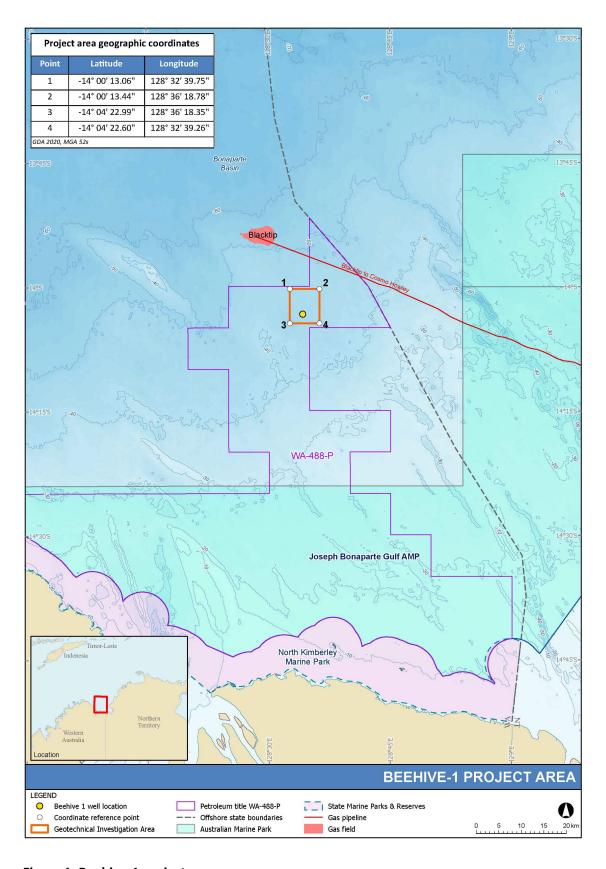


Figure 1. Beehive-1 project area

Information Flyer #5 - 2 -

Geotechnical Investigation

The geotechnical investigations are planned to commence any time prior to Q2 2023 (contingent on the receipt of EP acceptance, vessel and equipment availability). They will be undertaken within a small area (approximately 50 km²) located 77 km from the nearest WA shoreline and 87 km from the nearest Northern Territory (NT) shoreline. Water depths in the project area range from 40 m to 50 m.

The geotechnical investigations acquire physical measurements and samples of the local shallow geology at and around the potential drill location, using the following techniques (Figure 2):

- Geological analysis of unconsolidated seabed sediments – using grab sampling.
- Geological analysis of formations below the seabed – using coring.
- Determine seabed strength using piezo cone penetrometer testing (PCPT) and borehole sampling.

The geotechnical investigations are undertaken using a specialised medium-sized vessel and are likely to take up to two weeks to complete.

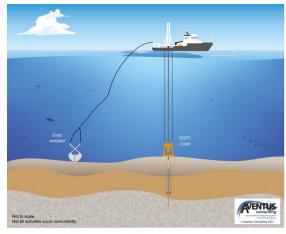


Figure 2. Geotechnical investigations

Drilling

Planning for the drilling campaign is underway. The Beehive-1 well is targeting the Sunbird Formation and anticipates the presence of a light oil or gas condensate.

A jack-up drill rig will drill the well vertically to a depth of about 5,000 m using a water-based mud system, which will take 40-50 days. In the event that hydrocarbons are discovered, well testing (that involves flaring) may take place.

It is anticipated that drilling will commence by Q3 2023 (contingent on the receipt of EP acceptance, vessel and equipment availability). Further details about the drilling campaign will be provided in future information flyers as planning progresses.

Environment Plans

As noted above, the *Beehive PDSA EP* was accepted by NOPSEMA on 2 March 2022. The EPs for the *Geotechnical Investigations* and for *Exploration Drilling* are currently being prepared. These will be submitted to the NOPSEMA for assessment. The *Exploration Drilling EP* has previously been made available on NOPSEMA's website for public exhibition prior to formal assessment by NOPSEMA.

An EP is a comprehensive document that describes the project, outlines stakeholder feedback, details the existing marine and socio-economic environment. It describes and assesses impacts and risks and outlines the control measures to avoid, minimise and mitigate environmental impacts and risks to be acceptable and ALARP (As Low As Reasonably Practicable).

The project will be subject to industry best practice standards and undertaken in accordance with all relevant environmental and safety legislation and regulations.

Features of the Project Area

Features in the project area include:

- Dominated by the Indonesian Throughflow current and strong tides.
- A seabed dominated by flat featureless plains comprising sand and gravel, with localised reefs and outcrops supporting sponge gardens. The plains contain diverse infaunal communities (e.g., crustaceans and polychaete worms).
- Seasonal presence or likely presence of threatened migratory species including turtles, sharks, sawfish, whales, dolphins and seabirds.
- Low-intensity commercial fishing by the Commonwealth managed Northern Prawn Fishery (the project area has a 0.006% overlap with the fishery).
- Some commercial fishing by the WA managed fisheries, including the Northern Demersal Scalefish Managed Fishery and the Mackeral Managed Fishery.
- An absence of NT managed commercial fisheries.
- An absence of known shipwrecks.
- Low commercial shipping traffic.
- An overlap by the Department of Defence North Australian Exercise Area.

Distances from the project area to the following features are:

- The Carbonate bank and terrace system of the Sahul Shelf Key Ecological Feature (KEF) - 13 km.
- The Blacktip unmanned wellhead platform – 13 km.
- Joseph Bonaparte Australian Marine Park (AMP) - 31 km.
- WA North Kimberley Marine Park 64km.

The geotechnical investigations will provide more detail about the type of seabed in the project area. A summary of key impacts and risks from the geotechnical investigations is presented in the following pages.

How to Provide Feedback

EOG encourages you to ask questions or provide feedback on the project using the following contact details:

General Inquiries:

australia@eogresources.com

PDSA Specific Inquires:

australia pdsa@eogresources.com

Phone: 0409 772 170

EOG will respond to feedback in a timely

fashion.

Additional background project information (and this information flyer) is also available on the EOG website at:

https://www.eogresources.com/australia

Ongoing Consultation

Consultation with relevant persons will be ongoing throughout the project, with additional information flyers to be distributed at various milestones, and in response to any potential changes in the project

- 4 -Information Flyer #5

Preliminary environmental impact and risk assessment for the Beehive-1 geotechnical investigations (WA-488-P)

investigations (WA-488-P)			
Hazard	Potential impacts & risks	Avoidance, management and mitigation measures	
Planned events			
Generation of underwater sound from the geotechnical investigations and vessels	Minor, temporary and localised disruption to migration, feeding or breeding patterns for sound-sensitive fauna, such as cetaceans (whales and dolphins).	 Vessel engines and thrusters will be maintained in accordance with planned maintenance system to ensure they are operating efficiently. Geotechnical activities produce negligible underwater noise. The activity is expected to take no more than 2 weeks. 	
Seabed disturbance from geotechnical activities	Temporary and localised seabed turbidity. Smothering of seabed habitat by disturbed sediments.	 The vessel will not anchor during geotechnical investigations (it will remain on location using dynamic positioning). Very low volumes of cuttings and drilling fluids will be discharged during borehole sampling. Seabed grab sampling and coring activities are extremely localised. Cored holes are very narrow and will collapse in on themselves and small surface 'craters' will quickly fill in with sediments and recolonise with benthic fauna. Large bulky items will be securely fastened or stored on the vessel deck to prevent loss to sea. Any dropped objects will be recovered (where safe to do so). 	
Routine vessel a	lischarges and emissions		
Atmospheric emissions	Temporary reduction in air quality in the local air shed.	 Vessels >400 gross tonnes will have in place a current International Air Pollution Prevention (IAPP) certificate and Ship Energy Efficiency Management Plan (SEEMP). Only marine-grade low sulphur diesel (no greater than 0.5% m/m) will be used. Waste incineration will not take place. All fuel-burning equipment will be maintained in accordance with planned maintenance systems. 	
Light glow	Attractant to fauna, temporary increase in predation rates on fauna attracted to lights.	Vessel lighting will be kept to the minimum required but in accordance with navigational standards and personnel safety requirements for night-time work.	

Information Flyer #5 - 5 -

Hazard	Potential impacts & risks	Avoidance, management and mitigation measures
Discharge of treated sewage and	Temporary and localised reduction in water quality.	 Sewage and grey water will be treated in a MARPOL Annex IV compliant sewage treatment plant prior to discharge (or taken back to port for disposal).
grey water		 Vessels >400 gross tonnes will have in place a current International Sewage Pollution Prevention (ISPP) certificate.
		 In the event of a sewage treatment plant malfunction, untreated sewage will only be discharged when > 12 nm from shore or will be offloaded onshore for treatment.
Discharge of cooling water	Temporary and localised elevation in	Low impact biocides (chlorine) are used in optimised concentrations in the cooling system.
and reverse osmosis (brine)	surface water temperature and salinity levels.	 Engines and associated equipment that require cooling by water will be maintained in accordance with the planned maintenance system so that they are operating within accepted parameters.
		 Only low-toxicity chemicals (ONCS 'Gold'/'Silver' (CHARM) or 'D'/'E' (non-CHARM)-rated) chemicals are used in the cooling and brine water systems.
Discharge of putrescible waste	Temporary and localised increase in nutrient content of surface and near surface water quality. Temporary increase in scavenging behaviour of pelagic fish and seabirds.	 Putrescible waste will be macerated to <25 mm prior to discharge (or taken back to shore for disposal). In the event of macerator malfunction, un-macerated putrescible waste will take place will be discharged when >12 nm of land or returned to shore. Non-putrescible galley waste will be returned to shore for disposal.
Discharge of bilge water and deck	Temporary and localised reduction in water quality.	 Vessels >400 gross tonnes will have in place a MARPOL Annex I compliant oily water separator set to limit oil-in-water content to <15 ppm prior to discharge.
drainage		 Vessels >400 gross tonnes will have a current International Oil Pollution Prevention (IOPP) certificate.
		 No whole residual bilge oil is discharged overboard (residual oil from the oily water separator is pumped to tanks and disposed of onshore).
		 Chemical storage areas will be bunded and drain to the bilge tank.
		 Portable bunds and/or drip trays are used to collect spills or leaks from equipment that is not contained within a permanently bunded area (non-process areas).
		 Deck cleaning detergents will be biodegradable. Spills to decks will be cleaned immediately using Shipboard Marine Pollution Emergency Plan (SMPEP) kits.

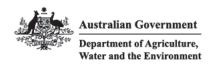
Information Flyer #5 - 6 -

Hazard	Potential impacts & risks	Avoidance, management and mitigation measures
Unplanned ever	nts	
Accidental overboard release of hazardous and/or nonhazardous waste from the vessels	Marine pollution (litter and a temporary and localised reduction in water quality). Injury and entanglement of individual animals (such as seabirds and turtles) and smothering or pollution of benthic habitats.	 Vessels >100 gross tonnes or certified to carry more than 15 people will have in place and implement a vessel-specific Garbage Management Plan. Vessel crew and visitors will be inducted into the waste management procedures. A waste manifest will be maintained. Only small volumes of chemicals will be kept on board and will be stored in secured drums in bunded areas away from open drains. Bunded areas will drain through a closed system, processed through the oily water separator. Safety Data Sheets (SDS) will be available in appropriate locations. SMPEP kits will be available on board for rapid deck clean-up response.
Introduction of invasive marine species from the vessel hulls and/or ballast water	Reduction in native marine species diversity and abundance. Displacement of native marine species. Socio-economic impacts on commercial fisheries. Reduction of conservation values of protected areas.	 Vessels will carry a low risk of invasive marine species introduction (as determined through a vessel contractor prequalification report). Vessels >400 gross tonnes will carry a current International Antifouling System (IAFS) Certificate and comply with Marine Order Part 98 (Anti-fouling Systems). The vessel/s will comply with the: Australian Ballast Water Management Requirements (DAWR, 2020); and National Biofouling Guidance for the Petroleum Production & Exploration Industry (AQIS, 2009). Towed/submersible equipment will be cleaned (e.g., fouling is removed) prior to initial use in the project area.
Vessel strike with megafauna (e.g., whales, dolphins, turtles)	Injury or death of individual animals.	 The Australian Guidelines for Whale and Dolphin Watching (DEWHA, 2005) for sea-faring activities will be implemented, which includes caution and no-approach zones around whales and dolphins. Vessel strike causing injury to or death of a cetacean is reported via the online National Ship Strike Database within 72 hours of the incident. Vessel strikes of megafauna in NT or WA waters is reported to the NT Marine Wildwatch on 1800 453 941 (or WA's Wildcare on 08-9474 9055) as soon as possible. Vessel crew will complete an environmental induction covering the above-listed requirements.

Information Flyer #5 -7-

Hazard	Potential impacts & risks	Avoidance, management and mitigation measures
Displacement of or interference with third party vessels	Temporary loss of fishing grounds around the vessel safety zone.	 The project area is located in an area with low levels of shipping traffic and low fishing effort. A 'Notice to Mariners' will be issued. Standard maritime safety precautions will be in place, including: Radar and other anti-collision monitoring equipment to detect other vessels. Display of lights and day shapes. The ability to quickly move off location to avoid other vessels. Warnings issued (radio, flares, lights and horns) to avoid collisions. The Vessel Master will be qualified in accordance with AMSA Marine Orders Part 3 (Seagoing qualifications) (e.g., International Convention of Standards of Watchkeeping for Seafarers, STCW95, GMDSS Proficiency). The vessel master will sound the general alarm, manoeuvre the vessel to minimise the effects of the collision and implement all other measures as outlined in the vessel collision procedure. Vessel collisions will be reported to AMSA if that collision has or is likely to affect the safety, operation or seaworthiness of the vessel or involves serious injury to personnel.
Diesel release due to a vessel-to vessel collision	Temporary and localised reduction in water quality. Tainting of commercial fisheries species. Injury and/or death of marine fauna and seabirds. Pathological effects on fish larvae and plankton.	An Oil Pollution Emergency Plan (OPEP) will be developed based on the spill modelling results.

Information Flyer #5 -8-


Appendix 3:Stakeholder Communications

(provided to NOPSEMA separately as sensitive information under Regulation 9(8) of the $\mathsf{OPGGS}(\mathsf{E})$

Appendix 4:

EPBC Act Protected Matters Search Tool (PMST) results

EPBC Act Protected Matters Report

This report provides general guidance on matters of national environmental significance and other matters protected by the EPBC Act in the area you have selected. Please see the caveat for interpretation of information provided here.

Report created: 17-Feb-2022

Summary

Details

Matters of NES

Other Matters Protected by the EPBC Act

Extra Information

Caveat

Acknowledgements

Summary

Matters of National Environment Significance

This part of the report summarises the matters of national environmental significance that may occur in, or may relate to, the area you nominated. Further information is available in the detail part of the report, which can be accessed by scrolling or following the links below. If you are proposing to undertake an activity that may have a significant impact on one or more matters of national environmental significance then you should consider the <u>Administrative Guidelines on Significance</u>.

World Heritage Properties:	None
National Heritage Places:	1
Wetlands of International Importance (Ramsar	None
Great Barrier Reef Marine Park:	None
Commonwealth Marine Area:	3
<u>Listed Threatened Ecological Communities:</u>	1
<u>Listed Threatened Species:</u>	56
<u>Listed Migratory Species:</u>	78

Other Matters Protected by the EPBC Act

This part of the report summarises other matters protected under the Act that may relate to the area you nominated. Approval may be required for a proposed activity that significantly affects the environment on Commonwealth land, when the action is outside the Commonwealth land, or the environment anywhere when the action is taken on Commonwealth land. Approval may also be required for the Commonwealth or Commonwealth agencies proposing to take an action that is likely to have a significant impact on the

The EPBC Act protects the environment on Commonwealth land, the environment from the actions taken on Commonwealth land, and the environment from actions taken by Commonwealth agencies. As heritage values of a place are part of the 'environment', these aspects of the EPBC Act protect the Commonwealth Heritage values of a Commonwealth Heritage place. Information on the new heritage laws can be found at http://www.environment.gov.au/heritage

A <u>permit</u> may be required for activities in or on a Commonwealth area that may affect a member of a listed threatened species or ecological community, a member of a listed migratory species, whales and other cetaceans, or a member of a listed marine species.

Commonwealth Lands:	None
Commonwealth Heritage Places:	2
<u>Listed Marine Species:</u>	130
Whales and Other Cetaceans:	32
Critical Habitats:	None
Commonwealth Reserves Terrestrial:	None
Australian Marine Parks:	10
Habitat Critical to the Survival of Marine Turtles:	4

Extra Information

This part of the report provides information that may also be relevant to the area you have

State and Territory Reserves:	15
Regional Forest Agreements:	None
Nationally Important Wetlands:	1
EPBC Act Referrals:	157
Key Ecological Features (Marine):	7
Biologically Important Areas:	63
Bioregional Assessments:	None
Geological and Bioregional Assessments:	None

Details

Matters of National Environmental Significance

National Heritage Places		[Re	source Information]
Name	State	Legal Status	Buffer Status
Natural			
The West Kimberley	WA	Listed place	In feature area

Commonwealth Marine Area

[Resource Information]

Approval is required for a proposed activity that is located within the Commonwealth Marine Area which has, will have, or is likely to have a significant impact on the environment. Approval may be required for a proposed action taken outside a Commonwealth Marine Area but which has, may have or is likely to have a significant impact on the environment in the Commonwealth Marine Area.

Feature Name	Buffer Status
EEZ and Territorial Sea	In feature area
Extended Continental Shelf	In feature area
Extended Continental Shelf	In feature area

Listed Threatened Ecological Communities

[Resource Information]

For threatened ecological communities where the distribution is well known, maps are derived from recovery plans, State vegetation maps, remote sensing imagery and other sources. Where threatened ecological community distributions are less well known, existing vegetation maps and point location data are used to produce indicative distribution maps.

Status of Vulnerable, Disallowed and Ineligible are not MNES under the EPBC Act.

Community Name	Threatened Category	Presence Text	Buffer Status
Monsoon vine thickets on the coastal	Endangered	Community likely to	In feature area
sand dunes of Dampier Peninsula		occur within area	

Listed Threatened Species

[Resource Information]

Status of Conservation Dependent and Extinct are not MNES under the EPBC Act

Number is the current name ID.				
Scientific Name	Threatened Category	Presence Text	Buffer Status	
BIRD				
Anous tenuirostris melanops				
Australian Lesser Noddy [26000]	Vulnerable	Foraging, feeding or related behaviour known to occur within area		
Calidris canutus				
Red Knot, Knot [855]	Endangered	Species or species habitat known to occur within area	In feature area	

Scientific Name	Threatened Category	Presence Text	Buffer Status
Calidris ferruginea Curlew Sandpiper [856]	Critically Endangered	Species or species habitat known to occur within area	In feature area
Calidris tenuirostris Great Knot [862]	Critically Endangered	Species or species habitat known to occur within area	In feature area
Charadrius leschenaultii Greater Sand Plover, Large Sand Plover [877]	Vulnerable	Species or species habitat known to occur within area	In feature area
<u>Charadrius mongolus</u> Lesser Sand Plover, Mongolian Plover [879]	Endangered	Species or species habitat known to occur within area	In feature area
Erythrotriorchis radiatus Red Goshawk [942]	Vulnerable	Species or species habitat may occur within area	In feature area
Erythrura gouldiae Gouldian Finch [413]	Endangered	Species or species habitat known to occur within area	In feature area
Falco hypoleucos Grey Falcon [929]	Vulnerable	Species or species habitat known to occur within area	In feature area
Limosa Iapponica menzbieri Northern Siberian Bar-tailed Godwit, Russkoye Bar-tailed Godwit [86432]	Critically Endangered	Species or species habitat known to occur within area	In feature area
Macronectes giganteus Southern Giant-Petrel, Southern Giant Petrel [1060]	Endangered	Species or species habitat may occur within area	In feature area
Malurus leucopterus edouardi White-winged Fairy-wren (Barrow Island), Barrow Island Black-and-white Fairy-wren [26194]	Vulnerable	Species or species habitat likely to occur within area	In feature area
Numenius madagascariensis Eastern Curlew, Far Eastern Curlew [847]	Critically Endangered	Species or species habitat known to occur within area	In feature area

Scientific Name	Threatened Category	Presence Text	Buffer Status
Papasula abbotti Abbott's Booby [59297]	Endangered	Species or species habitat may occur within area	In feature area
Pezoporus occidentalis Night Parrot [59350]	Endangered	Species or species habitat may occur within area	In feature area
Phaethon lepturus fulvus Christmas Island White-tailed Tropicbird, Golden Bosunbird [26021]	Endangered	Species or species habitat may occur within area	In feature area
Rostratula australis Australian Painted Snipe [77037]	Endangered	Species or species habitat likely to occur within area	In feature area
Sternula nereis nereis Australian Fairy Tern [82950]	Vulnerable	Breeding known to occur within area	In feature area
Thalassarche carteri Indian Yellow-nosed Albatross [64464]	Vulnerable	Species or species habitat may occur within area	In feature area
Tyto novaehollandiae kimberli Masked Owl (northern) [26048]	Vulnerable	Species or species habitat may occur within area	In feature area
FISH			
Milyeringa veritas Blind Gudgeon [66676]	Vulnerable	Species or species habitat may occur within area	In feature area
Thunnus maccoyii Southern Bluefin Tuna [69402]	Conservation Dependent	Breeding known to occur within area	In feature area
MAMMAL			
Balaenoptera borealis Sei Whale [34]	Vulnerable	Foraging, feeding or related behaviour likely to occur within area	In feature area
Balaenoptera musculus Blue Whale [36]	Endangered	Migration route knows to occur within area	n In feature area

Scientific Name	Threatened Category	Presence Text	Buffer Status
Balaenoptera physalus Fin Whale [37]	Vulnerable	Foraging, feeding or related behaviour likely to occur within area	In feature area
Bettongia lesueur Barrow and Boodie Isla Boodie, Burrowing Bettong (Barrow and Boodie Islands) [88021]	•	Species or species habitat known to occur within area	In feature area
Eubalaena australis Southern Right Whale [40]	Endangered	Species or species habitat may occur within area	In feature area
Isoodon auratus barrowensis Golden Bandicoot (Barrow Island) [66666]	Vulnerable	Species or species habitat known to occur within area	In feature area
Lagorchestes conspicillatus conspicillatus Spectacled Hare-wallaby (Barrow Island) [66661]		Species or species habitat known to occur within area	In feature area
Lagorchestes hirsutus Central Australian Mala, Rufous Hare-Wallaby (Central Australia) [88019]	subspecies Endangered	Translocated population known to occur within area	In feature area
Macroderma gigas Ghost Bat [174]	Vulnerable	Species or species habitat likely to occur within area	In feature area
Macrotis lagotis Greater Bilby [282]	Vulnerable	Species or species habitat known to occur within area	In feature area
Megaptera novaeangliae Humpback Whale [38]	Vulnerable	Breeding known to occur within area	In feature area
Osphranter robustus isabellinus Barrow Island Wallaroo, Barrow Island Euro [89262]	Vulnerable	Species or species habitat likely to occur within area	In feature area
Petrogale lateralis lateralis Black-flanked Rock-wallaby, Moororong, Black-footed Rock Wallaby [66647]	Endangered	Species or species habitat known to occur within area	In feature area

Scientific Name	Threatened Category	Presence Text	Buffer Status
Rhinonicteris aurantia (Pilbara form) Pilbara Leaf-nosed Bat [82790]	Vulnerable	Species or species habitat known to occur within area	In feature area
Saccolaimus saccolaimus nudicluniatus Bare-rumped Sheath-tailed Bat, Bare- rumped Sheathtail Bat [66889]	Vulnerable	Species or species habitat may occur within area	In feature area
Trichosurus vulpecula arnhemensis Northern Brushtail Possum [83091]	Vulnerable	Species or species habitat may occur within area	In feature area
Xeromys myoides Water Mouse, False Water Rat, Yirrkoo [66]	Vulnerable	Species or species habitat may occur within area	In feature area
REPTILE			
Aipysurus apraefrontalis Short-nosed Seasnake [1115]	Critically Endangered	Species or species habitat known to occur within area	In feature area
Aipysurus foliosquama Leaf-scaled Seasnake [1118]	Critically Endangered	Species or species habitat known to occur within area	In feature area
Caretta caretta Loggerhead Turtle [1763]	Endangered	Breeding known to occur within area	In feature area
<u>Chelonia mydas</u> Green Turtle [1765]	Vulnerable	Breeding known to occur within area	In feature area
Ctenotus zastictus Hamelin Ctenotus [25570]	Vulnerable	Species or species habitat known to occur within area	In feature area
<u>Dermochelys coriacea</u> Leatherback Turtle, Leathery Turtle, Luth [1768]	Endangered	Breeding likely to occur within area	In feature area
Eretmochelys imbricata Hawksbill Turtle [1766]	Vulnerable	Breeding known to occur within area	In feature area
<u>Lepidochelys olivacea</u> Olive Ridley Turtle, Pacific Ridley Turtle [1767]	Endangered	Congregation or aggregation known to occur within area	In feature area

Scientific Name	Threatened Category	Presence Text	Buffer Status
Natator depressus Flatback Turtle [59257]	Vulnerable	Breeding known to occur within area	In feature area
SHARK			
Carcharias taurus (west coast population Grey Nurse Shark (west coast population) [68752]	<u>)</u> Vulnerable	Species or species habitat known to occur within area	In feature area
Carcharodon carcharias White Shark, Great White Shark [64470]	Vulnerable	Species or species habitat may occur within area	In feature area
Glyphis garricki Northern River Shark, New Guinea River Shark [82454]	Endangered	Breeding likely to occur within area	In feature area
Pristis clavata Dwarf Sawfish, Queensland Sawfish [68447]	Vulnerable	Breeding known to occur within area	In feature area
Pristis pristis Freshwater Sawfish, Largetooth Sawfish, River Sawfish, Leichhardt's Sawfish, Northern Sawfish [60756]	Vulnerable	Species or species habitat likely to occur within area	In feature area
Pristis zijsron Green Sawfish, Dindagubba, Narrowsnout Sawfish [68442]	Vulnerable	Breeding known to occur within area	In feature area
Rhincodon typus Whale Shark [66680]	Vulnerable	Foraging, feeding or related behaviour known to occur within area	In feature area
Sphyrna lewini Scalloped Hammerhead [85267]	Conservation Dependent	Species or species habitat known to occur within area	In feature area
Listed Migratory Species		[Res	source Information]
Scientific Name	Threatened Category	Presence Text	Buffer Status

Listed Migratory Species		[Re	source Information]
Scientific Name	Threatened Category	Presence Text	Buffer Status
Migratory Marine Birds			
Anous stolidus			
Common Noddy [825]		Species or species habitat likely to occur within area	In feature area
Apus pacificus Fork-tailed Swift [678]		Species or species habitat likely to occur within area	In feature area

Scientific Name	Threatened Category	Presence Text	Buffer Status
Ardenna pacifica Wedge-tailed Shearwater [84292]		Prooding known to	In feature area
weuge-talled Shealwater [64292]		Breeding known to occur within area	iii leature area
Calanastria lausamalas			
<u>Calonectris leucomelas</u> Streaked Shearwater [1077]		Species or species	In feature area
•		habitat known to	
		occur within area	
Fregata ariel		5 " ' '	
Lesser Frigatebird, Least Frigatebird [1012]		Breeding known to occur within area	In feature area
Fregata minor Great Frigatebird, Greater Frigatebird		Species or species	In feature area
[1013]		habitat known to	
		occur within area	
Hydroprogne caspia		Dona a dia a lan accora da	la factions and
Caspian Tern [808]		Breeding known to occur within area	In feature area
Manager			
Macronectes giganteus Southern Giant-Petrel, Southern Giant	Endangered	Species or species	In feature area
Petrel [1060]	Ü	habitat may occur	
		within area	
Onychoprion anaethetus		Donalis a las sum to	In factions and
Bridled Tern [82845]		Breeding known to occur within area	In feature area
Phoethon lonturus			
Phaethon lepturus White-tailed Tropicbird [1014]		Breeding likely to	In feature area
		occur within area	
Phaethon rubricauda			
Red-tailed Tropicbird [994]		Breeding known to	In feature area
		occur within area	
Sterna dougallii		.	
Roseate Tern [817]		Breeding known to occur within area	In feature area
01			
Sternula albifrons Little Tern [82849]		Breeding known to	In feature area
		occur within area	
Sula leucogaster			
Brown Booby [1022]		Breeding known to	In feature area
		occur within area	
Sula sula			
Red-footed Booby [1023]		Breeding known to occur within area	In feature area

Scientific Name	Threatened Category	Presence Text	Buffer Status
Thalassarche carteri Indian Yellow-nosed Albatross [64464]	Vulnerable	Species or species habitat may occur within area	In feature area
Migratory Marine Species			
Anoxypristis cuspidata Narrow Sawfish, Knifetooth Sawfish [68448]		Species or species habitat known to occur within area	In feature area
Balaenoptera bonaerensis Antarctic Minke Whale, Dark-shoulder Minke Whale [67812]		Species or species habitat likely to occur within area	In feature area
Balaenoptera borealis Sei Whale [34]	Vulnerable	Foraging, feeding or related behaviour likely to occur within area	In feature area
Balaenoptera edeni Bryde's Whale [35]		Species or species habitat likely to occur within area	In feature area
Balaenoptera musculus Blue Whale [36]	Endangered	Migration route know to occur within area	n In feature area
Balaenoptera physalus			
Fin Whale [37]	Vulnerable	Foraging, feeding or related behaviour likely to occur within area	In feature area
Carcharhinus longimanus Oceanic Whitetip Shark [84108]		Species or species habitat likely to occur within area	In feature area
Carcharodon carcharias White Shark, Great White Shark [64470]	Vulnerable	Species or species habitat may occur within area	In feature area
Caretta caretta Loggerhead Turtle [1763]	Endangered	Breeding known to occur within area	In feature area
<u>Chelonia mydas</u> Green Turtle [1765]	Vulnerable	Breeding known to occur within area	In feature area

Scientific Name	Threatened Category	Presence Text	Buffer Status
Crocodylus porosus			
Salt-water Crocodile, Estuarine Crocodile [1774]		Species or species habitat likely to occur within area	In feature area
Dermochelys coriacea			
Leatherback Turtle, Leathery Turtle, Luth [1768]	Endangered	Breeding likely to occur within area	In feature area
<u>Dugong dugon</u>			
Dugong [28]		Species or species habitat known to occur within area	In feature area
Eretmochelys imbricata			
Hawksbill Turtle [1766]	Vulnerable	Breeding known to occur within area	In feature area
Eubalaena australis as Balaena glacialis	australis		
Southern Right Whale [40]	Endangered	Species or species habitat may occur within area	In feature area
<u>Isurus oxyrinchus</u>			
Shortfin Mako, Mako Shark [79073]		Species or species habitat likely to occur within area	In feature area
<u>Isurus paucus</u>			
Longfin Mako [82947]		Species or species habitat likely to occur within area	In feature area
Lepidochelys olivacea			
Olive Ridley Turtle, Pacific Ridley Turtle [1767]	Endangered	Congregation or aggregation known to occur within area	In feature area
Megaptera novaeangliae			
Humpback Whale [38]	Vulnerable	Breeding known to occur within area	In feature area
Mobula alfredi as Manta alfredi			
Reef Manta Ray, Coastal Manta Ray [90033]		Species or species habitat known to occur within area	In feature area
Mobula birostris as Manta birostris Giant Manta Ray [90034]		Species or species habitat likely to occur within area	In feature area
Natator depressus			
Flatback Turtle [59257]	Vulnerable	Breeding known to occur within area	In feature area

Scientific Name	Threatened Category	Presence Text	Buffer Status
Orcaella heinsohni Australian Snubfin Dolphin [81322]		Species or species habitat likely to occur within area	In feature area
Orcinus orca Killer Whale, Orca [46]		Species or species habitat may occur within area	In feature area
Physeter macrocephalus Sperm Whale [59]		Species or species habitat may occur within area	In feature area
Pristis clavata Dwarf Sawfish, Queensland Sawfish [68447]	Vulnerable	Breeding known to occur within area	In feature area
Pristis pristis Freshwater Sawfish, Largetooth Sawfish, River Sawfish, Leichhardt's Sawfish, Northern Sawfish [60756]	Vulnerable	Species or species habitat likely to occur within area	In feature area
Pristis zijsron Green Sawfish, Dindagubba, Narrowsnout Sawfish [68442]	Vulnerable	Breeding known to occur within area	In feature area
Rhincodon typus Whale Shark [66680]	Vulnerable	Foraging, feeding or related behaviour known to occur within area	In feature area
Sousa sahulensis as Sousa chinensis Australian Humpback Dolphin [87942]		Foraging, feeding or related behaviour known to occur within area	In feature area
Tursiops aduncus (Arafura/Timor Sea po Spotted Bottlenose Dolphin (Arafura/Timor Sea populations) [78900]	pulations)	Species or species habitat known to occur within area	In feature area
Migratory Terrestrial Species Cecropis daurica Red-rumped Swallow [80610]		Species or species habitat may occur within area	In feature area
Cuculus optatus Oriental Cuckoo, Horsfield's Cuckoo [86651]		Species or species habitat may occur within area	In feature area

Scientific Name	Threatened Category	Presence Text	Buffer Status
Hirundo rustica Barn Swallow [662]		Species or species habitat known to occur within area	In feature area
Motacilla cinerea Grey Wagtail [642]		Species or species habitat may occur within area	In feature area
Motacilla flava Yellow Wagtail [644]		Species or species habitat known to occur within area	In feature area
Migratory Wetlands Species			
Actitis hypoleucos Common Sandpiper [59309]		Species or species habitat known to occur within area	In feature area
Arenaria interpres Ruddy Turnstone [872]		Species or species habitat known to occur within area	In feature area
Calidris acuminata Sharp-tailed Sandpiper [874]		Species or species habitat known to occur within area	In feature area
Calidris alba Sanderling [875]		Species or species habitat known to occur within area	In feature area
Calidris canutus Red Knot, Knot [855]	Endangered	Species or species habitat known to occur within area	In feature area
Calidris ferruginea Curlew Sandpiper [856]	Critically Endangered	Species or species habitat known to occur within area	In feature area
Calidris melanotos Pectoral Sandpiper [858]		Species or species habitat may occur within area	In feature area
Calidris ruficollis Red-necked Stint [860]		Species or species habitat known to occur within area	In feature area

Scientific Name	Threatened Category	Presence Text	Buffer Status
Calidris tenuirostris Great Knot [862]	Critically Endangered	Species or species habitat known to occur within area	In feature area
<u>Charadrius leschenaultii</u> Greater Sand Plover, Large Sand Plover [877]	Vulnerable	Species or species habitat known to occur within area	In feature area
<u>Charadrius mongolus</u> Lesser Sand Plover, Mongolian Plover [879]	Endangered	Species or species habitat known to occur within area	In feature area
<u>Charadrius veredus</u> Oriental Plover, Oriental Dotterel [882]		Species or species habitat may occur within area	In feature area
Glareola maldivarum Oriental Pratincole [840]		Species or species habitat may occur within area	In feature area
<u>Limnodromus semipalmatus</u> Asian Dowitcher [843]		Species or species habitat known to occur within area	In feature area
<u>Limosa Iapponica</u> Bar-tailed Godwit [844]		Species or species habitat known to occur within area	In feature area
<u>Limosa limosa</u> Black-tailed Godwit [845]		Species or species habitat known to occur within area	In feature area
Numenius madagascariensis Eastern Curlew, Far Eastern Curlew [847]	Critically Endangered	Species or species habitat known to occur within area	In feature area
Numenius phaeopus Whimbrel [849]		Species or species habitat known to occur within area	In feature area
Pandion haliaetus Osprey [952]		Breeding known to occur within area	In feature area

Scientific Name	Threatened Category	Presence Text	Buffer Status
Pluvialis fulva Pacific Golden Plover [25545]		Species or species habitat known to occur within area	In feature area
Pluvialis squatarola Grey Plover [865]		Species or species habitat known to occur within area	In feature area
Thalasseus bergii Greater Crested Tern [83000]		Breeding known to occur within area	In feature area
Tringa brevipes Grey-tailed Tattler [851]		Species or species habitat known to occur within area	In feature area
Tringa nebularia Common Greenshank, Greenshank [832]		Species or species habitat known to occur within area	In feature area
Tringa totanus Common Redshank, Redshank [835]		Species or species habitat known to occur within area	In feature area
Xenus cinereus Terek Sandpiper [59300]		Species or species habitat known to occur within area	In feature area

Other Matters Protected by the EPBC Act

Commonwealth Heritage Places			[Resource Information]
Name	State	Status	Buffer Status
Natural			
Mermaid Reef - Rowley Shoals	WA	Listed place	In feature area
Scott Reef and Surrounds - Commonwealth Area	EXT	Listed place	In feature area

Listed Marine Species		[Re	esource Information]
Scientific Name	Threatened Category	Presence Text	Buffer Status
Bird			
Actitis hypoleucos			
Common Sandpiper [59309]		Species or species habitat known to occur within area	In feature area

Scientific Name	Threatened Category	Presence Text	Buffer Status
Anous stolidus Common Noddy [825]		Species or species habitat likely to occur within area	In feature area
Anous tenuirostris melanops Australian Lesser Noddy [26000]	Vulnerable	Foraging, feeding or related behaviour known to occur within area	In feature area
Apus pacificus Fork-tailed Swift [678]		Species or species habitat likely to occur within area overfly marine area	In feature area
Ardenna pacifica as Puffinus pacificus Wedge-tailed Shearwater [84292]		Breeding known to occur within area	In feature area
Arenaria interpres Ruddy Turnstone [872]		Species or species habitat known to occur within area	In feature area
Bubulcus ibis as Ardea ibis Cattle Egret [66521]		Species or species habitat may occur within area overfly marine area	In feature area
Calidris acuminata Sharp-tailed Sandpiper [874]		Species or species habitat known to occur within area	In feature area
Calidris alba Sanderling [875]		Species or species habitat known to occur within area	In feature area
Calidris canutus Red Knot, Knot [855]	Endangered	Species or species habitat known to occur within area overfly marine area	In feature area
Calidris ferruginea Curlew Sandpiper [856]	Critically Endangered	Species or species habitat known to occur within area overfly marine area	In feature area

Scientific Name	Threatened Category	Presence Text	Buffer Status
Calidris melanotos Pectoral Sandpiper [858]		Species or species habitat may occur within area overfly marine area	In feature area
Calidris ruficollis Red-necked Stint [860]		Species or species habitat known to occur within area overfly marine area	In feature area
Calidris tenuirostris Great Knot [862]	Critically Endangered	Species or species habitat known to occur within area overfly marine area	In feature area
Calonectris leucomelas Streaked Shearwater [1077]		Species or species habitat known to occur within area	In feature area
Cecropis daurica as Hirundo daurica Red-rumped Swallow [80610]		Species or species habitat may occur within area overfly marine area	In feature area
Chalcites osculans as Chrysococcyx osc Black-eared Cuckoo [83425]	<u>ulans</u>	Species or species habitat likely to occur within area overfly marine area	In feature area
Charadrius leschenaultii Greater Sand Plover, Large Sand Plover [877]	Vulnerable	Species or species habitat known to occur within area	In feature area
Charadrius mongolus Lesser Sand Plover, Mongolian Plover [879]	Endangered	Species or species habitat known to occur within area	In feature area
Charadrius ruficapillus Red-capped Plover [881]		Species or species habitat known to occur within area overfly marine area	In feature area
<u>Charadrius veredus</u> Oriental Plover, Oriental Dotterel [882]		Species or species habitat may occur within area overfly marine area	In feature area

Scientific Name	Threatened Category	Presence Text	Buffer Status
Chroicocephalus novaehollandiae as Lar	<u>rus novaehollandiae</u>		
Silver Gull [82326]		Breeding known to occur within area	In feature area
Fregata ariel Lesser Frigatebird, Least Frigatebird [1012]		Breeding known to occur within area	In feature area
Fregata minor Great Frigatebird, Greater Frigatebird [1013]		Species or species habitat known to occur within area	In feature area
Glareola maldivarum Oriental Pratincole [840]		Species or species habitat may occur within area overfly marine area	In feature area
Haliaeetus leucogaster White-bellied Sea-Eagle [943]		Species or species habitat known to occur within area	In feature area
Hirundo rustica Barn Swallow [662]		Species or species habitat known to occur within area overfly marine area	In feature area
Hydroprogne caspia as Sterna caspia Caspian Tern [808]		Breeding known to occur within area	In feature area
<u>Limnodromus semipalmatus</u> Asian Dowitcher [843]		Species or species habitat known to occur within area overfly marine area	In feature area
Limosa lapponica Bar-tailed Godwit [844]		Species or species habitat known to occur within area	In feature area
Limosa limosa Black-tailed Godwit [845]		Species or species habitat known to occur within area overfly marine area	In feature area
Macronectes giganteus Southern Giant-Petrel, Southern Giant Petrel [1060]	Endangered	Species or species habitat may occur within area	In feature area

Scientific Name	Threatened Category	Presence Text	Buffer Status
Merops ornatus Rainbow Bee-eater [670]		Species or species habitat may occur within area overfly marine area	In feature area
Motacilla cinerea Grey Wagtail [642]		Species or species habitat may occur within area overfly marine area	In feature area
Motacilla flava Yellow Wagtail [644]		Species or species habitat known to occur within area overfly marine area	In feature area
Numenius madagascariensis Eastern Curlew, Far Eastern Curlew [847]	Critically Endangered	Species or species habitat known to occur within area	In feature area
Numenius phaeopus Whimbrel [849]		Species or species habitat known to occur within area	In feature area
Onychoprion anaethetus as Sterna anae Bridled Tern [82845]	thetus	Breeding known to occur within area	In feature area
Onychoprion fuscatus as Sterna fuscata Sooty Tern [90682]		Breeding known to occur within area	In feature area
Pandion haliaetus Osprey [952]		Breeding known to occur within area	In feature area
Papasula abbotti Abbott's Booby [59297]	Endangered	Species or species habitat may occur within area	In feature area
Phaethon lepturus White-tailed Tropicbird [1014]		Breeding likely to occur within area	In feature area
Phaethon lepturus fulvus Christmas Island White-tailed Tropicbird Golden Bosunbird [26021]	, Endangered	Species or species habitat may occur within area	In feature area
Phaethon rubricauda Red-tailed Tropicbird [994]		Breeding known to occur within area	In feature area

Scientific Name	Threatened Category	Presence Text	Buffer Status
Pluvialis fulva Pacific Golden Plover [25545]		Species or species habitat known to occur within area	In feature area
Pluvialis squatarola Grey Plover [865]		Species or species habitat known to occur within area overfly marine area	In feature area
Rostratula australis as Rostratula bengh Australian Painted Snipe [77037]	alensis (sensu lato) Endangered	Species or species habitat likely to occur within area overfly marine area	In feature area
Sterna dougallii			
Roseate Tern [817]		Breeding known to occur within area	In feature area
Sternula albifrons as Sterna albifrons			
Little Tern [82849]		Breeding known to occur within area	In feature area
Sternula nereis as Sterna nereis			
Fairy Tern [82949]		Breeding known to occur within area	In feature area
Stiltia isabella			
Australian Pratincole [818]		Species or species habitat known to occur within area overfly marine area	In feature area
Sula leucogaster			
Brown Booby [1022]		Breeding known to occur within area	In feature area
Sula sula Red-footed Booby [1023]		Breeding known to occur within area	In feature area
Thalassarche carteri Indian Yellow-nosed Albatross [64464]	Vulnerable	Species or species habitat may occur within area	In feature area
Thalasseus bengalensis as Sterna beng	alensis		
Lesser Crested Tern [66546]	<u>aionoio</u>	Breeding known to occur within area	In feature area
Thalasseus bergii as Sterna bergii Greater Crested Tern [83000]		Breeding known to occur within area	In feature area

Scientific Name	Threatened Category	Presence Text	Buffer Status
Tringa brevipes as Heteroscelus brevipes Grey-tailed Tattler [851]	<u>5</u>	Species or species habitat known to occur within area	In feature area
Tringa nebularia Common Greenshank, Greenshank [832]		Species or species habitat known to occur within area overfly marine area	In feature area
Tringa totanus Common Redshank, Redshank [835]		Species or species habitat known to occur within area overfly marine area	In feature area
Xenus cinereus Terek Sandpiper [59300]		Species or species habitat known to occur within area overfly marine area	In feature area
Fish			
Acentronura larsonae Helen's Pygmy Pipehorse [66186]		Species or species habitat may occur within area	In feature area
Bhanotia fasciolata Corrugated Pipefish, Barbed Pipefish [66188]		Species or species habitat may occur within area	In feature area
Bulbonaricus brauni Braun's Pughead Pipefish, Pug-headed Pipefish [66189]		Species or species habitat may occur within area	In feature area
Campichthys tricarinatus Three-keel Pipefish [66192]		Species or species habitat may occur within area	In feature area
Choeroichthys brachysoma Pacific Short-bodied Pipefish, Short-bodied Pipefish [66194]		Species or species habitat may occur within area	In feature area
Choeroichthys latispinosus Muiron Island Pipefish [66196]		Species or species habitat may occur within area	In feature area

Scientific Name	Threatened Category	Presence Text	Buffer Status
Choeroichthys suillus Pig-snouted Pipefish [66198]		Species or species habitat may occur within area	In feature area
Corythoichthys amplexus Fijian Banded Pipefish, Brown-banded Pipefish [66199]		Species or species habitat may occur within area	In feature area
Corythoichthys flavofasciatus Reticulate Pipefish, Yellow-banded Pipefish, Network Pipefish [66200]		Species or species habitat may occur within area	In feature area
Corythoichthys intestinalis Australian Messmate Pipefish, Banded Pipefish [66202]		Species or species habitat may occur within area	In feature area
Corythoichthys schultzi Schultz's Pipefish [66205]		Species or species habitat may occur within area	In feature area
Cosmocampus banneri Roughridge Pipefish [66206]		Species or species habitat may occur within area	In feature area
Doryrhamphus dactyliophorus Banded Pipefish, Ringed Pipefish [66210]		Species or species habitat may occur within area	In feature area
Doryrhamphus excisus Bluestripe Pipefish, Indian Blue-stripe Pipefish, Pacific Blue-stripe Pipefish [66211]		Species or species habitat may occur within area	In feature area
Doryrhamphus janssi Cleaner Pipefish, Janss' Pipefish [66212]		Species or species habitat may occur within area	In feature area
Doryrhamphus multiannulatus Many-banded Pipefish [66717]		Species or species habitat may occur within area	In feature area
Doryrhamphus negrosensis Flagtail Pipefish, Masthead Island Pipefish [66213]		Species or species habitat may occur within area	In feature area

Scientific Name	Threatened Category	Presence Text	Buffer Status
Festucalex scalaris Ladder Pipefish [66216]		Species or species habitat may occur within area	In feature area
Filicampus tigris Tiger Pipefish [66217]		Species or species habitat may occur within area	In feature area
Halicampus brocki Brock's Pipefish [66219]		Species or species habitat may occur within area	In feature area
Halicampus dunckeri Red-hair Pipefish, Duncker's Pipefish [66220]		Species or species habitat may occur within area	In feature area
Halicampus grayi Mud Pipefish, Gray's Pipefish [66221]		Species or species habitat may occur within area	In feature area
Halicampus nitidus Glittering Pipefish [66224]		Species or species habitat may occur within area	In feature area
Halicampus spinirostris Spiny-snout Pipefish [66225]		Species or species habitat may occur within area	In feature area
Haliichthys taeniophorus Ribboned Pipehorse, Ribboned Seadragon [66226]		Species or species habitat may occur within area	In feature area
Hippichthys penicillus Beady Pipefish, Steep-nosed Pipefish [66231]		Species or species habitat may occur within area	In feature area
Hippocampus angustus Western Spiny Seahorse, Narrow-bellied Seahorse [66234]	i	Species or species habitat may occur within area	In feature area
Hippocampus histrix Spiny Seahorse, Thorny Seahorse [66236]		Species or species habitat may occur within area	In feature area

Scientific Name	Threatened Category	Presence Text	Buffer Status
Hippocampus kuda Spotted Seahorse, Yellow Seahorse [66237]		Species or species habitat may occur within area	In feature area
Hippocampus planifrons Flat-face Seahorse [66238]		Species or species habitat may occur within area	In feature area
<u>Hippocampus spinosissimus</u> Hedgehog Seahorse [66239]		Species or species habitat may occur within area	In feature area
Hippocampus trimaculatus Three-spot Seahorse, Low-crowned Seahorse, Flat-faced Seahorse [66720]		Species or species habitat may occur within area	In feature area
Micrognathus micronotopterus Tidepool Pipefish [66255]		Species or species habitat may occur within area	In feature area
Phoxocampus belcheri Black Rock Pipefish [66719]		Species or species habitat may occur within area	In feature area
Solegnathus hardwickii Pallid Pipehorse, Hardwick's Pipehorse [66272]		Species or species habitat may occur within area	In feature area
Solegnathus lettiensis Gunther's Pipehorse, Indonesian Pipefish [66273]		Species or species habitat may occur within area	In feature area
Solenostomus cyanopterus Robust Ghostpipefish, Blue-finned Ghostpipefish, [66183]	t	Species or species habitat may occur within area	In feature area
Syngnathoides biaculeatus Double-end Pipehorse, Double-ended Pipehorse, Alligator Pipefish [66279]		Species or species habitat may occur within area	In feature area
Trachyrhamphus bicoarctatus Bentstick Pipefish, Bend Stick Pipefish, Short-tailed Pipefish [66280]		Species or species habitat may occur within area	In feature area

Scientific Name	Threatened Category	Presence Text	Buffer Status
Trachyrhamphus longirostris Straightstick Pipefish, Long-nosed Pipefish, Straight Stick Pipefish [66281]		Species or species habitat may occur within area	In feature area
Mammal			
Dugong dugon Dugong [28]		Species or species habitat known to occur within area	In feature area
Reptile			
Acalyptophis peronii Horned Seasnake [1114]		Species or species habitat may occur within area	In feature area
Aipysurus apraefrontalis Short-nosed Seasnake [1115]	Critically Endangered	Species or species habitat known to occur within area	In feature area
Aipysurus duboisii Dubois' Seasnake [1116]		Species or species habitat may occur within area	In feature area
Aipysurus eydouxii Spine-tailed Seasnake [1117]		Species or species habitat may occur within area	In feature area
Aipysurus foliosquama Leaf-scaled Seasnake [1118]	Critically Endangered	Species or species habitat known to occur within area	In feature area
Aipysurus fuscus Dusky Seasnake [1119]		Species or species habitat known to occur within area	In feature area
Aipysurus laevis Olive Seasnake [1120]		Species or species habitat may occur within area	In feature area
Aipysurus tenuis Brown-lined Seasnake [1121]		Species or species habitat may occur within area	In feature area
Astrotia stokesii Stokes' Seasnake [1122]		Species or species habitat may occur within area	In feature area

Scientific Name	Threatened Category	Presence Text	Buffer Status
Caretta caretta Loggerhead Turtle [1763]	Endangered	Breeding known to occur within area	In feature area
<u>Chelonia mydas</u> Green Turtle [1765]	Vulnerable	Breeding known to occur within area	In feature area
Chitulia ornata as Hydrophis ornatus Spotted Seasnake, Ornate Reef Seasnake [87377]		Species or species habitat may occur within area	In feature area
Crocodylus johnstoni Freshwater Crocodile, Johnston's Crocodile, Johnstone's Crocodile [1773]		Species or species habitat may occur within area	In feature area
Crocodylus porosus Salt-water Crocodile, Estuarine Crocodile [1774]		Species or species habitat likely to occur within area	In feature area
<u>Dermochelys coriacea</u> Leatherback Turtle, Leathery Turtle, Luth [1768]	Endangered	Breeding likely to occur within area	In feature area
<u>Disteira kingii</u> Spectacled Seasnake [1123]		Species or species habitat may occur within area	In feature area
<u>Disteira major</u> Olive-headed Seasnake [1124]		Species or species habitat may occur within area	In feature area
Emydocephalus annulatus Turtle-headed Seasnake [1125]		Species or species habitat may occur within area	In feature area
Ephalophis greyi North-western Mangrove Seasnake [1127]		Species or species habitat may occur within area	In feature area
Eretmochelys imbricata Hawksbill Turtle [1766]	Vulnerable	Breeding known to occur within area	In feature area
Hydrelaps darwiniensis Black-ringed Seasnake [1100]		Species or species habitat may occur within area	In feature area

Scientific Name	Threatened Category	Presence Text	Buffer Status
Hydrophis elegans			
Elegant Seasnake [1104]		Species or species habitat may occur within area	In feature area
Hydrophis macdowelli as Hydrophis mcd	<u>owelli</u>		
Small-headed Seasnake [75601]		Species or species habitat may occur within area	In feature area
Lapemis curtus as Lapemis hardwickii			
Spine-bellied Seasnake [83554]		Species or species habitat may occur within area	In feature area
Leioselasma coggeri as Hydrophis cogge	-ri		
Black-headed Sea Snake, Slender- necked Seasnake [87373]	<u></u>	Species or species habitat may occur within area	In feature area
Leioselasma czeblukovi as Hydrophis cz	eblukovi		
Fine-spined Seasnake, Geometrical Seasnake [87374]	<u>CDIGROVI</u>	Species or species habitat may occur within area	In feature area
Lepidochelys olivacea			
Olive Ridley Turtle, Pacific Ridley Turtle [1767]	Endangered	Congregation or aggregation known to occur within area	In feature area
Natator depressus			
Flatback Turtle [59257]	Vulnerable	Breeding known to occur within area	In feature area
Pelamis platurus			
Yellow-bellied Seasnake [1091]		Species or species habitat may occur within area	In feature area

Whales and Other Cetaceans		[Re:	source Information]
Current Scientific Name	Status	Type of Presence	Buffer Status
Mammal			
Balaenoptera acutorostrata			
Minke Whale [33]		Species or species habitat may occur within area	In feature area
Balaenoptera bonaerensis Antarctic Minke Whale, Dark-shoulder Minke Whale [67812]		Species or species habitat likely to occur within area	In feature area

Current Scientific Name	Status	Type of Presence	Buffer Status
Balaenoptera borealis Sei Whale [34]	Vulnerable	Foraging, feeding or related behaviour likely to occur within area	In feature area
Balaenoptera edeni Bryde's Whale [35]		Species or species habitat likely to occur within area	In feature area
Balaenoptera musculus Blue Whale [36]	Endangered	Migration route knows to occur within area	n In feature area
Balaenoptera physalus Fin Whale [37]	Vulnerable	Foraging, feeding or related behaviour likely to occur within area	In feature area
Delphinus delphis Common Dolphin, Short-beaked Common Dolphin [60]		Species or species habitat may occur within area	In feature area
Eubalaena australis Southern Right Whale [40]	Endangered	Species or species habitat may occur within area	In feature area
Feresa attenuata Pygmy Killer Whale [61]		Species or species habitat may occur within area	In feature area
Globicephala macrorhynchus Short-finned Pilot Whale [62]		Species or species habitat may occur within area	In feature area
Grampus griseus Risso's Dolphin, Grampus [64]		Species or species habitat may occur within area	In feature area
Indopacetus pacificus Longman's Beaked Whale [72]		Species or species habitat may occur within area	In feature area
Kogia breviceps Pygmy Sperm Whale [57]		Species or species habitat may occur within area	In feature area

Current Scientific Name	Status	Type of Presence	Buffer Status
Kogia sima as Kogia simus Dwarf Sperm Whale [85043]		Species or species habitat may occur within area	In feature area
<u>Lagenodelphis hosei</u> Fraser's Dolphin, Sarawak Dolphin [41]		Species or species habitat may occur within area	In feature area
Megaptera novaeangliae Humpback Whale [38]	Vulnerable	Breeding known to occur within area	In feature area
Mesoplodon densirostris Blainville's Beaked Whale, Densebeaked Whale [74]		Species or species habitat may occur within area	In feature area
Mesoplodon ginkgodens Gingko-toothed Beaked Whale, Gingko-toothed Whale, Gingko Beaked Whale [59564]		Species or species habitat may occur within area	In feature area
Orcaella heinsohni as Orcaella brevirostr Australian Snubfin Dolphin [81322]	<u>is</u>	Species or species habitat likely to occur within area	In feature area
Orcinus orca Killer Whale, Orca [46]		Species or species habitat may occur within area	In feature area
Peponocephala electra Melon-headed Whale [47]		Species or species habitat may occur within area	In feature area
Physeter macrocephalus Sperm Whale [59]		Species or species habitat may occur within area	In feature area
Pseudorca crassidens False Killer Whale [48]		Species or species habitat likely to occur within area	In feature area
Sousa sahulensis as Sousa chinensis Australian Humpback Dolphin [87942]		Foraging, feeding or related behaviour known to occur within area	In feature area

Current Scientific Name	Status	Type of Presence	Buffer Status
Stenella attenuata Spotted Dolphin, Pantropical Spotter Dolphin [51]	d	Species or species habitat may occur within area	In feature area
Stenella coeruleoalba Striped Dolphin, Euphrosyne Dolphii [52]	n	Species or species habitat may occur within area	In feature area
Stenella longirostris Long-snouted Spinner Dolphin [29]		Species or species habitat may occur within area	In feature area
Steno bredanensis Rough-toothed Dolphin [30]		Species or species habitat may occur within area	In feature area
Tursiops aduncus Indian Ocean Bottlenose Dolphin, Spotted Bottlenose Dolphin [68418]		Species or species habitat likely to occur within area	In feature area
Tursiops aduncus (Arafura/Timor Se Spotted Bottlenose Dolphin (Arafura/Timor Sea populations) [78		Species or species habitat known to occur within area	In feature area
Tursiops truncatus s. str. Bottlenose Dolphin [68417]		Species or species habitat may occur within area	In feature area
Ziphius cavirostris Cuvier's Beaked Whale, Goose-bea Whale [56]	ked	Species or species habitat may occur within area	In feature area

Australian Marine Parks	[Resou	<u>rce Information]</u>
Park Name	Zone & IUCN Categories Bu	uffer Status
Kimberley	Habitat Protection Zone (IUCN In IV)	feature area
Argo-Rowley Terrace	Multiple Use Zone (IUCN VI) In	feature area
Argo-Rowley Terrace	Multiple Use Zone (IUCN VI) In	feature area
Eighty Mile Beach	Multiple Use Zone (IUCN VI) In	feature area
Kimberley	Multiple Use Zone (IUCN VI) In	feature area

Park Name	Zone & IUCN Categories	Buffer Status
Montebello	Multiple Use Zone (IUCN VI)	In feature area
Argo-Rowley Terrace	National Park Zone (IUCN II)	In feature area
Kimberley	National Park Zone (IUCN II)	In feature area
Mermaid Reef	National Park Zone (IUCN II)	In feature area
Argo-Rowley Terrace	Special Purpose Zone (Trawl (IUCN VI)) In feature area

Habitat Critical to the Survival of Marine Turtles			
Scientific Name	Behaviour	Presence	Buffer Status
Aug - Sep			
Natator depressus			
Flatback Turtle [59257]	Nesting	Known to occur	In feature area
Dec - Jan			
Chelonia mydas			
Green Turtle [1765]	Nesting	Known to occur	In feature area
May - Jul			
Lepidochelys olivacea			
Olive Ridley Turtle [1767]	Nesting	Known to occur	In feature area
Nov - May			
Eretmochelys imbricata			
Hawksbill Turtle [1766]	Nesting	Known to occur	In feature area

Extra Information

State and Territory Reserves		[Re	esource Information]
Protected Area Name	Reserve Type	State	Buffer Status
Bardi Jawi	Indigenous Protected Area	WA	In feature area
Barrow Island	Nature Reserve	WA	In feature area
Barrow Island	Marine Park	WA	In feature area
Barrow Island	Marine Management Area	WA	In feature area
Boodie, Double Middle Islands	Nature Reserve	WA	In feature area
Lacepede Islands	Nature Reserve	WA	In feature area
Lowendal Islands	Nature Reserve	WA	In feature area

Protected Area Name	Reserve Type	State	Buffer Status
Montebello Islands	Conservation Park	WA	In feature area
Montebello Islands	Marine Park	WA	In feature area
Montebello Islands	Conservation Park	WA	In feature area
Rowley Shoals	Marine Park	WA	In feature area
Scott Reef	Nature Reserve	WA	In feature area
Unnamed WA37168	5(1)(h) Reserve	WA	In feature area
Unnamed WA40828	5(1)(h) Reserve	WA	In feature area
Unnamed WA41080	5(1)(h) Reserve	WA	In feature area

Nationally Important Wetlands		[Resource Information]
Wetland Name	State	Buffer Status
Mermaid Reef	EXT	In feature area

EPBC Act Referrals			[Resou	rce Information]
Title of referral	Reference	Referral Outcome	Assessment Status	Buffer Status
Controlled action				
2-D seismic survey Scott Reef	2000/125	Controlled Action	Post-Approval	In feature area
Ashburton Infrastructure Project	2021/9064	Controlled Action	Completed	In feature area
Browse FLNG Development, Commonwealth Waters	2013/7079	Controlled Action	Post-Approval	In feature area
Browse to North West Shelf Development, Indian Ocean, WA	2018/8319	Controlled Action	Final PER or EIS	In feature area
Conduct an exploration drilling campaign	2010/5718	Controlled Action	Completed	In feature area
Construct and operate LNG & domestic gas plant including onshore and offshore facilities - Wheatstone	2008/4469	Controlled Action	Post-Approval	In feature area
Development of Angel gas and condensate field, North West Shelf	2004/1805	Controlled Action	Post-Approval	In feature area
<u>Development of Browse Basin Gas</u> <u>Fields (Upstream)</u>	2008/4111	Controlled Action	Completed	In feature area
Echo-Yodel Production Wells	2000/11	Controlled Action	Post-Approval	In feature area

Title of referral	Reference	Referral Outcome	Assessment Status	Buffer Status
Controlled action				
Equus Gas Fields Development Project, Carnarvon Basin	2012/6301	Controlled Action	Completed	In feature area
Gorgon Gas Development	2003/1294	Controlled Action	Post-Approval	In feature area
Gorgon Gas Development 4th Train Proposal	2011/5942	Controlled Action	Post-Approval	In feature area
Gorgon Gas Revised Development	2008/4178	Controlled Action	Post-Approval	In feature area
Greater Gorgon Development - Optical Fibre Cable, Mainland to Barrow Island	2005/2141	Controlled Action	Completed	In feature area
Light Crude Oil Production	2001/365	Controlled Action	Post-Approval	In feature area
Pluto Gas Project	2005/2258	Controlled Action	Completed	In feature area
Pluto Gas Project Including Site B	2006/2968	Controlled Action	Post-Approval	In feature area
Simpson Development	2000/59	Controlled Action	Completed	In feature area
Simpson Oil Field Development	2001/227	Controlled Action	Post-Approval	In feature area
Torosa South Initial Appraisal Drilling	2007/3500	Controlled Action	Completed	In feature area
Not controlled action				
'Goodwyn A' Low Pressure Train Project	2003/914	Not Controlled Action	Completed	In feature area
3D marine seismic survey in WA 314P and WA 315P	2004/1927	Not Controlled Action	Completed	In feature area
Barrow Island 2D Seismic survey	2006/2667	Not Controlled Action	Completed	In feature area
Construction and operation of an unmanned sea platform and connecting pipeline to Varanus Island for the extraction of natural gas	2004/1703	Not Controlled Action	Completed	In feature area
Development of Halyard Field off the west coast of WA	2010/5611	Not Controlled Action	Completed	In feature area
Development of Mutineer and Exeter petroleum fields for oil production, Permit	2003/1033	Not Controlled Action	Completed	In feature area

Title of referral	Reference	Referral Outcome	Assessment Status	Buffer Status
Not controlled action				
<u>Drilling of an exploration well Gats-1</u> <u>in Permit Area WA-261-P</u>	2004/1701	Not Controlled Action	Completed	In feature area
<u>Drilling of exploration wells, Permit</u> <u>areas WA-301-P to WA-305-P</u>	2002/769	Not Controlled Action	Completed	In feature area
Echo A Development WA-23-L, WA-24-L	2005/2042	Not Controlled Action	Completed	In feature area
Exploration of appraisal wells	2006/3065	Not Controlled Action	Completed	In feature area
Extension of Simpson Oil Platforms & Wells	2002/685	Not Controlled Action	Completed	In feature area
HCA05X Macedon Experimental Survey	2004/1926	Not Controlled Action	Completed	In feature area
Huascaran-1 exploration well (WA-292-P)	2001/539	Not Controlled Action	Completed	In feature area
Improving rabbit biocontrol: releasing another strain of RHDV, sthrn two thirds of Australia	2015/7522	Not Controlled Action	Completed	In feature area
Infill Production Well (Griffin-9)	2001/417	Not Controlled Action	Completed	In feature area
Klammer 2D Seismic Survey	2002/868	Not Controlled Action	Completed	In feature area
Maia-Gaea Exploration wells	2000/17	Not Controlled Action	Completed	In feature area
Manaslu - 1 and Huascaran - 1 Offshore Exploration Wells	2001/235	Not Controlled Action	Completed	In feature area
North Rankin B gas compression facility	2005/2500	Not Controlled Action	Completed	In feature area
Pipeline System Modifications Project	2000/3	Not Controlled Action	Completed	In feature area
Project Highclere Geophysical Survey	2021/9023	Not Controlled Action	Completed	In feature area
Searipple gas and condensate field development	2000/89	Not Controlled Action	Completed	In feature area
Subsea Gas Pipeline From Stybarrow Field to Griffin Venture Gas Export Pipeline	2005/2033	Not Controlled Action	Completed	In feature area
sub-sea tieback of Perseus field wells	2004/1326	Not Controlled Action	Completed	In feature area

Title of referral	Reference	Referral Outcome	Assessment Status	Buffer Status
Not controlled action				
Telstra North Rankin Spur Fibre Optic Cable	2016/7836	Not Controlled Action	Completed	In feature area
To construct and operate an offshore submarine fibre optic cable, WA	2014/7373	Not Controlled Action	Completed	In feature area
WA-295-P Kerr-McGee Exploration Wells	2001/152	Not Controlled Action	Completed	In feature area
Wanda Offshore Research Project, 80 km north-east of Exmouth, WA	2018/8293	Not Controlled Action	Completed	In feature area
Western Flank Gas Development	2005/2464	Not Controlled Action	Completed	In feature area
Wheatstone 3D seismic survey, 70km north of Barrow Island	2004/1761	Not Controlled Action	Completed	In feature area
Not controlled action (particular manne))			
'Kate' 3D marine seismic survey, exploration permits WA-320-P and WA-345-P, 60km	2005/2037	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
'Tourmaline' 2D marine seismic survey, permit areas WA-323-P, WA- 330-P and WA-32	2005/2282	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
"Leanne" offshore 3D seismic exploration, WA-356-P	2005/1938	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
2D and 3D seismic surveys	2005/2151	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
2D Seismic Survey	2005/2146	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
2D seismic survey in permit areas WA-274P and WA-281P	2004/1521	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
2D Seismic Survey Permit Area WA- 352-P	2008/4628	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
2D seismic survey within permit WA- 291	2007/3265	Not Controlled Action (Particular	Post-Approval	In feature area

Title of referral	Reference	Referral Outcome	Assessment Status	Buffer Status
Not controlled action (particular manne	er)	Manner)		
2 geotechnical surveys - preliminary and final	2006/2886	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
3D Marine Seismic Survey (WA-482-P, WA-363-P), WA	2013/6761	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
3D Marine Seismic Survey in Permit Areas WA-15-R, WA-18-R, WA-205-P, WA-253-P, WA-267-P and WA-268-P	2003/1271	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
3D Marine Seismic Survey in WA 457-P & WA 458-P, North West Shelf, offshore WA	2013/6862	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
3D marine seismic Survey - Maxima 3D MSS	2006/2945	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
3D Marine Seismic Surveys - Contos CT-13 & Supertubes CT-13, offshore WA	2013/6901	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
3D seismic survey	2006/2715	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
3D Seismic Survey, Browse Basin, WA	2009/5048	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
3D Seismic Survey, near Scott Reef, Browse Basin	2005/2126	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
3D Seismic Survey in the Carnarvon Bsin on the North West Shelf	2002/778	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
3D sesmic survey	2006/2781	Not Controlled Action (Particular Manner)	Post-Approval	In feature area

Title of referral	Reference	Referral Outcome	Assessment Status	Buffer Status
Not controlled action (particular manne Aperio 3D Marine Seismic Survey, WA	2012/6648	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
Artemis-1 Drilling Program (WA-360-P)	2010/5432	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
Aurora MC3D Marine Seismic Survey	2010/5510	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
Babylon 3D Marine Seismic Survey, Commonwealth Waters, nr Exmouth WA	2013/7081	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
Balnaves Condensate Field Development	2011/6188	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
Cable Seismic Exploration Permit areas WA-323-P and WA-330-P	2008/4227	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
Caswell MC3D Marine Seismic Survey	2012/6594	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
CGGVERITAS 2010 2D Seismic Survey	2010/5714	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
Conduct an exploration drilling campaign	2011/5964	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
Consturction & operation of the Varanus Island kitchen & mess cyclone refuge building, compression plant & accomidation camp, Varanus Island	2013/6952	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
Cue Seismic Survey within WA-359-P, WA-361-P and WA-360-P	2007/3647	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
DAVROS MC 3D marine seismic survey northwaet of Dampier, WA	2013/7092	Not Controlled Action	Post-Approval	In feature area

Title of referral	Reference	Referral Outcome	Assessment Status	Buffer Status
Not controlled action (particular manne	er)	(Particular		
		Manner)		
Decommissioning of the Legendre facilities	2010/5681	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
Deep Water Northwest Shelf 2D Seismic Survey	2007/3260	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
Demeter 3D Seismic Survey, off Dampier, WA	2002/900	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
<u>Draeck 3D Marine Seismic Survey.</u> <u>WA-205-P</u>	2006/3067	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
Drilling 35-40 offshore exploration wells in deep water	2008/4461	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
Earthworks for kitchen/mess, cyclone refuge building & Compression Plant, Varanus Island	2013/6900	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
Eendracht Multi-Client 3D Marine Seismic Survey	2009/4749	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
Effect of marine seismic sounds to demersal fish and pearl oysters, north-west WA	2018/8169	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
Endurance 3D Marine Seismic Data Acquisition Survey	2007/3667	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
Exploration drilling of Zeus-1 well	2008/4351	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
Exploration Drilling Program - Permit areas - WA-314-P, WA-315-P, WA-398-P.	2008/4064	Not Controlled Action (Particular Manner)	Post-Approval	In feature area

Title of referral	Reference	Referral Outcome	Assessment Status	Buffer Status
Not controlled action (particular manne	•			
Fletcher-Finucane Development, WA26-L and WA191-P	2011/6123	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
Foxhound 3D Non-Exclusive Marine Seismic Survey	2009/4703	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
Geoscience Australia - Marine survey in Browse Basin to acquire data to assist assessment of CO2 storage potential	2013/6747	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
Gigas 2D Pilot Ocean Bottom Cable Marine Seismic Survey	2007/3839	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
Greater Western Flank Phase 1 gas Development	2011/5980	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
Grimalkin 3D Seismic Survey	2008/4523	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
Harmony 3D Marine Seismic Survey	2012/6699	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
Huzzas MC3D Marine Seismic Survey (HZ-13) Carnarvon Basin, offshore WA	2013/7003	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
Huzzas phase 2 marine seismic survey, Exmouth Plateau, Northern Carnarvon Basin, WA	2013/7093	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
John Ross & Rosella Off Bottom Cable Seismic Exploration Program	2008/3966	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
Judo Marine 3D Seismic Survey within and adjacent to WA-412-P	2008/4630	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
Judo Marine 3D Seismic Survey within and adjacent to WA-412-P	2009/4801	Not Controlled Action (Particular	Post-Approval	In feature area

Title of referral	Reference	Referral Outcome	Assessment Status	Buffer Status
Not controlled action (particular manne	er)	Manner)		
Julimar Brunello Gas Development Project	2011/5936	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
Kingtree & Ironstone-1 Exploration Wells	2011/5935	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
Klimt 2D Marine Seismic Survey	2007/3856	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
Koolama 2D Seismic Survey Dampier Basin	2010/5420	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
Kraken, Lusca & Asperus 3D Marine Seismic Survey	2013/6730	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
Mariner Non-Exclusive 2D Seismic Survey	2011/6172	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
Moosehead 2D seismic survey within permit WA-192-P	2005/2167	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
Munmorah 2D seismic survey within permits WA-308/9-P	2003/970	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
Ocean Bottom Cable Seismic Survey	2005/2017	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
Offshore Canning Multi Client 2D Marine Seismic Survey	2010/5393	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
Offshore Drilling Campaign	2011/5830	Not Controlled Action (Particular Manner)	Post-Approval	In feature area

Title of referral	Reference	Referral Outcome	Assessment Status	Buffer Status
Not controlled action (particular manne Offshore Fibre Optic Cable Network Construction & Operation, Port Hedland WA to Darwin NT	2014/7223	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
Orcus 3D Marine Seismic Survey in WA-450-P	2010/5723	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
Osprey and Dionysus Marine Seismic Survey	2011/6215	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
Outer Canning exploration drilling program off NW coast of WA	2012/6618	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
Phoenix 3D Seismic Survey, Bedout Sub-Basin	2010/5360	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
Pilot Appraisal Well - Torosa South 1	2008/3991	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
Pomodoro 3D Marine Seismic Survey in WA-426-P and WA-427-P	2010/5472	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
Reindeer gas reservior development, Devil Creek, Carnarvon Basin - WA	2007/3917	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
Repsol 3d & 2D Marine Seismic Survey	2012/6658	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
Rose 3D Seismic Program	2008/4239	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
Rosebud 3D Marine Seismic Survey in WA-30-R and TR/5	2012/6493	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
Santos Winchester three dimensional seismic survey - WA-323-P & WA-330-P	2011/6107	Not Controlled Action (Particular	Post-Approval	In feature area

Title of referral	Reference	Referral Outcome	Assessment Status	Buffer Status
Not controlled action (particular mann	er)	Manner)		
Schild Phase 11 MC3D Marine Seismic Survey, Browse Basin	2013/6894	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
Scott Reef Seismic Research	2006/2647	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
Stag 4D & Reindeer MAZ Marine Seismic Surveys, WA	2013/7080	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
Stag Off-bottom Cable Seismic Survey	2007/3696	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
<u>Tidepole Maz 3D Seismic Survey</u> <u>Campaign</u>	2007/3706	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
Torosa-5 Apraisal Well, WA-30-R	2008/4430	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
Tridacna 3D Ocean Bottom Cable Marine Seismic Survey	2011/5959	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
Triton 3D Marine Seismic Survey, WA-2-R and WA-3-R	2006/2609	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
<u>Undertake a 3D marine seismic</u> <u>survey</u>	2010/5695	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
Undertake a three dimensional marine seismic survey	2010/5715	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
Vampire 2D Non Exclusive Seismic Survey, WA	2010/5543	Not Controlled Action (Particular Manner)	Post-Approval	In feature area

Title of referral	Reference	Referral Outcome	Assessment Status	Buffer Status
Not controlled action (particular manne				
Veritas Voyager 2D Marine Seismic Survey	2009/5151	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
Warramunga Non-Inclusive 3D Seismic Survey	2008/4553	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
West Anchor 3D Marine Seismic Survey	2008/4507	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
West Panaeus 3D seismic survey	2006/3141	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
Westralia SPAN Marine Seismic Survey, WA & NT	2012/6463	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
Wheatstone 3D MAZ Marine Seismic Survey	2011/6058	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
Wheatstone lago Appraisal Well Drilling	2008/4134	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
Wheatstone lago Appraisal Well Drilling	2007/3941	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
Woodside Southern Browse 3D Seismic Survey, WA	2007/3534	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
Zeemeermin MC3D seismic survey, Browse Basin, Offshore WA	2009/5023	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
Referral decision				
3D Seismic Survey	2008/4219	Referral Decision	Completed	In feature area
	0044/5055		·	
Aurora extension MC3D Marine Seismic Survey	2011/5887	Referral Decision	Completed	In feature area

Title of referral	Reference	Referral Outcome	Assessment Status	Buffer Status
Referral decision				
Bianchi 3D Marine Seismic Survey, Carnavon Basin, WA	2013/7078	Referral Decision	Completed	In feature area
Experimental Study of Behavioural and Physiological Impact on Fish of Seismic Ex	2006/2625	Referral Decision	Completed	In feature area
Pilot Appraisal Well - Torosa South-1	2008/3985	Referral Decision	Completed	In feature area
Rose 3D Seismic acquisition survey	2008/4220	Referral Decision	Completed	In feature area
Seismic Data Acquisition, Browse Basin	2010/5475	Referral Decision	Completed	In feature area
Two Dimensional Transition Zone Seismic Survey - TP/7 (R1)	2010/5507	Referral Decision	Completed	In feature area
Varanus Island Compression Project	2012/6698	Referral Decision	Completed	In feature area

Key Ecological Features

[Resource Information]

Key Ecological Features are the parts of the marine ecosystem that are considered to be important for the biodiversity or ecosystem functioning and integrity of the Commonwealth Marine Area.

Name	Region	Buffer Status
Ancient coastline at 125 m depth contour	North-west	In feature area
Canyons linking the Argo Abyssal Plain with the Scott Plateau	North-west	In feature area
Canyons linking the Cuvier Abyssal Plain and the Cape Range Peninsula	North-west	In feature area
Continental Slope Demersal Fish Communities	North-west	In feature area
Glomar Shoals	North-west	In feature area
Mermaid Reef and Commonwealth waters surrounding Rowley Shoals	North-west	In feature area
Seringapatam Reef and Commonwealth waters in the Scott Reef Complex	North-west	In feature area

Biologically Important Areas			
Scientific Name	Behaviour	Presence	Buffer Status
Dolphins			
Orcaella heinsohni			
Australian Snubfin Dolphin [81322]	Breeding	Known to occur	In feature area

Scientific Name	Behaviour	Presence	Buffer Status
Orcaella heinsohni Australian Snubfin Dolphin [81322]	Calving	Known to occur	In feature area
Orcaella heinsohni Australian Snubfin Dolphin [81322]	Foraging (high density prey)	Known to occur	In feature area
Orcaella heinsohni Australian Snubfin Dolphin [81322]	Foraging likely	Known to occur	In feature area
Sousa chinensis Indo-Pacific Humpback Dolphin [50]	Foraging	Likely to occur	In feature area
Sousa chinensis Indo-Pacific Humpback Dolphin [50]	Foraging (high density prey)	Known to occur	In feature area
Tursiops aduncus Indo-Pacific/Spotted Bottlenose Dolphin [68418]	Breeding	Known to occur	In feature area
<u>Tursiops aduncus</u> Indo-Pacific/Spotted Bottlenose Dolphin [68418]	Calving	Known to occur	In feature area
Tursiops aduncus Indo-Pacific/Spotted Bottlenose Dolphin [68418]	Foraging	Known to occur	In feature area
Tursiops aduncus Indo-Pacific/Spotted Bottlenose Dolphin [68418]	Foraging likely	Known to occur	In feature area
<u>Tursiops aduncus</u> Indo-Pacific/Spotted Bottlenose Dolphin [68418]	Migration likely	Known to occur	In feature area
Dugong			
<u>Dugong dugon</u> Dugong [28]	Foraging	Likely to occur	In feature area
Marine Turtles			
Caretta caretta Loggerhead Turtle [1763]	Foraging	Known to occur	In feature area
Caretta caretta Loggerhead Turtle [1763]	Internesting buffer	Known to occur	In feature area
Caretta caretta Loggerhead Turtle [1763]	Nesting	Known to occur	In feature area

Scientific Name	Behaviour	Presence	Buffer Status
<u>Chelonia mydas</u> Green Turtle [1765]	Aggregation	Known to occur	In feature area
<u>Chelonia mydas</u> Green Turtle [1765]	Basking	Known to occur	In feature area
Chelonia mydas Green Turtle [1765]	Foraging	Known to occur	In feature area
Chelonia mydas Green Turtle [1765]	Internesting	Known to occur	In feature area
<u>Chelonia mydas</u> Green Turtle [1765]	Internesting	Likely to occur	In feature area
<u>Chelonia mydas</u> Green Turtle [1765]	Internesting buffer	Known to occur	In feature area
Chelonia mydas Green Turtle [1765]	Mating	Known to occur	In feature area
<u>Chelonia mydas</u> Green Turtle [1765]	Nesting	Known to occur	In feature area
Eretmochelys imbricata Hawksbill Turtle [1766]	Foraging	Known to occur	In feature area
Eretmochelys imbricata Hawksbill Turtle [1766]	Internesting	Known to occur	In feature area
Eretmochelys imbricata Hawksbill Turtle [1766]	Internesting buffer	Known to occur	In feature area
Eretmochelys imbricata Hawksbill Turtle [1766]	Mating	Known to occur	In feature area
Eretmochelys imbricata Hawksbill Turtle [1766]	Nesting	Known to occur	In feature area
Natator depressus Flatback Turtle [59257]	Aggregation	Known to occur	In feature area

Scientific Name	Behaviour	Presence	Buffer Status
Natator depressus			
Flatback Turtle [59257]	Foraging	Known to occur	In feature area
Natator depressus			
Flatback Turtle [59257]	Internesting	Known to occur	In feature area
Natator depressus			
Flatback Turtle [59257]	Internesting	Known to occur	In feature area
	buffer		
Natator depressus			
Flatback Turtle [59257]	Mating	Known to occur	In feature area
Natator depressus			
Flatback Turtle [59257]	Nesting	Known to occur	In feature area
River shark			
Pristis clavata			
Dwarf Sawfish [68447]	Foraging	Known to occur	In feature area
Pristis clavata			
Dwarf Sawfish [68447]	Juvenile	Known to occur	In feature area
Pristis clavata			
Dwarf Sawfish [68447]	Nursing	Known to occur	In feature area
	J		
Priotic clayata			
Pristis clavata Dwarf Sawfish [68447]	Pupping	Known to occur	In feature area
2 man earmen [ee i m]	. appg	Tanowii to occur	m roataro aroa
Discourse.			
Pristis pristis Freshwater Sawfish [60756]	Foraging	Known to occur	In feature area
Trestiwater Gawiish [00730]	roraging	Known to occur	iii leature area
Pristis pristis	Niversia	Likabuta aasum	In facture area
Freshwater Sawfish [60756]	Nursing	Likely to occur	In feature area
Pristis zijsron			
Green Sawfish [68442]	Foraging	Known to occur	In feature area
Pristis zijsron			
Green Sawfish [68442]	Pupping	Known to occur	In feature area
-	-		
Seabirds			
Ardenna pacifica			
Wedge-tailed Shearwater [84292]	Breeding	Known to occur	In feature area

Scientific Name	Behaviour	Presence	Buffer Status
Fregata ariel Lesser Frigatebird [1012]	Breeding	Known to occur	In feature area
Fregata minor Greater Frigatebird [1013]	Breeding	Known to occur	In feature area
Phaethon lepturus White-tailed Tropicbird [1014]	Breeding	Known to occur	In feature area
Sterna dougallii Roseate Tern [817]	Breeding	Known to occur	In feature area
Sterna dougallii Roseate Tern [817]	Resting	Known to occur	In feature area
Sternula albifrons sinensis Little Tern [82850]	Breeding	Known to occur	In feature area
Sternula albifrons sinensis Little Tern [82850]	Resting	Known to occur	In feature area
Sternula nereis Fairy Tern [82949]	Breeding	Known to occur	In feature area
Sula leucogaster Brown Booby [1022]	Breeding	Known to occur	In feature area
Sula sula Red-footed Booby [1023]	Breeding	Known to occur	In feature area
<u>Thalasseus bengalensis</u> Lesser Crested Tern [66546]	Breeding	Known to occur	In feature area
Sharks			
Rhincodon typus Whale Shark [66680]	Foraging	Known to occur	In feature area
Whales Balaenoptera musculus brevicauda Pygmy Blue Whale [81317]	Distribution	Known to occur	In feature area
Balaenoptera musculus brevicauda Pygmy Blue Whale [81317]	Foraging	Known to occur	In feature area

Scientific Name	Behaviour	Presence	Buffer Status
Balaenoptera musculus brevicauda Pygmy Blue Whale [81317]	Migration	Known to occui	In feature area
Megaptera novaeangliae Humpback Whale [38]	Calving	Known to occur	In feature area
Megaptera novaeangliae Humpback Whale [38]	Migration	Known to occul	In feature area
Megaptera novaeangliae Humpback Whale [38]	Migration (north and south)	Known to occur	In feature area
Megaptera novaeangliae Humpback Whale [38]	Nursing	Known to occur	· In feature area
Megaptera novaeangliae Humpback Whale [38]	Resting	Known to occu	In feature area

Caveat

1 PLIRPOSE

This report is designed to assist in identifying the location of matters of national environmental significance (MNES) and other matters protected by the Environment Protection and Biodiversity Conservation Act 1999 (Cth) (EPBC Act) which may be relevant in determining obligations and requirements under the EPBC Act.

The report contains the mapped locations of:

- · World and National Heritage properties;
- · Wetlands of International and National Importance;
- Commonwealth and State/Territory reserves;
- · distribution of listed threatened, migratory and marine species;
- · listed threatened ecological communities; and
- other information that may be useful as an indicator of potential habitat value.

2 DISCLAIMER

This report is not intended to be exhaustive and should only be relied upon as a general guide as mapped data is not available for all species or ecological communities listed under the EPBC Act (see below). Persons seeking to use the information contained in this report to inform the referral of a proposed action under the EPBC Act should consider the limitations noted below and whether additional information is required to determine the existence and location of MNES and other protected matters.

Where data are available to inform the mapping of protected species, the presence type (e.g. known, likely or may occur) that can be determined from the data is indicated in general terms. It is the responsibility of any person using or relying on the information in this report to ensure that it is suitable for the circumstances of any proposed use. The Commonwealth cannot accept responsibility for the consequences of any use of the report or any part thereof. To the maximum extent allowed under governing law, the Commonwealth will not be liable for any loss or damage that may be occasioned directly or indirectly through the use of, or reliance

3 DATA SOURCES

Threatened ecological communities

For threatened ecological communities where the distribution is well known, maps are generated based on information contained in recovery plans, State vegetation maps and remote sensing imagery and other sources. Where threatened ecological community distributions are less well known, existing vegetation maps and point location data are used to produce indicative distribution maps.

Threatened, migratory and marine species

Threatened, migratory and marine species distributions have been discerned through a variety of methods. Where distributions are well known and if time permits, distributions are inferred from either thematic spatial data (i.e. vegetation, soils, geology, elevation, aspect, terrain, etc.) together with point locations and described habitat; or modelled (MAXENT or BIOCLIM habitat modelling) using

Where little information is available for a species or large number of maps are required in a short time-frame, maps are derived either from 0.04 or 0.02 decimal degree cells; by an automated process using polygon capture techniques (static two kilometre grid cells, alpha-hull and convex hull); or captured manually or by using topographic features (national park boundaries, islands, etc.).

In the early stages of the distribution mapping process (1999-early 2000s) distributions were defined by degree blocks, 100K or 250K map sheets to rapidly create distribution maps. More detailed distribution mapping methods are used to update these distributions

4 LIMITATIONS

The following species and ecological communities have not been mapped and do not appear in this report:

- threatened species listed as extinct or considered vagrants;
- · some recently listed species and ecological communities;
- some listed migratory and listed marine species, which are not listed as threatened species; and
- migratory species that are very widespread, vagrant, or only occur in Australia in small numbers.

The following groups have been mapped, but may not cover the complete distribution of the species:

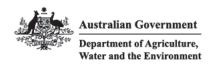
- listed migratory and/or listed marine seabirds, which are not listed as threatened, have only been mapped for recorded
- seals which have only been mapped for breeding sites near the Australian continent

The breeding sites may be important for the protection of the Commonwealth Marine environment.

Refer to the metadata for the feature group (using the Resource Information link) for the currency of the information.

Acknowledgements

This database has been compiled from a range of data sources. The department acknowledges the following custodians who have contributed valuable data and advice:


- -Office of Environment and Heritage, New South Wales
- -Department of Environment and Primary Industries, Victoria
- -Department of Primary Industries, Parks, Water and Environment, Tasmania
- -Department of Environment, Water and Natural Resources, South Australia
- -Department of Land and Resource Management, Northern Territory
- -Department of Environmental and Heritage Protection, Queensland
- -Department of Parks and Wildlife, Western Australia
- -Environment and Planning Directorate, ACT
- -Birdlife Australia
- -Australian Bird and Bat Banding Scheme
- -Australian National Wildlife Collection
- -Natural history museums of Australia
- -Museum Victoria
- -Australian Museum
- -South Australian Museum
- -Queensland Museum
- -Online Zoological Collections of Australian Museums
- -Queensland Herbarium
- -National Herbarium of NSW
- -Royal Botanic Gardens and National Herbarium of Victoria
- -Tasmanian Herbarium
- -State Herbarium of South Australia
- -Northern Territory Herbarium
- -Western Australian Herbarium
- -Australian National Herbarium, Canberra
- -University of New England
- -Ocean Biogeographic Information System
- -Australian Government, Department of Defence
- Forestry Corporation, NSW
- -Geoscience Australia
- -CSIRO
- -Australian Tropical Herbarium, Cairns
- -eBird Australia
- -Australian Government Australian Antarctic Data Centre
- -Museum and Art Gallery of the Northern Territory
- -Australian Government National Environmental Science Program
- -Australian Institute of Marine Science
- -Reef Life Survey Australia
- -American Museum of Natural History
- -Queen Victoria Museum and Art Gallery, Inveresk, Tasmania
- -Tasmanian Museum and Art Gallery, Hobart, Tasmania
- -Other groups and individuals

The Department is extremely grateful to the many organisations and individuals who provided expert advice and information on numerous draft distributions.

Please feel free to provide feedback via the Contact Us page.

© Commonwealth of Australia

Department of Agriculture Water and the Environment
GPO Box 858
Canberra City ACT 2601 Australia
+61 2 6274 1111

EPBC Act Protected Matters Report

This report provides general guidance on matters of national environmental significance and other matters protected by the EPBC Act in the area you have selected. Please see the caveat for interpretation of information provided here.

Report created: 17-Feb-2022

Summary

Details

Matters of NES

Other Matters Protected by the EPBC Act

Extra Information

Caveat

Acknowledgements

Summary

Matters of National Environment Significance

This part of the report summarises the matters of national environmental significance that may occur in, or may relate to, the area you nominated. Further information is available in the detail part of the report, which can be accessed by scrolling or following the links below. If you are proposing to undertake an activity that may have a significant impact on one or more matters of national environmental significance then you should consider the <u>Administrative Guidelines on Significance</u>.

World Heritage Properties:	1
National Heritage Places:	2
Wetlands of International Importance (Ramsar	4
Great Barrier Reef Marine Park:	None
O HU BA : A	_
Commonwealth Marine Area:	7
<u>Listed Threatened Ecological Communities:</u>	7 1
	7 1 69

Other Matters Protected by the EPBC Act

This part of the report summarises other matters protected under the Act that may relate to the area you nominated. Approval may be required for a proposed activity that significantly affects the environment on Commonwealth land, when the action is outside the Commonwealth land, or the environment anywhere when the action is taken on Commonwealth land. Approval may also be required for the Commonwealth or Commonwealth agencies proposing to take an action that is likely to have a significant impact on the

The EPBC Act protects the environment on Commonwealth land, the environment from the actions taken on Commonwealth land, and the environment from actions taken by Commonwealth agencies. As heritage values of a place are part of the 'environment', these aspects of the EPBC Act protect the Commonwealth Heritage values of a Commonwealth Heritage place. Information on the new heritage laws can be found at http://www.environment.gov.au/heritage

A <u>permit</u> may be required for activities in or on a Commonwealth area that may affect a member of a listed threatened species or ecological community, a member of a listed migratory species, whales and other cetaceans, or a member of a listed marine species.

Commonwealth Lands:	9
Commonwealth Heritage Places:	3
<u>Listed Marine Species:</u>	124
Whales and Other Cetaceans:	27
Critical Habitats:	None
Commonwealth Reserves Terrestrial:	1
Australian Marine Parks:	18
Habitat Critical to the Survival of Marine Turtles:	5

Extra Information

This part of the report provides information that may also be relevant to the area you have

State and Territory Reserves:	20
Regional Forest Agreements:	None
Nationally Important Wetlands:	6
EPBC Act Referrals:	181
Key Ecological Features (Marine):	10
Biologically Important Areas:	78
Bioregional Assessments:	None
Geological and Bioregional Assessments:	None

Details

Matters of National Environmental Significance

World Heritage Properties		[Res	source Information]
Name	State	Legal Status	Buffer Status
Kakadu National Park	NT	Declared property	In feature area

National Heritage Places		<u>[F</u>	Resource Information]
Name	State	Legal Status	Buffer Status
Natural			
Kakadu National Park	NT	Listed place	In feature area
The West Kimberley	WA	Listed place	In feature area

Wetlands of International Importance (Ramsar Wetlands)	[Resource Information]	
Ramsar Site Name	Proximity	Buffer Status
Ashmore reef national nature reserve	Within Ramsar site	In feature area
Cobourg peninsula	Within Ramsar site	In feature area
Kakadu national park	Within Ramsar site	In feature area
Ord river floodplain	Within Ramsar site	In feature area

Commonwealth Marine Area

[Resource Information]

Approval is required for a proposed activity that is located within the Commonwealth Marine Area which has, will have, or is likely to have a significant impact on the environment. Approval may be required for a proposed action taken outside a Commonwealth Marine Area but which has, may have or is likely to have a significant impact on the environment in the Commonwealth Marine Area.

Feature Name	Buffer Status
EEZ and Territorial Sea	In feature area
Extended Continental Shelf	In feature area
Extended Continental Shelf	In feature area
Extended Continental Shelf	In feature area
Extended Continental Shelf	In feature area
Extended Continental Shelf	In feature area
Extended Continental Shelf	In feature area

Listed Threatened Ecological Communities

[Resource Information]

For threatened ecological communities where the distribution is well known, maps are derived from recovery plans, State vegetation maps, remote sensing imagery and other sources. Where threatened ecological community distributions are less well known, existing vegetation maps and point location data are used to produce indicative distribution maps.

Status of Vulnerable, Disallowed and Ineligible are not MNES under the EPBC Act.

Community Name	Threatened Category	Presence Text	Buffer Status
Monsoon vine thickets on the coastal sand dunes of Dampier Peninsula	Endangered	Community likely to occur within area	In feature area

Listed Threatened Species		[Res	source Information]	
Status of Conservation Dependent and Extinct are not MNES under the EPBC Act. Number is the current name ID.				
Scientific Name	Threatened Category	Presence Text	Buffer Status	
BIRD				
Anous tenuirostris melanops Australian Lesser Noddy [26000]	Vulnerable	Breeding known to occur within area	In feature area	
Calidris canutus Red Knot, Knot [855]	Endangered	Species or species habitat known to occur within area	In feature area	
Calidris ferruginea Curlew Sandpiper [856]	Critically Endangered	Species or species habitat known to occur within area	In feature area	
Calidris tenuirostris Great Knot [862]	Critically Endangered	Species or species habitat likely to occur within area	In feature area	
<u>Charadrius leschenaultii</u> Greater Sand Plover, Large Sand Plover [877]	Vulnerable	Species or species habitat known to occur within area	In feature area	
Epthianura crocea tunneyi Alligator Rivers Yellow Chat, Yellow Chat (Alligator Rivers) [67089]	Endangered	Species or species habitat known to occur within area	In feature area	
Erythrotriorchis radiatus Red Goshawk [942]	Vulnerable	Species or species habitat known to occur within area	In feature area	
Erythrura gouldiae Gouldian Finch [413]	Endangered	Species or species habitat known to	In feature area	

occur within area

Scientific Name	Threatened Category	Presence Text	Buffer Status
Falco hypoleucos Grey Falcon [929]	Vulnerable	Species or species habitat known to occur within area	In feature area
Falcunculus frontatus whitei Crested Shrike-tit (northern), Northern Shrike-tit [26013]	Vulnerable	Species or species habitat likely to occur within area	In feature area
Geophaps smithii blaauwi Partridge Pigeon (western) [66501]	Vulnerable	Species or species habitat likely to occur within area	In feature area
Geophaps smithii smithii Partridge Pigeon (eastern) [64441]	Vulnerable	Species or species habitat known to occur within area	In feature area
Limosa lapponica baueri Nunivak Bar-tailed Godwit, Western Alaskan Bar-tailed Godwit [86380]	Vulnerable	Species or species habitat known to occur within area	In feature area
Limosa Iapponica menzbieri Northern Siberian Bar-tailed Godwit, Russkoye Bar-tailed Godwit [86432]	Critically Endangered	Species or species habitat known to occur within area	In feature area
Melanodryas cucullata melvillensis Tiwi Islands Hooded Robin, Hooded Robin (Tiwi Islands) [67092]	Critically Endangered	Species or species habitat known to occur within area	In feature area
Mirafra javanica melvillensis Horsfield's Bushlark (Tiwi Islands) [81011]	Vulnerable	Species or species habitat known to occur within area	In feature area
Numenius madagascariensis Eastern Curlew, Far Eastern Curlew [847]	Critically Endangered	Species or species habitat known to occur within area	In feature area
Papasula abbotti Abbott's Booby [59297]	Endangered	Species or species habitat may occur within area	In feature area
Pezoporus occidentalis Night Parrot [59350]	Endangered	Species or species habitat may occur within area	In feature area

Scientific Name	Threatened Category	Presence Text	Buffer Status
Polytelis alexandrae Princess Parrot, Alexandra's Parrot [758]	Vulnerable	Species or species habitat known to occur within area	In feature area
Rostratula australis Australian Painted Snipe [77037]	Endangered	Species or species habitat likely to occur within area	In feature area
Tyto novaehollandiae kimberli Masked Owl (northern) [26048]	Vulnerable	Species or species habitat known to occur within area	In feature area
Tyto novaehollandiae melvillensis Tiwi Masked Owl, Tiwi Islands Masked Owl [26049]	Endangered	Species or species habitat known to occur within area	In feature area
FISH			
Thunnus maccoyii Southern Bluefin Tuna [69402]	Conservation Dependent	Breeding known to occur within area	In feature area
MAMMAL			
Antechinus bellus Fawn Antechinus [344]	Vulnerable	Species or species habitat known to occur within area	In feature area
Balaenoptera borealis Sei Whale [34]	Vulnerable	Foraging, feeding or related behaviour likely to occur within area	In feature area
Balaenoptera musculus Blue Whale [36]	Endangered	Migration route knows to occur within area	n In feature area
Balaenoptera physalus Fin Whale [37]	Vulnerable	Foraging, feeding or related behaviour likely to occur within area	In feature area
Conilurus penicillatus Brush-tailed Rabbit-rat, Brush-tailed Tree-rat, Pakooma [132]	Vulnerable	Species or species habitat known to occur within area	In feature area

Scientific Name	Threatened Category	Presence Text	Buffer Status
<u>Dasyurus hallucatus</u> Northern Quoll, Digul [Gogo-Yimidir], Wijingadda [Dambimangari], Wiminji [Martu] [331]	Endangered	Species or species habitat known to occur within area	In feature area
Isoodon auratus auratus Golden Bandicoot (mainland) [66665]	Vulnerable	Species or species habitat likely to occur within area	In feature area
Macroderma gigas Ghost Bat [174]	Vulnerable	Species or species habitat known to occur within area	In feature area
Macrotis lagotis Greater Bilby [282]	Vulnerable	Species or species habitat known to occur within area	In feature area
Megaptera novaeangliae Humpback Whale [38]	Vulnerable	Breeding known to occur within area	In feature area
Mesembriomys gouldii gouldii Black-footed Tree-rat (Kimberley and mainland Northern Territory), Djintamoonga, Manbul [87618]	Endangered	Species or species habitat known to occur within area	In feature area
Mesembriomys gouldii melvillensis Black-footed Tree-rat (Melville Island) [87619]	Vulnerable	Species or species habitat known to occur within area	In feature area
Petrogale concinna canescens Nabarlek (Top End) [87606]	Endangered	Species or species habitat known to occur within area	In feature area
Petrogale concinna monastria Nabarlek (Kimberley) [87607]	Endangered	Species or species habitat known to occur within area	In feature area
Phascogale pirata Northern Brush-tailed Phascogale [82954]	Vulnerable	Species or species habitat known to occur within area	In feature area
Phascogale tapoatafa kimberleyensis Kimberley brush-tailed phascogale, Brush-tailed Phascogale (Kimberley) [88453]	Vulnerable	Species or species habitat likely to occur within area	In feature area

Scientific Name	Threatened Category	Presence Text	Buffer Status
Saccolaimus saccolaimus nudicluniatus			
Bare-rumped Sheath-tailed Bat, Bare- rumped Sheathtail Bat [66889]	Vulnerable	Species or species habitat known to occur within area	In feature area
Sminthopsis butleri			
Butler's Dunnart [302]	Vulnerable	Species or species habitat known to occur within area	In feature area
Trichosurus vulpecula arnhemensis			
Northern Brushtail Possum [83091]	Vulnerable	Species or species habitat known to occur within area	In feature area
Xeromys myoides			
Water Mouse, False Water Rat, Yirrkoo [66]	Vulnerable	Species or species habitat known to occur within area	In feature area
PLANT			
Burmannia sp. Bathurst Island (R.Fensha	•		
[82017]	Endangered	Species or species habitat likely to occur within area	In feature area
Hoya australis subsp. oramicola			
a vine [55436]	Vulnerable	Species or species habitat known to occur within area	In feature area
Mitrella tiwiensis			
a vine [82029]	Vulnerable	Species or species habitat likely to occur within area	In feature area
Typhonium jonesii			
a herb [62412]	Endangered	Species or species habitat known to occur within area	In feature area
Typhonium mirabile			
a herb [79227]	Endangered	Species or species habitat known to occur within area	In feature area
Xylopia monosperma			
a shrub [82030]	Endangered	Species or species habitat known to occur within area	In feature area
REPTILE			
Acanthophis hawkei			
Plains Death Adder [83821]	Vulnerable	Species or species habitat likely to occur within area	In feature area

Scientific Name	Threatened Category	Presence Text	Buffer Status
Aipysurus apraefrontalis Short-nosed Seasnake [1115]	Critically Endangered	Species or species habitat known to occur within area	In feature area
Aipysurus foliosquama Leaf-scaled Seasnake [1118]	Critically Endangered	Species or species habitat may occur within area	In feature area
Caretta caretta Loggerhead Turtle [1763]	Endangered	Foraging, feeding or related behaviour known to occur within area	In feature area
<u>Chelonia mydas</u> Green Turtle [1765]	Vulnerable	Breeding known to occur within area	In feature area
Cryptoblepharus gurrmul Arafura Snake-eyed Skink [83106]	Endangered	Species or species habitat known to occur within area	In feature area
<u>Dermochelys coriacea</u> Leatherback Turtle, Leathery Turtle, Luth [1768]	Endangered	Foraging, feeding or related behaviour known to occur within area	In feature area
Eretmochelys imbricata Hawksbill Turtle [1766]	Vulnerable	Breeding known to occur within area	In feature area
<u>Lepidochelys olivacea</u> Olive Ridley Turtle, Pacific Ridley Turtle [1767]	Endangered	Breeding known to occur within area	In feature area
Lucasium occultum Yellow-snouted Gecko, Yellow-snouted Ground Gecko [82993]	Endangered	Species or species habitat may occur within area	In buffer area only
Natator depressus Flatback Turtle [59257]	Vulnerable	Breeding known to occur within area	In feature area
SHARK			
Carcharodon carcharias White Shark, Great White Shark [64470]	Vulnerable	Species or species habitat may occur within area	In feature area
Glyphis garricki Northern River Shark, New Guinea River Shark [82454]	Endangered	Breeding known to occur within area	In feature area

Scientific Name	Threatened Category	Presence Text	Buffer Status
Glyphis glyphis Speartooth Shark [82453]	Critically Endangered	Species or species habitat known to occur within area	In feature area
Pristis clavata Dwarf Sawfish, Queensland Sawfish [68447]	Vulnerable	Breeding known to occur within area	In feature area
Pristis pristis Freshwater Sawfish, Largetooth Sawfish, River Sawfish, Leichhardt's Sawfish, Northern Sawfish [60756]	Vulnerable	Species or species habitat known to occur within area	In feature area
Pristis zijsron Green Sawfish, Dindagubba, Narrowsnout Sawfish [68442]	Vulnerable	Breeding known to occur within area	In feature area
Rhincodon typus Whale Shark [66680]	Vulnerable	Foraging, feeding or related behaviour known to occur within area	In feature area
Sphyrna lewini Scalloped Hammerhead [85267]	Conservation Dependent	Species or species habitat known to	In feature area
	·	occur within area	
Listed Migratory Species	·		source Information]
Listed Migratory Species Scientific Name	Threatened Category		source Information] Buffer Status
		[<u>Re</u> :	
Scientific Name		[<u>Re</u> :	
Scientific Name Migratory Marine Birds Anous stolidus		Presence Text Breeding known to	Buffer Status
Scientific Name Migratory Marine Birds Anous stolidus Common Noddy [825] Apus pacificus		Presence Text Breeding known to occur within area Species or species habitat likely to occur	Buffer Status In feature area
Scientific Name Migratory Marine Birds Anous stolidus Common Noddy [825] Apus pacificus Fork-tailed Swift [678]		Presence Text Breeding known to occur within area Species or species habitat likely to occur within area Breeding known to	In feature area In feature area

Scientific Name	Threatened Category	Presence Text	Buffer Status
Fregata minor Great Frigatebird, Greater Frigatebird [1013]		Breeding known to occur within area	In feature area
Hydroprogne caspia Caspian Tern [808]		Breeding known to occur within area	In feature area
Onychoprion anaethetus Bridled Tern [82845]		Breeding known to occur within area	In feature area
Phaethon lepturus White-tailed Tropicbird [1014]		Breeding known to occur within area	In feature area
Phaethon rubricauda Red-tailed Tropicbird [994]		Breeding known to occur within area	In feature area
Sterna dougallii Roseate Tern [817]		Breeding known to occur within area	In feature area
Sternula albifrons Little Tern [82849]		Breeding known to occur within area	In feature area
Sula dactylatra Masked Booby [1021]		Breeding known to occur within area	In feature area
Sula leucogaster Brown Booby [1022]		Breeding known to occur within area	In feature area
Sula sula Red-footed Booby [1023]		Breeding known to occur within area	In feature area
Migratory Marine Species			
Anoxypristis cuspidata Narrow Sawfish, Knifetooth Sawfish [68448]		Species or species habitat known to occur within area	In feature area
Balaenoptera borealis Sei Whale [34]	Vulnerable	Foraging, feeding or related behaviour likely to occur within area	In feature area
Balaenoptera edeni Bryde's Whale [35]		Species or species habitat likely to occur within area	In feature area

Scientific Name	Threatened Category	Presence Text	Buffer Status
Balaenoptera musculus Blue Whale [36]	Endangered	Migration route knows to occur within area	า In feature area
Balaenoptera physalus Fin Whale [37]	Vulnerable	Foraging, feeding or related behaviour likely to occur within area	In feature area
Carcharhinus longimanus Oceanic Whitetip Shark [84108]		Species or species habitat may occur within area	In feature area
Carcharodon carcharias White Shark, Great White Shark [64470]	Vulnerable	Species or species habitat may occur within area	In feature area
Caretta caretta Loggerhead Turtle [1763]	Endangered	Foraging, feeding or related behaviour known to occur within area	In feature area
Chelonia mydas Green Turtle [1765]	Vulnerable	Breeding known to occur within area	In feature area
Crocodylus porosus Salt-water Crocodile, Estuarine Crocodile [1774]		Species or species habitat likely to occur within area	
<u>Dermochelys coriacea</u> Leatherback Turtle, Leathery Turtle, Luth [1768]	Endangered	Foraging, feeding or related behaviour known to occur within area	In feature area
<u>Dugong dugon</u> Dugong [28]		Breeding known to occur within area	In feature area
Eretmochelys imbricata Hawksbill Turtle [1766]	Vulnerable	Breeding known to occur within area	In feature area
Isurus oxyrinchus Shortfin Mako, Mako Shark [79073]		Species or species habitat likely to occur within area	In feature area

Scientific Name	Threatened Category	Presence Text	Buffer Status
Isurus paucus Longfin Mako [82947]		Species or species habitat likely to occur within area	In feature area
<u>Lepidochelys olivacea</u> Olive Ridley Turtle, Pacific Ridley Turtle [1767]	Endangered	Breeding known to occur within area	In feature area
Megaptera novaeangliae Humpback Whale [38]	Vulnerable	Breeding known to occur within area	In feature area
Mobula alfredi as Manta alfredi Reef Manta Ray, Coastal Manta Ray [90033]		Species or species habitat known to occur within area	In feature area
Mobula birostris as Manta birostris Giant Manta Ray [90034]		Species or species habitat likely to occur within area	In feature area
Natator depressus Flatback Turtle [59257]	Vulnerable	Breeding known to occur within area	In feature area
Orcaella heinsohni Australian Snubfin Dolphin [81322]		Species or species habitat known to occur within area	In feature area
Orcinus orca Killer Whale, Orca [46]		Species or species habitat may occur within area	In feature area
Physeter macrocephalus Sperm Whale [59]		Species or species habitat may occur within area	In feature area
Pristis clavata Dwarf Sawfish, Queensland Sawfish [68447]	Vulnerable	Breeding known to occur within area	In feature area
Pristis pristis Freshwater Sawfish, Largetooth Sawfish, River Sawfish, Leichhardt's Sawfish, Northern Sawfish [60756]	Vulnerable	Species or species habitat known to occur within area	In feature area
Pristis zijsron Green Sawfish, Dindagubba, Narrowsnout Sawfish [68442]	Vulnerable	Breeding known to occur within area	In feature area

Scientific Name	Threatened Category	Presence Text	Buffer Status
Rhincodon typus Whale Shark [66680]	Vulnerable	Foraging, feeding or related behaviour known to occur within area	In feature area
Sousa sahulensis as Sousa chinensis Australian Humpback Dolphin [87942]		Breeding known to occur within area	In feature area
Tursiops aduncus (Arafura/Timor Sea po Spotted Bottlenose Dolphin (Arafura/Timor Sea populations) [78900]		Species or species habitat known to occur within area	In feature area
Migratory Terrestrial Species			
Cecropis daurica Red-rumped Swallow [80610]		Species or species habitat may occur within area	In feature area
Cuculus optatus Oriental Cuckoo, Horsfield's Cuckoo [86651]		Species or species habitat known to occur within area	In feature area
Hirundo rustica Barn Swallow [662]		Species or species habitat known to occur within area	In feature area
Motacilla cinerea Grey Wagtail [642]		Species or species habitat known to occur within area	In feature area
Motacilla flava Yellow Wagtail [644]		Species or species habitat known to occur within area	In feature area
Rhipidura rufifrons Rufous Fantail [592]		Species or species habitat known to occur within area	In feature area
Migratory Wetlands Species			
Acrocephalus orientalis Oriental Reed-Warbler [59570]		Species or species habitat known to occur within area	In feature area
Actitis hypoleucos Common Sandpiper [59309]		Species or species habitat known to occur within area	In feature area

Scientific Name	Threatened Category	Presence Text	Buffer Status
Calidris acuminata Sharp-tailed Sandpiper [874]		Species or species habitat known to occur within area	In feature area
Calidris canutus Red Knot, Knot [855]	Endangered	Species or species habitat known to occur within area	In feature area
Calidris ferruginea Curlew Sandpiper [856]	Critically Endangered	Species or species habitat known to occur within area	In feature area
Calidris melanotos Pectoral Sandpiper [858]		Species or species habitat known to occur within area	In feature area
Calidris tenuirostris Great Knot [862]	Critically Endangered	Species or species habitat likely to occur within area	In feature area
Charadrius leschenaultii Greater Sand Plover, Large Sand Plover [877]	Vulnerable	Species or species habitat known to occur within area	In feature area
Charadrius veredus Oriental Plover, Oriental Dotterel [882]		Species or species habitat may occur within area	In feature area
Glareola maldivarum Oriental Pratincole [840]		Species or species habitat may occur within area	In feature area
<u>Limnodromus semipalmatus</u> Asian Dowitcher [843]		Species or species habitat known to occur within area	In feature area
<u>Limosa Iapponica</u> Bar-tailed Godwit [844]		Species or species habitat known to occur within area	In feature area
Limosa limosa Black-tailed Godwit [845]		Species or species habitat likely to occur within area	In feature area

Scientific Name	Threatened Category	Presence Text	Buffer Status
Numenius madagascariensis Eastern Curlew, Far Eastern Curlew [847]	Critically Endangered	Species or species habitat known to occur within area	In feature area
Numenius phaeopus Whimbrel [849]		Species or species habitat likely to occur within area	In feature area
Pandion haliaetus Osprey [952]		Breeding known to occur within area	In feature area
Pluvialis squatarola Grey Plover [865]		Species or species habitat likely to occur within area	In feature area
Thalasseus bergii Greater Crested Tern [83000]		Breeding known to occur within area	In feature area
Tringa nebularia Common Greenshank, Greenshank [832]		Species or species habitat likely to occur within area	In feature area
Tringa stagnatilis Marsh Sandpiper, Little Greenshank [833]		Species or species habitat likely to occur within area	In feature area
Xenus cinereus Terek Sandpiper [59300]		Species or species habitat likely to occur within area	In feature area

Other Matters Protected by the EPBC Act

Commonwealth Lands [Resource Information]

The Commonwealth area listed below may indicate the presence of Commonwealth land in this vicinity. Due to the unreliability of the data source, all proposals should be checked as to whether it impacts on a Commonwealth area, before making a definitive decision. Contact the State or Territory government land department for further information.

Commonwealth Land Name	State	Buffer Status
Defence		
Defence - MT GOODWIN RADAR SITE [70063]	NT	In feature area
Defence - YAMPI SOUND TRAINING AREA [50145]	WA	In feature area
Environment and Heritage		
Commonwealth Land - Kakadu National Park [70850]	NT	In buffer area only

Commonwealth Land Name	State	Buffer Status
Commonwealth Land - Kakadu National Park [71139]	NT	In feature area
Commonwealth Land - Kakadu National Park [70835]	NT	In feature area
Unknown		
Commonwealth Land - [71140]	NT	In feature area
Commonwealth Land - [52276]	ACI	In feature area
Commonwealth Land - [52277]	ACI	In feature area
Commonwealth Land - [52278]	ACI	In feature area
Commonwealth Heritage Places	[Re	source Information 1

Commonwealth Heritage Places			[Resource Information]
Name	State	Status	Buffer Status
Natural			
Ashmore Reef National Nature Reserve	EXT	Listed place	In feature area
Scott Reef and Surrounds - Commonwealth Area	EXT	Listed place	In feature area
Yampi Defence Area	WA	Listed place	In feature area

Listed Marine Species		[Re	esource Information
Scientific Name	Threatened Category	Presence Text	Buffer Status
Bird			
Acrocephalus orientalis			
Oriental Reed-Warbler [59570]		Species or species habitat known to occur within area overfly marine area	In feature area
Actitis hypoleucos			
Common Sandpiper [59309]		Species or species habitat known to occur within area	In feature area
Anous minutus			
Black Noddy [824]		Breeding known to occur within area	In feature area
Anous stolidus			
Common Noddy [825]		Breeding known to occur within area	In feature area
Anous tenuirostris melanops			
Australian Lesser Noddy [26000]	Vulnerable	Breeding known to occur within area	In feature area

Scientific Name	Threatened Category	Presence Text	Buffer Status
Anseranas semipalmata Magpie Goose [978]		Species or species habitat may occur within area overfly marine area	In feature area
Apus pacificus Fork-tailed Swift [678]		Species or species habitat likely to occur within area overfly marine area	In feature area
Ardenna pacifica as Puffinus pacificus Wedge-tailed Shearwater [84292]		Breeding known to occur within area	In feature area
Bubulcus ibis as Ardea ibis Cattle Egret [66521]		Breeding likely to occur within area overfly marine area	In feature area
Calidris acuminata Sharp-tailed Sandpiper [874]		Species or species habitat known to occur within area	In feature area
Calidris canutus Red Knot, Knot [855]	Endangered	Species or species habitat known to occur within area overfly marine area	In feature area
Calidris ferruginea Curlew Sandpiper [856]	Critically Endangered	Species or species habitat known to occur within area overfly marine area	In feature area
<u>Calidris melanotos</u> Pectoral Sandpiper [858]		Species or species habitat known to occur within area overfly marine area	In feature area
Calidris tenuirostris Great Knot [862]	Critically Endangered	Species or species habitat likely to occur within area overfly marine area	In feature area
Calonectris leucomelas Streaked Shearwater [1077]		Species or species habitat known to occur within area	In feature area

Scientific Name	Threatened Category	Presence Text	Buffer Status
Cecropis daurica as Hirundo daurica Red-rumped Swallow [80610]		Species or species habitat may occur within area overfly marine area	In feature area
Chalcites osculans as Chrysococcyx osc Black-eared Cuckoo [83425]	<u>culans</u>	Species or species habitat known to occur within area overfly marine area	In feature area
Charadrius leschenaultii Greater Sand Plover, Large Sand Plover [877]	· Vulnerable	Species or species habitat known to occur within area	In feature area
<u>Charadrius veredus</u> Oriental Plover, Oriental Dotterel [882]		Species or species habitat may occur within area overfly marine area	In feature area
Chroicocephalus novaehollandiae as La Silver Gull [82326]	rus novaehollandiae	Breeding known to occur within area	In feature area
Fregata ariel Lesser Frigatebird, Least Frigatebird [1012]		Breeding known to occur within area	In feature area
Fregata minor Great Frigatebird, Greater Frigatebird [1013]		Breeding known to occur within area	In feature area
Glareola maldivarum Oriental Pratincole [840]		Species or species habitat may occur within area overfly marine area	In feature area
Haliaeetus leucogaster White-bellied Sea-Eagle [943]		Species or species habitat known to occur within area	In feature area
Hirundo rustica Barn Swallow [662]		Species or species habitat known to occur within area overfly marine area	In feature area
Hydroprogne caspia as Sterna caspia Caspian Tern [808]		Breeding known to occur within area	In feature area

Scientific Name	Threatened Category	Presence Text	Buffer Status
Limnodromus semipalmatus Asian Dowitcher [843]		Species or species habitat known to occur within area overfly marine area	In feature area
<u>Limosa lapponica</u> Bar-tailed Godwit [844]		Species or species habitat known to occur within area	In feature area
Limosa limosa Black-tailed Godwit [845]		Species or species habitat likely to occur within area overfly marine area	In feature area
Merops ornatus Rainbow Bee-eater [670]		Species or species habitat may occur within area overfly marine area	In feature area
Motacilla cinerea Grey Wagtail [642]		Species or species habitat known to occur within area overfly marine area	In feature area
Motacilla flava Yellow Wagtail [644]		Species or species habitat known to occur within area overfly marine area	In feature area
Numenius madagascariensis Eastern Curlew, Far Eastern Curlew [847]	Critically Endangered	Species or species habitat known to occur within area	In feature area
Numenius phaeopus Whimbrel [849]		Species or species habitat likely to occur within area	In feature area
Onychoprion anaethetus as Sterna anae Bridled Tern [82845]	<u>thetus</u>	Breeding known to occur within area	In feature area
Pandion haliaetus Osprey [952]		Breeding known to occur within area	In feature area
Papasula abbotti Abbott's Booby [59297]	Endangered	Species or species habitat may occur within area	In feature area

Scientific Name	Threatened Category	Presence Text	Buffer Status
Phaethon lepturus White-tailed Tropicbird [1014]		Breeding known to occur within area	In feature area
Phaethon rubricauda Red-tailed Tropicbird [994]		Breeding known to occur within area	In feature area
Pluvialis squatarola Grey Plover [865]		Species or species habitat likely to occur within area overfly marine area	In feature area
Rhipidura rufifrons Rufous Fantail [592]		Species or species habitat known to occur within area overfly marine area	In feature area
Rostratula australis as Rostratula bengha Australian Painted Snipe [77037]	alensis (sensu lato) Endangered	Species or species habitat likely to occur within area overfly marine area	In feature area
Sterna dougallii Roseate Tern [817]		Breeding known to occur within area	In feature area
Sternula albifrons as Sterna albifrons Little Tern [82849]		Breeding known to occur within area	In feature area
Sula dactylatra Masked Booby [1021]		Breeding known to occur within area	In feature area
Sula leucogaster Brown Booby [1022]		Breeding known to occur within area	In feature area
Sula sula Red-footed Booby [1023]		Breeding known to occur within area	In feature area
Thalasseus bengalensis as Sterna benga Lesser Crested Tern [66546]	<u>alensis</u>	Breeding known to occur within area	In feature area
Thalasseus bergii as Sterna bergii Greater Crested Tern [83000]		Breeding known to occur within area	In feature area

Scientific Name	Threatened Category	Presence Text	Buffer Status
Tringa nebularia Common Greenshank, Greenshank [832]		Species or species habitat likely to occur within area overfly marine area	In feature area
Tringa stagnatilis Marsh Sandpiper, Little Greenshank [833]		Species or species habitat likely to occur within area overfly marine area	In feature area
Xenus cinereus Terek Sandpiper [59300]		Species or species habitat likely to occur within area overfly marine area	In feature area
Fish			
Bhanotia fasciolata Corrugated Pipefish, Barbed Pipefish [66188]		Species or species habitat may occur within area	In feature area
Campichthys tricarinatus Three-keel Pipefish [66192]		Species or species habitat may occur within area	In feature area
Choeroichthys brachysoma Pacific Short-bodied Pipefish, Short-bodied Pipefish [66194]		Species or species habitat may occur within area	In feature area
Choeroichthys suillus Pig-snouted Pipefish [66198]		Species or species habitat may occur within area	In feature area
Corythoichthys amplexus Fijian Banded Pipefish, Brown-banded Pipefish [66199]		Species or species habitat may occur within area	In feature area
Corythoichthys flavofasciatus Reticulate Pipefish, Yellow-banded Pipefish, Network Pipefish [66200]		Species or species habitat may occur within area	In feature area
Corythoichthys haematopterus Reef-top Pipefish [66201]		Species or species habitat may occur within area	In feature area

Scientific Name	Threatened Category	Presence Text	Buffer Status
Corythoichthys intestinalis Australian Messmate Pipefish, Banded Pipefish [66202]		Species or species habitat may occur within area	In feature area
Corythoichthys schultzi Schultz's Pipefish [66205]		Species or species habitat may occur within area	In feature area
Cosmocampus banneri Roughridge Pipefish [66206]		Species or species habitat may occur within area	In feature area
Doryrhamphus dactyliophorus Banded Pipefish, Ringed Pipefish [66210]		Species or species habitat may occur within area	In feature area
Doryrhamphus excisus Bluestripe Pipefish, Indian Blue-stripe Pipefish, Pacific Blue-stripe Pipefish [66211]		Species or species habitat may occur within area	In feature area
<u>Doryrhamphus janssi</u> Cleaner Pipefish, Janss' Pipefish [66212]		Species or species habitat may occur within area	In feature area
Festucalex cinctus Girdled Pipefish [66214]		Species or species habitat may occur within area	In feature area
Filicampus tigris Tiger Pipefish [66217]		Species or species habitat may occur within area	In feature area
Halicampus brocki Brock's Pipefish [66219]		Species or species habitat may occur within area	In feature area
Halicampus dunckeri Red-hair Pipefish, Duncker's Pipefish [66220]		Species or species habitat may occur within area	In feature area
Halicampus grayi Mud Pipefish, Gray's Pipefish [66221]		Species or species habitat may occur within area	In feature area

Scientific Name	Threatened Category	Presence Text	Buffer Status
Halicampus nitidus Glittering Pipefish [66224]		Species or species habitat may occur within area	In feature area
Halicampus spinirostris Spiny-snout Pipefish [66225]		Species or species habitat may occur within area	In feature area
Haliichthys taeniophorus Ribboned Pipehorse, Ribboned Seadragon [66226]		Species or species habitat may occur within area	In feature area
Hippichthys cyanospilos Blue-speckled Pipefish, Blue-spotted Pipefish [66228]		Species or species habitat may occur within area	In feature area
Hippichthys parvicarinatus Short-keel Pipefish, Short-keeled Pipefish [66230]		Species or species habitat may occur within area	In feature area
Hippichthys penicillus Beady Pipefish, Steep-nosed Pipefish [66231]		Species or species habitat may occur within area	In feature area
Hippocampus angustus Western Spiny Seahorse, Narrow-bellied Seahorse [66234]	I	Species or species habitat may occur within area	In feature area
Hippocampus histrix Spiny Seahorse, Thorny Seahorse [66236]		Species or species habitat may occur within area	In feature area
Hippocampus kuda Spotted Seahorse, Yellow Seahorse [66237]		Species or species habitat may occur within area	In feature area
Hippocampus planifrons Flat-face Seahorse [66238]		Species or species habitat may occur within area	In feature area
<u>Hippocampus spinosissimus</u> Hedgehog Seahorse [66239]		Species or species habitat may occur within area	In feature area

Scientific Name	Threatened Category	Presence Text	Buffer Status
Hippocampus trimaculatus			
Three-spot Seahorse, Low-crowned Seahorse, Flat-faced Seahorse [66720]		Species or species habitat may occur within area	In feature area
Micrognathus micronotopterus Tidepool Pipefish [66255]		Species or species habitat may occur within area	In feature area
Solegnathus hardwickii Pallid Pipehorse, Hardwick's Pipehorse [66272]		Species or species habitat may occur within area	In feature area
Solegnathus lettiensis Gunther's Pipehorse, Indonesian Pipefish [66273]		Species or species habitat may occur within area	In feature area
Solenostomus cyanopterus Robust Ghostpipefish, Blue-finned Ghost Pipefish, [66183]		Species or species habitat may occur within area	In feature area
Syngnathoides biaculeatus Double-end Pipehorse, Double-ended Pipehorse, Alligator Pipefish [66279]		Species or species habitat may occur within area	In feature area
Trachyrhamphus bicoarctatus Bentstick Pipefish, Bend Stick Pipefish, Short-tailed Pipefish [66280]		Species or species habitat may occur within area	In feature area
<u>Trachyrhamphus longirostris</u> Straightstick Pipefish, Long-nosed Pipefish, Straight Stick Pipefish [66281]		Species or species habitat may occur within area	In feature area
Mammal			
Dugong dugon Dugong [28]		Breeding known to occur within area	In feature area
Reptile			
Acalyptophis peronii Horned Seasnake [1114]		Species or species habitat may occur within area	In feature area
Aipysurus apraefrontalis Short-nosed Seasnake [1115]	Critically Endangered	Species or species habitat known to occur within area	In feature area

Scientific Name	Threatened Category	Presence Text	Buffer Status
Aipysurus duboisii Dubois' Seasnake [1116]		Species or species habitat may occur within area	In feature area
Aipysurus eydouxii Spine-tailed Seasnake [1117]		Species or species habitat may occur within area	In feature area
Aipysurus foliosquama Leaf-scaled Seasnake [1118]	Critically Endangered	Species or species habitat may occur within area	In feature area
Aipysurus fuscus Dusky Seasnake [1119]		Species or species habitat known to occur within area	In feature area
Aipysurus laevis Olive Seasnake [1120]		Species or species habitat may occur within area	In feature area
Aipysurus tenuis Brown-lined Seasnake [1121]		Species or species habitat may occur within area	In feature area
Astrotia stokesii Stokes' Seasnake [1122]		Species or species habitat may occur within area	In feature area
Caretta caretta Loggerhead Turtle [1763]	Endangered	Foraging, feeding or related behaviour known to occur within area	In feature area
<u>Chelonia mydas</u> Green Turtle [1765]	Vulnerable	Breeding known to occur within area	In feature area
Chitulia inornata as Hydrophis inornatus Plain Seasnake [87379]		Species or species habitat may occur within area	In feature area
Chitulia ornata as Hydrophis ornatus Spotted Seasnake, Ornate Reef Seasnake [87377]		Species or species habitat may occur within area	In feature area

Scientific Name	Threatened Category	Presence Text	Buffer Status
Crocodylus johnstoni Freshwater Crocodile, Johnston's Crocodile, Johnstone's Crocodile [1773]		Species or species habitat may occur within area	In feature area
Crocodylus porosus Salt-water Crocodile, Estuarine Crocodile [1774]		Species or species habitat likely to occur within area	In feature area
<u>Dermochelys coriacea</u> Leatherback Turtle, Leathery Turtle, Luth [1768]	Endangered	Foraging, feeding or related behaviour known to occur within area	
<u>Disteira kingii</u> Spectacled Seasnake [1123]		Species or species habitat may occur within area	In feature area
<u>Disteira major</u> Olive-headed Seasnake [1124]		Species or species habitat may occur within area	In feature area
Emydocephalus annulatus Turtle-headed Seasnake [1125]		Species or species habitat may occur within area	In feature area
Enhydrina schistosa Beaked Seasnake [1126]		Species or species habitat may occur within area	In feature area
Ephalophis greyi North-western Mangrove Seasnake [1127]		Species or species habitat may occur within area	In feature area
Eretmochelys imbricata Hawksbill Turtle [1766]	Vulnerable	Breeding known to occur within area	In feature area
Hydrelaps darwiniensis Black-ringed Seasnake [1100]		Species or species habitat may occur within area	In feature area
Hydrophis atriceps Black-headed Seasnake [1101]		Species or species habitat may occur within area	In feature area

Scientific Name	Threatened Category	Presence Text	Buffer Status
Hydrophis elegans			
Elegant Seasnake [1104]		Species or species habitat may occur within area	In feature area
Hydrophis macdowelli as Hydrophis mcc	<u>lowelli</u>		
Small-headed Seasnake [75601]		Species or species habitat may occur within area	In feature area
Lapemis curtus as Lapemis hardwickii			
Spine-bellied Seasnake [83554]		Species or species habitat may occur within area	In feature area
Leioselasma coggeri as Hydrophis cogg	eri		
Black-headed Sea Snake, Slender- necked Seasnake [87373]	<u>511</u>	Species or species habitat may occur within area	In feature area
Leioselasma czeblukovi as Hydrophis cz	reblukovi		
Fine-spined Seasnake, Geometrical Seasnake [87374]		Species or species habitat may occur within area	In feature area
Leioselasma pacifica as Hydrophis pacif	ioue		
Large-headed Seasnake, Pacific Seasnake [87378]	<u>icus</u>	Species or species habitat may occur within area	In feature area
Lepidochelys olivacea			
Olive Ridley Turtle, Pacific Ridley Turtle [1767]	Endangered	Breeding known to occur within area	In feature area
Natator depressus			
Flatback Turtle [59257]	Vulnerable	Breeding known to occur within area	In feature area
Parahydrophis mertoni			
Northern Mangrove Seasnake [1090]		Species or species habitat may occur within area	In feature area
Pelamis platurus			
Yellow-bellied Seasnake [1091]		Species or species habitat may occur within area	In feature area
Whales and Other Catacoons			source Information 1

Whales and Other Cetaceans	[Resource Information		
Current Scientific Name	Status	Type of Presence	Buffer Status
Mammal			
Balaenoptera borealis			
Sei Whale [34]	Vulnerable	Foraging, feeding or related behaviour likely to occur within area	In feature area

Current Scientific Name	Status	Type of Presence	Buffer Status
Balaenoptera edeni Bryde's Whale [35]		Species or species habitat likely to occur within area	In feature area
Balaenoptera musculus Blue Whale [36]	Endangered	Migration route knows to occur within area	n In feature area
Balaenoptera physalus Fin Whale [37]	Vulnerable	Foraging, feeding or related behaviour likely to occur within area	In feature area
Delphinus delphis Common Dolphin, Short-beaked Common Dolphin [60]		Species or species habitat may occur within area	In feature area
Feresa attenuata Pygmy Killer Whale [61]		Species or species habitat may occur within area	In feature area
Globicephala macrorhynchus Short-finned Pilot Whale [62]		Species or species habitat may occur within area	In feature area
Grampus griseus Risso's Dolphin, Grampus [64]		Species or species habitat may occur within area	In feature area
Kogia breviceps Pygmy Sperm Whale [57]		Species or species habitat may occur within area	In feature area
Kogia sima as Kogia simus Dwarf Sperm Whale [85043]		Species or species habitat may occur within area	In feature area
<u>Lagenodelphis hosei</u> Fraser's Dolphin, Sarawak Dolphin [41]		Species or species habitat may occur within area	In feature area
Megaptera novaeangliae Humpback Whale [38]	Vulnerable	Breeding known to occur within area	In feature area

Current Scientific Name	Status	Type of Presence	Buffer Status
Mesoplodon densirostris Blainville's Beaked Whale, Densebeaked Whale [74]		Species or species habitat may occur within area	In feature area
Orcaella heinsohni as Orcaella breviros Australian Snubfin Dolphin [81322]	<u>stris</u>	Species or species habitat known to occur within area	In feature area
Orcinus orca Killer Whale, Orca [46]		Species or species habitat may occur within area	In feature area
Peponocephala electra Melon-headed Whale [47]		Species or species habitat may occur within area	In feature area
Physeter macrocephalus Sperm Whale [59]		Species or species habitat may occur within area	In feature area
Pseudorca crassidens False Killer Whale [48]		Species or species habitat likely to occur within area	In feature area
Sousa sahulensis as Sousa chinensis Australian Humpback Dolphin [87942]		Breeding known to occur within area	In feature area
Stenella attenuata Spotted Dolphin, Pantropical Spotted Dolphin [51]		Species or species habitat may occur within area	In feature area
Stenella coeruleoalba Striped Dolphin, Euphrosyne Dolphin [52]		Species or species habitat may occur within area	In feature area
Stenella longirostris Long-snouted Spinner Dolphin [29]		Species or species habitat may occur within area	In feature area
Steno bredanensis Rough-toothed Dolphin [30]		Species or species habitat may occur within area	In feature area

O	01.1	T (D	D. ff. Obstac
Current Scientific Name	Status	Type of Presence	Buffer Status
<u>Tursiops aduncus</u>			
Indian Ocean Bottlenose Dolphin, Spotted Bottlenose Dolphin [68418]		Species or species habitat likely to occur within area	In feature area
Tursiops aduncus (Arafura/Timor Sea po	pulations)		
Spotted Bottlenose Dolphin (Arafura/Timor Sea populations) [78900]	*	Species or species habitat known to	In feature area
(Aladia, Allifor God populations) [AGGGG]		occur within area	
Tursiops truncatus s. str.			
Bottlenose Dolphin [68417]		Species or species habitat may occur within area	In feature area
Ziphius cavirostris			
Cuvier's Beaked Whale, Goose-beaked Whale [56]		Species or species habitat may occur within area	In feature area

Commonwealth Reserves Terrestrial		[Re	source Information]
Name	State	Туре	Buffer Status
Kakadu	NT	National Park (Commonwealth)	In feature area

Australian Marine Parks	[Resource Information]
Park Name	Zone & IUCN Categories Buffer Status
Kimberley	Habitat Protection Zone (IUCN In feature area IV)
Kimberley	Habitat Protection Zone (IUCN In feature area IV)
Oceanic Shoals	Habitat Protection Zone (IUCN In feature area IV)
Arafura	Multiple Use Zone (IUCN VI) In feature area
Joseph Bonaparte Gulf	Multiple Use Zone (IUCN VI) In feature area
Kimberley	Multiple Use Zone (IUCN VI) In feature area
Oceanic Shoals	Multiple Use Zone (IUCN VI) In feature area
Oceanic Shoals	Multiple Use Zone (IUCN VI) In feature area
Kimberley	National Park Zone (IUCN II) In feature area
Oceanic Shoals	National Park Zone (IUCN II) In feature area
Ashmore Reef	Recreational Use Zone (IUCN In feature area IV)

Park Name	Zone & IUCN Categories	Buffer Status
Ashmore Reef	Sanctuary Zone (IUCN la)	In feature area
Cartier Island	Sanctuary Zone (IUCN la)	In feature area
Arafura	Special Purpose Zone (IUCN VI)	In feature area
Arnhem	Special Purpose Zone (IUCN VI)	In feature area
Joseph Bonaparte Gulf	Special Purpose Zone (IUCN VI)	In feature area
Arafura	Special Purpose Zone (Trawl) (IUCN VI)	In feature area
Oceanic Shoals	Special Purpose Zone (Trawl) (IUCN VI)	In feature area

Habitat Critical to the Survival of Marine Turtles			
Scientific Name	Behaviour	Presence	Buffer Status
Aug - Sep			
Natator depressus			
Flatback Turtle [59257]	Nesting	Known to occur	In feature area
-			
Dec - Jan			
Chelonia mydas			
Green Turtle [1765]	Nesting	Known to occur	In feature area
Dermochelys coriacea			
·	Nestina	Known to occur	In feature area
25441513451 14145 [1155]		ranomin to occur	iii reatare area
May - Jul			
Lepidochelys olivacea			
Olive Ridley Turtle [1767]	Nesting	Known to occur	In feature area
Nov - May			
•			
Hawksbill Turtle [1766]	Nesting	Known to occur	In feature area
Olive Ridley Turtle [1767] Nov - May Eretmochelys imbricata	-		In feature area

Extra Information

State and Territory Reserves		[Resource Information]
Protected Area Name	Reserve Type	State	Buffer Status
Adele Island	Nature Reserve	WA	In feature area
Bardi Jawi	Indigenous Protected Area	WA	In feature area
Browse Island	Nature Reserve	WA	In feature area
Dambimangari	Indigenous Protected Area	WA	In feature area
Garig Gunak Barlu	National Park	NT	In feature area
Garig Gunak Barlu	Marine Park	NT	In feature area
Lalang-garram / Camden Sound	Marine Park	WA	In feature area
Lalang-garram / Horizontal Falls	Marine Park	WA	In feature area
Lesueur Island	Nature Reserve	WA	In buffer area only
North Kimberley	Marine Park	WA	In feature area
North Lalang-garram	Marine Park	WA	In feature area
Ord River	Nature Reserve	WA	In feature area
Scott Reef	Nature Reserve	WA	In feature area
Swan Island	Nature Reserve	WA	In feature area
Tanner Island	Nature Reserve	WA	In feature area
Unnamed WA28968	5(1)(h) Reserve	WA	In feature area
Unnamed WA41775	5(1)(h) Reserve	WA	In feature area
Unnamed WA44669	5(1)(h) Reserve	WA	In feature area
Unnamed WA44673	5(1)(h) Reserve	WA	In feature area
Uunguu	Indigenous Protected Area	WA	In feature area

Nationally Important Wetlands		[Resource Information]
Wetland Name	State	Buffer Status
Ashmore Reef	EXT	In feature area
Cobourg Peninsula System	NT	In feature area

Wetland Name	State	Buffer Status
Kakadu National Park	NT	In feature area
Murgenella-Cooper Floodplain System	NT	In feature area
Ord Estuary System	WA	In feature area
Yampi Sound Training Area	WA	In feature area

EPBC Act Referrals			[Resou	rce Information]
Title of referral	Reference	Referral Outcome	Assessment Status	Buffer Status
Controlled action 275 km gas pipeline from Wadeye to existing Darwin gas pipeline	2006/2930	Controlled Action	Post-Approval	In feature area
2-D seismic survey Scott Reef	2000/125	Controlled Action	Post-Approval	In feature area
Andranangoo Creek & Lethbridge Bay mineral sand mining	2005/2155	Controlled Action	Completed	In feature area
Audacious Oil Field Standalone Development	2001/407	Controlled Action	Completed	In feature area
Australia-ASEAN Power Link	2020/8818	Controlled Action	Proposed Decision	In feature area
Blacktip Project - Wharf Construction	2007/3293	Controlled Action	Completed	In feature area
Bonaparte Liquified Natural Gas Project	2011/6141	Controlled Action	Post-Approval	In feature area
Browse FLNG Development, Commonwealth Waters	2013/7079	Controlled Action	Post-Approval	In feature area
Browse to North West Shelf Development, Indian Ocean, WA	2018/8319	Controlled Action	Final PER or EIS	In feature area
Clarence Strait Offshore Tidal Energy Project	2008/4660	Controlled Action	Assessment Approach	In feature area
Cockatoo Island Multi-User Supply Base, WA	2017/7986	Controlled Action	Referral Decision	In feature area
Conduct an exploration drilling campaign	2010/5718	Controlled Action	Completed	In feature area
Decommissioning of Buffalo Oil Field	2003/984	Controlled Action	Post-Approval	In feature area
Decommissioning of Challis Oilfield	2003/942	Controlled Action	Post-Approval	In feature area
Develop Ichthys gas-condensate field permit area W	2006/2767	Controlled Action	Completed	In feature area

Title of referral Controlled action	Reference	Referral Outcome	Assessment Status	Buffer Status
Development of Blacktip Gas Field	2003/1180	Controlled Action	Post-Approval	In feature area
Development of Browse Basin Gas Fields (Upstream)	2008/4111	Controlled Action	Completed	In feature area
Hardwood Plantation	2001/229	Controlled Action	Post-Approval	In feature area
Ichthys Gas Field, Offshore and onshore processing facilities and subsea pipeline	2008/4208	Controlled Action	Post-Approval	In feature area
<u>Iron ore mine</u>	2006/2522	Controlled Action	Post-Approval	In feature area
Kilimiraka Mineral Sands and Associated Infrastructure (Bathurst Island), NT	2012/6587	Controlled Action	Assessment Approach	In feature area
Montara 4, 5, and 6 Oil Production Wells, and Montara 3 Gas Re- Injection Well	2002/755	Controlled Action	Post-Approval	In feature area
Pluton Irvine Island Iron Ore Project	2011/6064	Controlled Action	Proposed Decision	In feature area
Prelude Floating Liquefied Natural Gas Facility and Gas Field Development	2008/4146	Controlled Action	Post-Approval	In feature area
PTTEP AA Floating LNG Facility	2011/6025	Controlled Action	Completed	In feature area
Snake Bay Barramundi Sea Cage Farm	2005/2150	Controlled Action	Completed	In feature area
<u>Tassie Shoal Gas Reforming and</u> <u>Methanol Production Plants - NT/P48</u>	2000/108	Controlled Action	Post-Approval	In feature area
Tassie Shoal LNG Project	2003/1067	Controlled Action	Post-Approval	In feature area
Torosa South Initial Appraisal Drilling	2007/3500	Controlled Action	Completed	In feature area
Trans-territory Gas Pipeline	2003/1186	Controlled Action	Completed	In feature area
Not controlled action				
2D seismic survey, exploration permit NT/P67	2004/1587	Not Controlled Action	Completed	In feature area
2D Seismic Survey in Permit Areas WA-318-P & WA-319-P, near Cape Londonderry	2004/1687	Not Controlled Action	Completed	In feature area

Title of referral	Reference	Referral Outcome	Assessment Status	Buffer Status
Not controlled action				
3D marine seismic survey in WA 314P and WA 315P	2004/1927	Not Controlled Action	Completed	In feature area
Adele Trend TQ3D Seismic Survey	2001/252	Not Controlled Action	Completed	In feature area
AEC International Hydrocarbon Well Puffin 6	2000/36	Not Controlled Action	Completed	In feature area
Andranangoo Mine Site Aircraft Landing Area	2007/3743	Not Controlled Action	Completed	In feature area
Aquaculture - Barramundi grow out, Yampi Sound	2005/2476	Not Controlled Action	Completed	In feature area
Audacious-3 oil drilling well	2003/1042	Not Controlled Action	Completed	In feature area
Backpacker-1 Offshore Hydrocarbon Exploration Well	2001/300	Not Controlled Action	Completed	In feature area
Barossa-1 (NT/P69), Caldita-2 (NT/P61) exploration wells	2006/2793	Not Controlled Action	Completed	In feature area
Buffalo In-Fill Production Wells	2001/475	Not Controlled Action	Completed	In feature area
Caldita-1 Hydrocarbon Exploration Well, NT/P61	2004/1854	Not Controlled Action	Completed	In feature area
Construction and operation of Radar Infrastructure	2004/1406	Not Controlled Action	Completed	In feature area
Controlled Source Electromagnetic 2D Survey	2009/4980	Not Controlled Action	Completed	In feature area
Coot-1 hydrocarbon exploration well, Permit Area AC/L2 or AC/L3	2001/296	Not Controlled Action	Completed	In feature area
Crux-A and Crux-B appraisal wells, Petroleum Permit Area AC/P23	2006/2748	Not Controlled Action	Completed	In feature area
Crux gas-liquids development in permit AC/P23	2006/3154	Not Controlled Action	Completed	In feature area
Drilling of 12 Hydrocarbon Exploration Wells, Permit Area WA-371-P	2006/3005	Not Controlled Action	Completed	In feature area
Drilling of exploration well Audacious- 1 in AC/P17	2000/5	Not Controlled Action	Completed	In feature area
<u>Drilling of exploration wells, Permit</u> <u>areas WA-301-P to WA-305-P</u>	2002/769	Not Controlled Action	Completed	In feature area

Title of referral	Reference	Referral Outcome	Assessment Status	Buffer Status
Not controlled action	0007/0500	Niet Centuelle d	O a manufacta at	l., f.,
<u>Drilling of Marina-1 Exploration Well</u>	2007/3586	Not Controlled Action	Completed	In feature area
Echuca Shoals-2 Exploration of Appraisal Well	2006/3020	Not Controlled Action	Completed	In feature area
Exploration Drilling in AC/P17, AC/P18 and AC/P24	2001/359	Not Controlled Action	Completed	In feature area
Exploration Well AC/P23	2001/234	Not Controlled Action	Completed	In feature area
Geo-scientific survey	2005/2004	Not Controlled Action	Completed	In feature area
Improving rabbit biocontrol: releasing another strain of RHDV, sthrn two thirds of Australia	2015/7522	Not Controlled Action	Completed	In feature area
Kaleidoscope exploration well	2001/182	Not Controlled Action	Completed	In feature area
Koolan Island Mine - Reconstruction of seawall and capital dewatering of mine pit,130km northwest of Derby, WA	2016/7848	Not Controlled Action	Completed	In feature area
Marine Seismic Survey in WA-239-P	2000/24	Not Controlled Action	Completed	In feature area
Marine Survey for the Australia- ASEAN Power Link AAPL	2020/8714	Not Controlled Action	Completed	In feature area
Montara-3 Offshore Hydrocarbon Exploration Well Permit Area AC/RL3	2001/489	Not Controlled Action	Completed	In feature area
Nexus Drilling Program NT-P66	2007/3745	Not Controlled Action	Completed	In feature area
NT/P68 2007 Two Well Drilling Program	2007/3569	Not Controlled Action	Completed	In feature area
P30 Hydrocarbon Exploration Well	2001/293	Not Controlled Action	Completed	In feature area
Project Highclere Geophysical Survey	2021/9023	Not Controlled Action	Completed	In feature area
Puffin Oil wells 7, 8 & 9 development	2005/2336	Not Controlled Action	Completed	In feature area
Residential Secondary College	2007/3276	Not Controlled Action	Completed	In feature area
Saucepan 1 Exploration Well ACP23	2000/2	Not Controlled Action	Completed	In feature area

Title of referral	Reference	Referral Outcome	Assessment Status	Buffer Status
Not controlled action	00001010=			
Skua and Swift Oilfields	2006/3195	Not Controlled Action	Completed	In feature area
Strumbo-1 Gas Exploration Well Permit Area WA-288-P	2002/884	Not Controlled Action	Completed	In feature area
Not controlled action (particular manne	er)			
2 (3D) Marine Seismic Surveys	2009/4994	Not Controlled Action (Particular Manner)	Completed	In feature area
2D and 3D Seismic Survey	2011/6197	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
2D and 3D Seismic Survey WA-405-P	2008/4133	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
2D and 3D Seismic Survey WA-405-P	2009/5104	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
2D Marine Seismic Survey	2009/4728	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
2D marine seismic survey of Braveheart, Kurrajong, Sunshine and Crocodile	2006/2917	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
2D marine seismic survey within permit area WA-318-P	2007/3879	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
2D or 3D Marine Seismic Survey in Petroleum Permit Area AC/P35	2009/4864	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
2D Seismic Marine Survey	2001/363	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
2D Seismic survey	2009/5076	Not Controlled Action (Particular Manner)	Post-Approval	In feature area

Title of referral	Reference	Referral Outcome	Assessment Status	Buffer Status
Not controlled action (particular manne		Net Occited by	De de Assessad	la Cartana
2D seismic survey in permit areas WA-274P and WA-281P	2004/1521	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
2D Seismic Survey in WA Permit Area TP/22 and Commonwealth Permit Area WA-280-P	2005/2100	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
2D Seismic Survey - Petroleum Exploration Area NT/P68, Eastern Bonaparte Basin	2006/2922	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
2 geotechnical surveys - preliminary and final	2006/2886	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
3D Marine Seismic Survey	2008/4437	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
3D Marine Seismic Survey	2009/4681	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
3D Marine Seismic Survey, Permit AC/P 23	2005/2364	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
3D marine seismic Survey - Maxima 3D MSS	2006/2945	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
3D Seismic Survey	2006/2729	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
3D Seismic Survey, Browse Basin, WA	2009/5048	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
3D Seismic Survey, near Scott Reef, Browse Basin	2005/2126	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
3D Seismic Survey, petroleum exploration permit AC/P33	2006/2918	Not Controlled Action (Particular	Post-Approval	In feature area

Title of referral	Reference	Referral Outcome	Assessment Status	Buffer Status
Not controlled action (particular manne	er)	Manner)		
3D Seismic Survey (NT/P68)	2006/2980	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
3D Seismic Survey (NT/P68)	2008/4121	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
3D seismic survey of AC/P4, AC/P17 and AC/P24	2006/2857	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
3D Seismic Survey WA-406-P Bonaparte Basin	2007/3904	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
AC/P37 3D Seismic Survey Ashmore Cartier	2007/3774	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
Acacia East Pit Cutback Mining Project,northern Kimberley, WA	2013/6752	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
Auralandia 3D marine seismic survey	2011/5961	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
Aurora MC3D Marine Seismic Survey	2010/5510	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
Bassett 3D Marine Seismic Survey	2010/5538	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
Blacktip Gas Project Yelcherr Beach Wharf Construction	2007/3537	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
Bonaparte 2D & 3D marine seismic survey	2011/5962	Not Controlled Action (Particular Manner)	Post-Approval	In feature area

Title of referral	Reference	Referral Outcome	Assessment Status	Buffer Status
Not controlled action (particular manne	•		D (A	
Bonaparte 3D & 2D Seismic Survey, in NT/P82, Timor Sea	2012/6398	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
Bonaparte Basin Barossa Appraisal Drilling Campaign, NT	2012/6481	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
Bonaparte Basin Seabed Mapping Survey	2009/4951	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
Bonaparte Seismic and Bathymetric Survey	2012/6295	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
Braveheart 2D Infill Marine Seismic Survey 100km offshore	2008/4442	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
Braveheart 2D Marine Seismic Survey	2005/2322	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
Caldita 3D Marine Seismic Survey - NT/P61, NT/P69, and acreage release area NT06-5	2006/3142	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
Canis 3D Marine Seismic Survey	2008/4492	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
Cartier East and Cartier West 3D Marine Seismic Surveys	2009/5230	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
Caswell MC3D Marine Seismic Survey	2012/6594	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
Conduct an exploration drilling campaign	2011/5964	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
Deep Water Northwest Shelf 2D Seismic Survey	2007/3260	Not Controlled Action (Particular	Post-Approval	In feature area

Title of referral	Reference	Referral Outcome	Assessment Status	Buffer Status
Not controlled action (particular manne	er)	Mannan		
		Manner)		
Dillon South-1 Exploration Well Drilling - AC/P4, Territory of Ashmore/Cartier	2013/6849	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
Drilling of Audacious-5 appraisal well	2008/4327	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
<u>Drilling of Exploration & Appraisal</u> <u>Wells Braveheart-1 & Cornea-3</u>	2009/5160	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
Drilling of two appraisal wells	2011/5840	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
Endurance 3D Marine Seismic Data Acquisition Survey	2007/3667	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
Eni Bathurst 3D Seismic Survey	2011/6118	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
Exploration Drilling Campaign	2011/6047	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
Exploration Drilling Campaign, Browse Basin, WA-341-P, AC-P36 and WA-343-P	2013/6898	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
Exploration Drilling in Permit Areas WA-402-P & WA-403-P	2010/5297	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
Exploration Drilling Program - Permit areas - WA-314-P, WA-315-P, WA-398-P.	2008/4064	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
Fishburn2D Marine Seismic Survey	2012/6659	Not Controlled Action (Particular Manner)	Post-Approval	In feature area

Title of referral	Reference	Referral Outcome	Assessment Status	Buffer Status
Not controlled action (particular manne Floyd 3D and Chisel 3D Seismic Surveys	er) 2011/6220	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
Geoscience Australia - Marine survey in Browse Basin to acquire data to assist assessment of CO2 storage potential	2013/6747	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
Gicea 3D Marine Seismic Survey	2008/4389	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
Gigas 2D Pilot Ocean Bottom Cable Marine Seismic Survey	2007/3839	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
Gold 2D Marine Seismic Survey Permit Areas WA375P and WA376P	2009/4698	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
Ichthys 3D Marine Seismic Survey	2010/5550	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
Joseph Bonaparte Gulf Seabed mapping survey	2010/5517	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
Kingtree & Ironstone-1 Exploration Wells	2011/5935	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
Kraken, Lusca & Asperus 3D Marine Seismic Survey	2013/6730	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
Malita West 3D Seismic Survey WA-402-P and WA-403-P	2007/3936	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
Marine Environmental Survey 2012	2012/6310	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
Nova 3D Seismic Survey	2013/6825	Not Controlled Action (Particular	Post-Approval	In feature area

Title of referral	Reference	Referral Outcome	Assessment Status	Buffer Status
Not controlled action (particular manne	er)	Manner)		
NT/P74 & NT/P75 - 2D marine seismic survey	2008/4316	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
NT/P77 3D Marine Seismic Survey	2009/4683	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
NT/P80 2010 2D Marine Seismic Survey	2010/5487	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
Octantis 3D Marine Seismic Survey, Permit Area AC/P41 off northern Western Australia	2007/3369	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
Offshore Exploration Drilling Campaign	2011/6222	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
Offshore Fibre Optic Cable Network Construction & Operation, Port Hedland WA to Darwin NT	2014/7223	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
Offshore Gas Exploration Drilling Campaign	2012/6384	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
Panda NT/P76 3D Seismic Acquisition Survey Program	2009/4992	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
Petrel MC2D Marine Seismic Survey	2010/5368	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
Pilot Appraisal Well - Torosa South 1	2008/3991	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
Port Melville marine supply base, Melville Island	2015/7510	Not Controlled Action (Particular Manner)	Post-Approval	In feature area

Title of referral	Reference	Referral Outcome	Assessment Status	Buffer Status
Not controlled action (particular manne		N 10 1 1 1	D 1 A	
Removal of Potential Unexploded Ordnance within NAXA	2012/6503	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
Rosebud 3D Marine Seismic Survey in WA-30-R and TR/5	2012/6493	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
Sandalford 3D Seismic Survey	2012/6261	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
Santos Petrel-7 Offshore Appraisal Drilling Programme (Bonaparte Basin)	2011/5934	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
Schild MC3D Marine Seismic Survey	2012/6373	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
Schild Phase 11 MC3D Marine Seismic Survey, Browse Basin	2013/6894	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
Scott Reef Seismic Research	2006/2647	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
Searcher bathymetry & geochemical seismic survey, Brawse Basin, Timor Sea, WA	2013/6980	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
Sonar and Acoustic Trials	2001/345	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
Songa Venus Drilling and Testing Operations	2009/5122	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
Songa Venus Drilling Programme, Bonaparte Basin	2009/4990	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
Sunshine Infill 2D and Mimosa 2D Marine Seismic Surveys	2009/4699	Not Controlled Action (Particular	Post-Approval	In feature area

Title of referral	Reference	Referral Outcome	Assessment Status	Buffer Status
Not controlled action (particular manne	er)	Manner)		
Thoar 3D Marine Seismic Survey	2010/5668	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
Tiffany 3D Seismic Survey	2010/5339	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
Torosa-5 Apraisal Well, WA-30-R	2008/4430	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
Tow West Atlas wreck from present location to boundary of EEZ	2010/5652	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
Tridacna 3D Ocean Bottom Cable Marine Seismic Survey	2011/5959	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
<u>Ursa 3D Marine Seismic Survey</u>	2008/4634	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
Vampire 2D Non Exclusive Seismic Survey, WA	2010/5543	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
Westralia SPAN Marine Seismic Survey, WA & NT	2012/6463	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
Woodside Southern Browse 3D Seismic Survey, WA	2007/3534	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
Zeppelin 3D Seismic Survey	2011/6148	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
Referral decision				
2D Marine Seismic Survey	2008/4623	Referral Decision	Completed	In feature area
3D Seismic Survey (NT/P68)	2006/2949	Referral Decision	Completed	In feature area

Title of referral	Reference	Referral Outcome	Assessment Status	Buffer Status
Referral decision Aurora extension MC3D Marine Seismic Survey	2011/5887	Referral Decision	Completed	In feature area
BRSN08 3D Marine Seismic Survey	2008/4582	Referral Decision	Completed	In feature area
Experimental Study of Behavioural and Physiological Impact on Fish of Seismic Ex	2006/2625	Referral Decision	Completed	In feature area
Nova 3D Seismic Survey, WA 442-NT/P81, Joseph Bonaparte Gulf	2013/6820	Referral Decision	Completed	In feature area
Pilot Appraisal Well - Torosa South-1	2008/3985	Referral Decision	Completed	In feature area
Puffin South-West Development of Oil Reserves	2007/3834	Referral Decision	Completed	In feature area
Seismic Data Acquisition, Browse Basin	2010/5475	Referral Decision	Completed	In feature area
<u>Tidal Power Generation Turbine</u>	2009/5235	Referral Decision	Completed	In feature area

Key Ecological Features

[Resource Information]

Key Ecological Features are the parts of the marine ecosystem that are considered to be important for the biodiversity or ecosystem functioning and integrity of the Commonwealth Marine Area.

Name	Region	Buffer Status
Ancient coastline at 125 m depth contour	North-west	In feature area
Ancient coastille at 125 in depth contour	North-west	iii lealuie alea
Ashmara Doof and Cartier Island and aurrounding	North-west	In feature area
Ashmore Reef and Cartier Island and surrounding Commonwealth waters	North-west	in leature area
Commonwealth waters		
Carbonate bank and terrace system of the Sahul Shelf	North-west	In feature area
Oarbonate bank and terrace system of the bandronen	NOITH-WCSt	iii icatuic aica
Carbonate bank and terrace system of the Van Diemen	North	In feature area
Rise		
Continental Slope Demersal Fish Communities	North-west	In feature area
<u>Pinnacles of the Bonaparte Basin</u>	North-west	In feature area
<u>Pinnacles of the Bonaparte Basin</u>	North	In feature area
Seringapatam Reef and Commonwealth waters in the	North-west	In feature area
Scott Reef Complex		
Chalf break and along of the Arafura Chalf	North	In facture area
Shelf break and slope of the Arafura Shelf	North	In feature area
Tributery Convene of the Arefure Depression	North	In facture area
Tributary Canyons of the Arafura Depression	North	In feature area

Biologically Important Areas			
Scientific Name	Behaviour	Presence	Buffer Status
Dolphins			
Orcaella heinsohni			
Australian Snubfin Dolphin [81322]	Breeding	Known to occur	In feature area
	· ·		
Orcaella heinsohni			
Australian Snubfin Dolphin [81322]	Breeding likely	Known to occur	In feature area
Orcaella heinsohni	O a la desarra	17	la factoria
Australian Snubfin Dolphin [81322]	Calving	Known to occur	in feature area
Orcaella heinsohni			
Australian Snubfin Dolphin [81322]	Foraging	Known to occur	In feature area
Additional Polymin [01022]	roraging	Tallowil to coodi	iii ioataro aroa
Orcaella heinsohni			
Australian Snubfin Dolphin [81322]	Foraging (high	Known to occur	In feature area
	density prey)		
Orcaella heinsohni	5		
Australian Snubfin Dolphin [81322]	Resting	Known to occur	In teature area
Sousa chinensis			
Indo-Pacific Humpback Dolphin [50]	Breeding	Likely to occur	In feature area
mad i domo i ampodok Bolpinii [00]	Brooding	Linery to occur	iii ioataro aroa
Sousa chinensis			
Indo-Pacific Humpback Dolphin [50]	Breeding	Known to occur	In feature area
mae i deme i ampaden Belpinii [ee]	2.0049	Tanomi to occur	m reatare area
Sousa chinensis			
Indo-Pacific Humpback Dolphin [50]	Breeding likely	Known to occur	In feature area
Sousa chinensis	0.1.		
Indo-Pacific Humpback Dolphin [50]	Calving	Known to occur	In feature area
Sousa chinensis			
Indo-Pacific Humpback Dolphin [50]	Calving	Likely to occur	In feature area
mao-r domo ridiripodok Bolphili [00]	Odiving	Linery to occur	iii icatare area
Sousa chinensis			
Indo-Pacific Humpback Dolphin [50]	Foraging	Known to occur	In feature area
mae i deme i ampaden Belpinii [ee]	roraging	Tarown to cood	iii ioataro aroa
Sousa chinensis			
Indo-Pacific Humpback Dolphin [50]	Foraging	Likely to occur	In feature area
Sousa chinensis			
Indo-Pacific Humpback Dolphin [50]	Foraging (high	Known to occur	In feature area
	density prey)		

Scientific Name	Behaviour	Presence	Buffer Status
Sousa chinensis Indo-Pacific Humpback Dolphin [50]	Significant habitat	Known to occur	In feature area
Sousa chinensis Indo-Pacific Humpback Dolphin [50]	Significant habitat - unknown behaviour	Likely to occur	In feature area
Tursiops aduncus Indo-Pacific/Spotted Bottlenose Dolphin [68418]	Breeding	Known to occur	In feature area
<u>Tursiops aduncus</u> Indo-Pacific/Spotted Bottlenose Dolphin [68418]	Calving	Known to occur	In feature area
<u>Tursiops aduncus</u> Indo-Pacific/Spotted Bottlenose Dolphin [68418]	Foraging	Known to occur	In feature area
Dugong			
Dugong dugon Dugong [28]	Breeding	Known to occur	In feature area
Dugong dugon Dugong [28]	Calving	Known to occur	In feature area
Dugong dugon Dugong [28]	Foraging	Likely to occur	In feature area
Dugong dugon Dugong [28]	Foraging	Known to occur	In feature area
Dugong dugon Dugong [28]	Foraging (high density seagrass beds)		In feature area
Dugong dugon Dugong [28]	Nursing	Known to occur	In feature area
Marine Turtles			
Caretta caretta Loggerhead Turtle [1763]	Foraging	Known to occur	In feature area
Chelonia mydas Green Turtle [1765]	Foraging	Likely to occur	In feature area

Scientific Name	Behaviour	Presence	Buffer Status
<u>Chelonia mydas</u> Green Turtle [1765]	Foraging	Known to occur	In feature area
<u>Chelonia mydas</u> Green Turtle [1765]	Internesting	Likely to occur	In feature area
<u>Chelonia mydas</u> Green Turtle [1765]	Internesting	Known to occur	In feature area
Chelonia mydas Green Turtle [1765]	Internesting buffer	Known to occur	In feature area
Chelonia mydas Green Turtle [1765]	Internesting buffer	Likely to occur	In feature area
Chelonia mydas Green Turtle [1765]	Mating	Likely to occur	In feature area
<u>Chelonia mydas</u> Green Turtle [1765]	Nesting	Likely to occur	In feature area
<u>Chelonia mydas</u> Green Turtle [1765]	Nesting	Known to occur	In feature area
Dermochelys coriacea Leatherback Turtle [1768]	Internesting	Likely to occur	In feature area
Eretmochelys imbricata Hawksbill Turtle [1766]	Foraging	Likely to occur	In feature area
Eretmochelys imbricata Hawksbill Turtle [1766]	Internesting	Likely to occur	In feature area
Eretmochelys imbricata Hawksbill Turtle [1766]	Internesting buffer	Likely to occur	In feature area
Eretmochelys imbricata Hawksbill Turtle [1766]	Internesting buffer	Known to occur	In feature area
Eretmochelys imbricata Hawksbill Turtle [1766]	Nesting	Known to occur	In feature area
Eretmochelys imbricata Hawksbill Turtle [1766]	Nesting	Likely to occur	In feature area
<u>Lepidochelys olivacea</u> Olive Ridley Turtle [1767]	Foraging	Known to occur	In feature area

Scientific Name	Behaviour	Presence	Buffer Status
<u>Lepidochelys olivacea</u> Olive Ridley Turtle [1767]	Internesting	Likely to occur	In feature area
Natator depressus Flatback Turtle [59257]	Foraging	Known to occur	In feature area
Natator depressus Flatback Turtle [59257]	Internesting	Likely to occur	In feature area
Natator depressus Flatback Turtle [59257]	Internesting buffer	Known to occur	In feature area
Natator depressus Flatback Turtle [59257]	Nesting	Known to occur	In feature area
River shark			
Pristis clavata Dwarf Sawfish [68447]	Foraging	Known to occur	In feature area
Pristis clavata Dwarf Sawfish [68447]	Juvenile	Known to occur	In feature area
Pristis clavata Dwarf Sawfish [68447]	Nursing	Known to occur	In feature area
Pristis clavata Dwarf Sawfish [68447]	Pupping	Known to occur	In feature area
Pristis pristis Freshwater Sawfish [60756]	Foraging	Known to occur	In feature area
Pristis pristis Freshwater Sawfish [60756]	Nursing	Likely to occur	In feature area
Pristis zijsron Green Sawfish [68442]	Foraging	Known to occur	In feature area
Pristis zijsron Green Sawfish [68442]	Pupping	Known to occur	In feature area
Seabirds			
Ardenna pacifica Wedge-tailed Shearwater [84292]	Breeding	Known to occur	In feature area

Scientific Name	Behaviour	Presence	Buffer Status
Fregata ariel Lesser Frigatebird [1012]	Breeding	Known to occur	In feature area
Fregata minor Greater Frigatebird [1013]	Breeding	Known to occur	In feature area
Onychoprion anaethetus Bridled Tern [82845]	Breeding	Known to occur	In feature area
Phaethon lepturus White-tailed Tropicbird [1014]	Breeding	Known to occur	In feature area
Sterna dougallii Roseate Tern [817]	Breeding	Known to occur	In feature area
Sterna dougallii Roseate Tern [817]	Breeding (high numbers)	Known to occur	In feature area
Sternula albifrons sinensis Little Tern [82850]	Breeding	Known to occur	In feature area
Sternula albifrons sinensis Little Tern [82850]	Resting	Known to occur	In feature area
Sula leucogaster Brown Booby [1022]	Breeding	Known to occur	In feature area
Sula sula Red-footed Booby [1023]	Breeding	Known to occur	In feature area
Thalasseus bengalensis Lesser Crested Tern [66546]	Breeding	Known to occur	In feature area
Thalasseus bergii Crested Tern [83000]	Breeding	Known to occur	In feature area
Thalasseus bergii Crested Tern [83000]	Breeding (high numbers)	Known to occur	In feature area

Scientific Name	Behaviour	Presence	Buffer Status
Rhincodon typus Whale Shark [66680]	Foraging	Known to occur	In feature area
Whales			
Balaenoptera musculus brevicauda Pygmy Blue Whale [81317]	Distribution	Known to occur	In feature area
Balaenoptera musculus brevicauda Pygmy Blue Whale [81317]	Foraging	Known to occur	In feature area
Balaenoptera musculus brevicauda Pygmy Blue Whale [81317]	Migration	Known to occur	In feature area
Megaptera novaeangliae Humpback Whale [38]	Calving	Known to occur	In feature area
Megaptera novaeangliae Humpback Whale [38]	Migration	Known to occur	In feature area
Megaptera novaeangliae Humpback Whale [38]	Nursing	Known to occur	In feature area
Megaptera novaeangliae Humpback Whale [38]	Resting	Known to occur	In feature area

Caveat

1 PLIRPOSE

This report is designed to assist in identifying the location of matters of national environmental significance (MNES) and other matters protected by the Environment Protection and Biodiversity Conservation Act 1999 (Cth) (EPBC Act) which may be relevant in determining obligations and requirements under the EPBC Act.

The report contains the mapped locations of:

- · World and National Heritage properties;
- · Wetlands of International and National Importance;
- Commonwealth and State/Territory reserves;
- · distribution of listed threatened, migratory and marine species;
- · listed threatened ecological communities; and
- other information that may be useful as an indicator of potential habitat value.

2 DISCLAIMER

This report is not intended to be exhaustive and should only be relied upon as a general guide as mapped data is not available for all species or ecological communities listed under the EPBC Act (see below). Persons seeking to use the information contained in this report to inform the referral of a proposed action under the EPBC Act should consider the limitations noted below and whether additional information is required to determine the existence and location of MNES and other protected matters.

Where data are available to inform the mapping of protected species, the presence type (e.g. known, likely or may occur) that can be determined from the data is indicated in general terms. It is the responsibility of any person using or relying on the information in this report to ensure that it is suitable for the circumstances of any proposed use. The Commonwealth cannot accept responsibility for the consequences of any use of the report or any part thereof. To the maximum extent allowed under governing law, the Commonwealth will not be liable for any loss or damage that may be occasioned directly or indirectly through the use of, or reliance

3 DATA SOURCES

Threatened ecological communities

For threatened ecological communities where the distribution is well known, maps are generated based on information contained in recovery plans, State vegetation maps and remote sensing imagery and other sources. Where threatened ecological community distributions are less well known, existing vegetation maps and point location data are used to produce indicative distribution maps.

Threatened, migratory and marine species

Threatened, migratory and marine species distributions have been discerned through a variety of methods. Where distributions are well known and if time permits, distributions are inferred from either thematic spatial data (i.e. vegetation, soils, geology, elevation, aspect, terrain, etc.) together with point locations and described habitat; or modelled (MAXENT or BIOCLIM habitat modelling) using

Where little information is available for a species or large number of maps are required in a short time-frame, maps are derived either from 0.04 or 0.02 decimal degree cells; by an automated process using polygon capture techniques (static two kilometre grid cells, alpha-hull and convex hull); or captured manually or by using topographic features (national park boundaries, islands, etc.).

In the early stages of the distribution mapping process (1999-early 2000s) distributions were defined by degree blocks, 100K or 250K map sheets to rapidly create distribution maps. More detailed distribution mapping methods are used to update these distributions

4 LIMITATIONS

The following species and ecological communities have not been mapped and do not appear in this report:

- threatened species listed as extinct or considered vagrants;
- · some recently listed species and ecological communities;
- some listed migratory and listed marine species, which are not listed as threatened species; and
- migratory species that are very widespread, vagrant, or only occur in Australia in small numbers.

The following groups have been mapped, but may not cover the complete distribution of the species:

- listed migratory and/or listed marine seabirds, which are not listed as threatened, have only been mapped for recorded
- seals which have only been mapped for breeding sites near the Australian continent

The breeding sites may be important for the protection of the Commonwealth Marine environment.

Refer to the metadata for the feature group (using the Resource Information link) for the currency of the information.

Acknowledgements

This database has been compiled from a range of data sources. The department acknowledges the following custodians who have contributed valuable data and advice:

- -Office of Environment and Heritage, New South Wales
- -Department of Environment and Primary Industries, Victoria
- -Department of Primary Industries, Parks, Water and Environment, Tasmania
- -Department of Environment, Water and Natural Resources, South Australia
- -Department of Land and Resource Management, Northern Territory
- -Department of Environmental and Heritage Protection, Queensland
- -Department of Parks and Wildlife, Western Australia
- -Environment and Planning Directorate, ACT
- -Birdlife Australia
- -Australian Bird and Bat Banding Scheme
- -Australian National Wildlife Collection
- -Natural history museums of Australia
- -Museum Victoria
- -Australian Museum
- -South Australian Museum
- -Queensland Museum
- -Online Zoological Collections of Australian Museums
- -Queensland Herbarium
- -National Herbarium of NSW
- -Royal Botanic Gardens and National Herbarium of Victoria
- -Tasmanian Herbarium
- -State Herbarium of South Australia
- -Northern Territory Herbarium
- -Western Australian Herbarium
- -Australian National Herbarium, Canberra
- -University of New England
- -Ocean Biogeographic Information System
- -Australian Government, Department of Defence
- Forestry Corporation, NSW
- -Geoscience Australia
- -CSIRO
- -Australian Tropical Herbarium, Cairns
- -eBird Australia
- -Australian Government Australian Antarctic Data Centre
- -Museum and Art Gallery of the Northern Territory
- -Australian Government National Environmental Science Program
- -Australian Institute of Marine Science
- -Reef Life Survey Australia
- -American Museum of Natural History
- -Queen Victoria Museum and Art Gallery, Inveresk, Tasmania
- -Tasmanian Museum and Art Gallery, Hobart, Tasmania
- -Other groups and individuals

The Department is extremely grateful to the many organisations and individuals who provided expert advice and information on numerous draft distributions.

Please feel free to provide feedback via the Contact Us page.

© Commonwealth of Australia

Department of Agriculture Water and the Environment
GPO Box 858
Canberra City ACT 2601 Australia
+61 2 6274 1111

Appendix 5: Existing Environment in the spill EMBA

TABLE OF CONTENTS

5.1. Reg	ional Context3
5.1.1.	Climate9
5.1.2.	Oceanography11
5.1.3.	Physical Environment
5.2. Coa	stal Environment19
5.2.1.	Sandy beaches
5.2.2.	Rocky shorelines
5.2.3.	Tidal flats20
5.2.4.	Mangroves
5.2.5.	Islands21
5.3. Biol	ogical Environment 39
5.3.1.	Benthic Assemblages
5.3.2.	Flora
5.3.3.	Plankton48
5.3.4.	Finfish, Sharks and Rays48
5.3.5.	Marine Mammals
5.3.6.	Reptiles82
5.3.7.	Avifauna97
5.3.8.	Marine Pests
5.4. Con	servation Values and Sensitivities123
5.4.1.	Australian Marine Parks124
5.4.2.	World Heritage-Listed Properties131
5.4.3.	National Heritage-Listed Properties132
5.4.4.	Wetlands of International Importance
5.4.5.	Threatened Ecological Communities
5.4.6.	Commonwealth Heritage-listed Places
5.4.7.	Key Ecological Features
5.4.8.	Nationally Important Wetlands143
5.4.9.	State/Territory Protected Areas
5.5. Heri	tage Values150
5.5.1.	Aboriginal Heritage150
5.5.2.	Maritime Archaeological Heritage150
5.5.3.	Native Title
5.6. Soc	io-economic environment155
5.6.1.	Commercial Fishing

5.6.2.	Recreational Fishing	
5.6.3.	Traditional Fishing	. 199
5.6.4.	Coastal Settlements	199
5.6.5.	Tourism	200
5.6.6.	Offshore Energy Exploration and Production	200
5.6.7.	Commercial Shipping	201
5.6.8.	Defence Activities	204
List of F	igures	
Figure 5.	1. The LoWC spill EMBA	2
Figure 5.	·	7
Figure 5.		
Figure 5.	4. Average number of tropical cyclones in Australia from 1969 to 2018	9
Figure 5.	5. Seasonally averaged winds in the Northwest Marine Region	10
Figure 5.	6. Ocean currents along the Northwest Australian continental shelf	12
Figure 5.	7. Bathymetry of the spill EMBA	15
Figure 5.	8. Geomorphic features of the EMBA	17
Figure 5.	9. Overview of the shoreline receptors intersected by the EMBA	24
Figure 5.	10. EMBA shoreline sector - Broome	25
Figure 5.		
Figure 5.	12. EMBA shoreline sector - Mitchell River	27
Figure 5.	13. EMBA shoreline sector - Wyndham-East Kimberley	28
Figure 5.	14. EMBA shoreline sector - Ashmore Reef & Cartier Island	29
Figure 5.		
Figure 5.		
Figure 5.	17. EMBA shoreline sector - Thamarrurr	32
Figure 5.	·	
Figure 5.		
Figure 5.		
Figure 5.	21. EMBA shoreline sector - South Alligator	36
Figure 5.		
Figure 5.	23. EMBA shoreline sector - Melville and Bathurst islands	38
Figure 5.		
Figure 5.	25. Whale shark BIA intersected by the spill EMBA	57
Figure 5.	·	
Figure 5.		
Figure 5.		
Figure 5.	-	
Figure 5.	, ,	
Figure 5.	·	
Figure 5.	·	
Figure 5.		
Figure 5.	·	
Figure 5.	39. Leatherback turtle BIA intersected by the spill EMBA	92

Figure 5.40.	Flatback turtle BIA intersected by the spill EMBA	93
Figure 5.41.	Olive Ridley turtle BIA intersected by the spill EMB	
Figure 5.42.	Hawksbill turtle BIA intersected by the spill EMBA	
Figure 5.43.	Wedge-tailed shearwater BIA intersected by spill EMBA	
Figure 5.44.	Roseate tern BIA intersected by spill EMBA	106
Figure 5.45.	Little tern BIA intercepted by the spill EMBA	
Figure 5.46.	Lesser frigatebird BIA intersected by the spill EMBA	109
Figure 5.47.	Greater frigatebird BIA intercepted by the spill EMBA	
Figure 5.48.	Lesser crested tern BIA intersected by the spill EMBA	111
Figure 5.49.	Crested tern BIA intercepted by the spill EMBA	114
Figure 5.50.	Bridled tern BIA intercepted by the spill EMBA	115
Figure 5.51.	Brown booby BIA intercepted by the spill EMBA	
Figure 5.52.	Red-footed booby BIA intercepted by the spill EMBA	
Figure 5.53.	White tailed tropicbird BIA intercepted by the spill EMBA	
Figure 5.54.	Protected areas intersected by the spill EMBA	
Figure 5.55.	National Heritage and Commonwealth Heritage-listed Places intersected by EMBA	
Figure 5.56.	Wetlands of international importance and NIWs intersected by the EMBA	135
Figure 5.57.	KEFs intersected by the spill EMBA	138
Figure 5.58.	Shipwrecks intersected by the EMBA	153
Figure 5.59.	Miriuwung Gajerrong Native Title Determination Area	154
Figure 5.60.	Balanggarra Native Title Determination Area	
Figure 5.61.	Northern Prawn Fishery intersected by the EMBA	158
Figure 5.62.	North West Slope Trawl Fishery intersected by the EMBA	159
Figure 5.63.	Southern Bluefin Tuna spawning grounds intersected by the EMBA	160
Figure 5.64.	WA Northern Demersal Scalefish Fishery intersected by the EMBA	167
Figure 5.65.	WA Mackerel Managed Fishery intersected by the EMBA	168
Figure 5.66.	WA Kimberley Crab Managed Fishery (North Coast Crab Fishery) intersected	by the
	EMBA	169
Figure 5.67.	WA Kimberley Prawn Managed Fishery intersected by the EMBA	170
Figure 5.68.	WA Kimberley Gillnet and Barramundi Fishery intersected by the EMBA	171
Figure 5.69.	WA Pearl Oyster Managed Fishery intersected by the EMBA	172
Figure 5.70.	WA Abalone Managed Fishery intersected by the EMBA	173
Figure 5.71.	WA Marine Aquarium Managed Fishery intersected by the EMBA	174
Figure 5.72.	WA Broome Prawn Managed Fishery intersected by the EMBA	175
Figure 5.73.	WA Nickol Bay Prawn Managed Fishery intersected by the EMBA	176
Figure 5.74.	WA Onslow Prawn Managed Fishery intersected by the EMBA	177
Figure 5.75.	WA Specimen Shell Managed Fishery intersected by the EMBA	178
Figure 5.76.	Pilbara Demersal Scalefish Fishery intersected by the EMBA	179
Figure 5.77.	Pilbara Managed Crab Fishery intersected by the EMBA	180
Figure 5.78.	West Coast Deep Sea Crustacean Managed Fishery intersected by the EMBA	181
Figure 5.79.	NT Demersal Fishery intersected by the EMBA	190
Figure 5.80.	NT Spanish Mackerel Fishery intersected by the EMBA	191
Figure 5.81.	NT Offshore Net and Line Fishery intersected by the EMBA	192
Figure 5.82.	Coastal Net Fishery intersected by the EMBA < review then request final vers	ion>
Figure 5.83.	Trepang Fishery intersected by the EMBA < review then request final version	
Figure 5.84.	Aquarium Fishery intersected by the EMBA < review then request final version	
Figure 5.85.	Mud Crab Fishery intersected by the EMBA < review then request final version	on>
		196

Figure 5.86.	Australia-Indonesia MoU Box	198
Figure 5.87.	Petroleum titles and infrastructure in the EMBA	202
Figure 5.88.	Commercial shipping in the EMBA	203
Figure 5.89.	Defence exercise and training areas intersected by the spill EMBA	205
Figure 5.90.	Unexploded ordnance risks in the EMBA	206

List of Tables

Table 5.1	Description of shoreline receptors by type in the EMBA	22
Table 5.2.	Shoals present within the socio-economic EMBA	41
Table 5.3.	EPBC Act-listed finfish, sharks and rays that may occur in the EMBA	49
Table 5.4.	BIAs of fish species within the EMBA	55
Table 5.5.	EPBC Act-listed cetaceans that may occur in the spill EMBA	66
Table 5.6.	BIAs of marine mammals within the EMBA	69
Table 5.7	EPBC Act-listed marine reptiles that may occur in the spill EMBA	83
Table 5.8.	BIAs of marine turtles within the EMBA	86
Table 5.9.	EPBC Act-listed bird species that may occur in the spill EMBA	98
Table 5.10.	BIAs of bird species within the EMBA	103
Table 5.11.	Conservation values in the EMBA	
Table 5.12.	Definition of Zones in AMPs	124
Table 5.13.	Australian Marine Parks within the EMBA	125
Table 5.14.	Summary of environmental pressures in the NWMR and NMR	131
Table 5.15.	Nationally important wetlands in the spill EMBA	143
Table 5.16.	Marine protected areas in the spill EMBA	148
Table 5.17	. Commonwealth-managed commercial fisheries with jurisdictions to fish	h in the EMBA
		156
Table 5.18.	WA-managed commercial fisheries with jurisdictions to fish within the	e EMBA 162
Table 5.19.	NT-managed commercial fisheries with jurisdictions to fish within the	EMBA 183

5. Description of the Existing Environment

In accordance with OPGGS(E) Regulation 13(2), the 'environment that may be affected' (EMBA) by the activity is described in this section, together with its values and sensitivities. While each hazard associated with the activity has its own unique EMBA, the largest one has been chosen for this chapter so as to describe all possible values and sensitivities, which is a surface release of crude oil from a loss of well control (LoWC). Spill modelling of this event used the NOPSEMA Bulletin #1 Oil Spill Modelling (NOPSEMA, 2019) hydrocarbon contact values of four oil phases (surface, dissolved, entrained and accumulated shoreline) that pose differing environmental risks to define the outer extent of the EMBA (see Table 5.1 in Section 5.1.2 of Chapter 5).

The low contact values used to inform the extent of the EMBA are useful for establishing scientific monitoring parameters and identifying potential socio-economic impacts (the socio-economic EMBA); however, they may not be at concentrations that are ecologically significant (NOPSEMA, 2019). Therefore, in addition to the socio-economic EMBA, an ecological EMBA has also been derived from the stochastic spill modelling using hydrocarbon thresholds that are identified by NOPSEMA Bulletin #1 (NOPSEMA, 2019) (see Table 5.1 in Section 5.1.2 of Chapter 5) as having the potential to cause impacts to ecological receptors. This is simply referred to as the 'spill EMBA' or interchangeably throughout this appendix as the 'EMBA' (Figure 5.1).

This spill EMBA has been established through hydrocarbon spill modelling (see Section 8.6 for MDO and Section 8.7 for crude oil). The EMBA is generated from stochastic modelling and therefore does not represent the possible outcome from a single spill scenario. The EMBA represents the compilation of possible outcomes and encompasses the area predicted to be affected from 100 simulations of the scenario per season (summer, winter, transition). Because of this, the EMBA is very large, covering areas that may not be affected by any single spill event.

The modelling also reports hydrocarbon contact for a given grid cell even if hydrocarbon concentrations reach this very low threshold for only one time step (2 hours) within the entire duration of the model run (6 hours for MDO and 77 days for crude oil). Because of this, the EMBA from a single spill event would be considerably smaller than the EMBA presented for the loss of MDO or a LoWC (which is an amalgamation of 100 simulations). Additionally, the spill EMBA does not consider mitigation measures that would be applied in the event of an MDO spill or LoWC, which would act the reduce the extent of the EMBA.

The 'environment' described in this EP is as per the definition in the OPGGS(E) regulations:

- Ecosystems and their constituent parts, including people and communities;
- Natural and physical resources;
- The qualities and characteristics of locations, places and areas;
- The heritage value of places; and
- The social, economic and cultural features of these matters.

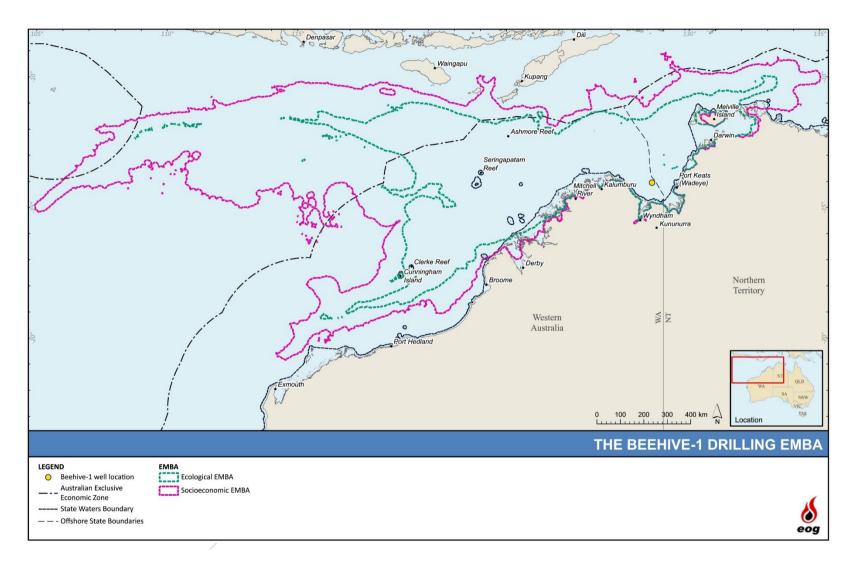


Figure 5.1. The LoWC spill EMBA

The key sources of information used in developing this chapter include the:

- EPBC Act Protected Matters Search Tool (PMST) database (DAWE, 2021a), conducted for the for the socio-economic EMBA on 17th August 2021 and for the ecological EMBA on 7th of September 2021 and repeated on 17th February 2022 (Appendix 4);
- Species Profile and Threats (SPRAT) Database (DAWE, 2021b);
- The Northwest Marine Bioregional Plan Bioregional Profile (DEWHA, 2008b);
- Marine bioregional plan for the North Marine Region (DSEWPC, 2012);
- National Conservation Values Atlas (NCVA) (DAWE, 2021c);
- Species recovery plans, conservation advice and scientific publications; and
- Seabed Habitats and Hazards of the JBG and Timor Sea, Northern Australia (Przesławski et al., 2011).

The relevant values and sensitivities considered in this chapter are inclusive of but not limited to the matters protected under Part 3 of the EPBC Act.

5.1. Regional Context

The spill EMBA occurs within both the NWMR and the NMR. The marine bioregional plans for the NWMR (DEWHA, 2008b) and NMR (DSEWPC, 2012) have been used in conjunction with other relevant management plans, reports and published papers to inform the description of the existing environment.

5.1.1. Northwest Marine Region

The NWMR comprises Commonwealth waters from the Western Australia-Northern Territory (WA-NT) border to Kalbarri, south of Shark Bay, WA (DEWHA, 2008b).

The NWMR is characterised by the large area of continental shelf and continental slope, highly variable tidal regions and very high cyclone incidence (DEWHA, 2008b).

The NWMR is characterised by a wide continental shelf with water depths generally less than 70 metres, complex geomorphology with features including shelves, shoals, banks and terraces and valleys, currents driven largely by strong winds and tides and complex weather and a tropical monsoonal climate (DEWHA, 2008b).

5.1.2. North Marine Region

The NMR comprises Commonwealth waters from west Cape York Peninsula to the WA-NT border. The marine environment of the NMR is known for its high diversity of tropical species but relatively low endemism, in contrast to other bioregions. This region is highly influenced by tidal flows and less by ocean currents. The region is dominated by monsoonal climatic patterns characterised by a pronounced wet season and a generally dry season. Tropical cyclones are a dominant feature in the wet season (DEWHA 2008b).

5.1.3. Provincial Bioregions

Based on the Integrated Marine and Coastal Regionalisation of Australia (IMCRA) Version 4.0, the ecological EMBA is situated within the Northwest IMCRA Transition bioregion (containing the Northwest Shelf Transition), Northwest IMCRA province (containing the Northwest Shelf Province, Northwest Transition and the Timor Province). The socio-economic EMBA intersects all the above bioregions including the Northwest Province, Christmas Island Province and the Northern IMCRA Province and the Timor Province (CoA, 2006), which is illustrated in Figure 5.2.

The following mesoscale bioregions are intersected by the spill EMBA and are presented in Figure 5.3:

- Anson Beagle;
- Arafura;
- Bonaparte Gulf;
- Cambridge-Bonaparte;
- Canning;
- · Cobourg;
- Kimberley;
- King Sound;
- NorthWest Shelf;
- Oceanic Shoals;
- Pilbara (offshore);
- · Tiwi; and
- · Van Diemens Gulf.

Northwest Shelf Transition

The Northwest Shelf transition is a provincial bioregion situated within the NWMR and NMR extending from the Tiwi Islands in the NT to Cape Leveque in WA, covering an area of 305,463 km². The Indonesian Throughflow is the dominant oceanographic feature and dominates the majority of the water column. The strength of the Throughflow and its influence in the bioregion varies seasonally in association with the North-west Monsoon (DEWHA, 2008b).

The vast majority of the bioregion is located on the continental shelf with water depths generally in the range 10 to 100 m. The provincial bioregion has a complex seafloor topography with a diversity of features including submerged terraces, carbonate banks, pinnacles, reefs and sand banks. The carbonate banks and pinnacles of the Joseph Bonaparte Gulf are distinctly different in morphology and character to other parts of the region and are considered to support a high diversity of marine species (DEWHA, 2008b).

The biological communities of the North-west Shelf Transition are typical of Indo-west Pacific tropical flora and fauna and occur across a range of soft-bottom and harder substrate habitats. The inshore waters off the Kimberley are where the Western Australian population of humpback whales mate and calve. The bioregion is important for commercial fisheries and supports both defence activities and the petroleum industry (DEWHA, 2008b).

Northwest Shelf Province

This provincial bioregion is located primarily on the continental shelf between Northwest Cape and Cape Bougainville. It varies in width from about 50 km at Exmouth Gulf to more than 250 km off Cape Leveque. Approximately half of the bioregion has water depths of only 50 to 100 m. The bioregion is a dynamic oceanographic environment, influenced by strong tides, cyclonic storms, long-period swells and internal tides. Its waters derive from the Indonesian Throughflow, are warm and oligotrophic, and circulate throughout the bioregion via branches of the South Equatorial and Eastern Gyral Currents (DEWHA, 2008b).

Fish communities are diverse and both benthic and pelagic fish communities appear to be closely associated with different depth ranges. Humpback whales migrate through the bioregion and Exmouth Gulf is an important resting area, particularly for mothers and calves on their southern migration. A number of important seabird breeding sites are located in the bioregion (but adjacent to Commonwealth waters), including Eighty Mile Beach, the Lacepede Islands, and Montebello and Barrow islands. The bioregion is important for the petroleum industry and the location of commercial fishing operations. The nationally significant ports of Dampier and Port Hedland operate in this bioregion (DEWHA, 2008b).

Northwest Transition

The Northwest Transition is a provincial bioregion located off the shelf between the Dampier Archipelago and Lacepede Islands covering a total area of 184 424 km². The area includes shelf break and continental slope and the majority of the Argo Abyssal Plain included in the NWMR. Key topographic features include the Mermaid, Clerke and Imperieuse Reefs, all of which are marine reserves and together constitute the Rowley Shoals.

Surface circulation of Indonesian Throughflow waters occurs both via direct southward movement of the Throughflow itself, and recirculation of Throughflow waters via the South Equatorial Current. Cyclone incidence is high in this bioregion during summer months (DEWHA, 2008b).

Little is known about benthic biological communities in the deeper parts of the provincial bioregion, although high levels of species diversity and endemism have been identified among demersal fish communities on the continental slope. The Rowley Shoals are biodiversity hotspots in the bioregion and the steep change in slope around them attracts a range of pelagic migratory species including billfish, sharks, tuna and cetaceans. Commercial fishers operate within the bioregion and it may increase in importance for the petroleum industry in the future (DEWHA, 2008b).

Northwest Province

The Northwest Province is located on the continental shelf between Northwest Cape and Cape Bougainville, with half the bioregion located in water depths of 50 m to 100 m. It varies in width from approximately 50 km at Exmouth Gulf to more than 250 km off Cape Leveque in the Kimberley. The bioregion is a dynamic oceanographic environment, influenced by strong tides, cyclonic storms, long-period swells and internal tides. Waters derive from the Indonesian Throughflow, are warm and oligotrophic, and circulate throughout the bioregion via branches of the South Equatorial and Eastern Gyral Currents (DEWHA, 2008b).

Fish communities are diverse and both benthic and pelagic fish communities appear to be closely associated with different depth ranges. Humpback whales migrate through the bioregion, with Exmouth Gulf identified as an important resting area, particularly for mothers and calves on their southern migration. A number of important seabird breeding sites are located in the bioregion (adjacent to Commonwealth waters), including Eighty Mile Beach, the Lacepede Islands, and the Montebello and Barrow islands. The bioregion is important for the petroleum industry and the location of commercial fishing operations. The nationally significant ports of Dampier and Port Hedland operate in this bioregion (DEWHA, 2008b)

Christmas Island Province

This provincial bioregion surrounds Christmas Island and covers a total area of 277,180 km². It contains the fourth largest abyssal plain/deep ocean floor area and smallest area of slope of all the bioregions (DEH, 2005). Water depths range from 0 m to 6,545 m and support a suite of marine species typical of Indian Ocean tropical reefs. The recorded marine species diversity

includes 88 coral species and over 600 fish species, including the whale shark and several other shark species, as well as hybrid fish. Green turtles and hawksbill turtles are found in offshore waters of the bioregion (DNP, 2014).

Northern Shelf Province

The Northern Shelf Province extends over the continental shelf from the eastern shore of Melville Island to West Cape York and is the largest of all the shelf provincial bioregions in the Region. It comprises the Gulf of Carpentaria in the east and the south-western Arafura Sea in the west, a covering a total area of 556,350 km². The provincial bioregion is characterised by relatively featureless sandy and muddy continental shelf and basin, turbid coastal waters, and submerged patch or barrier reefs around 30 m to 50 m water depth. Offshore features of the Arafura Shelf include canyons, terraces and the Arafura Sill (DEWHA, 2008b).

Of all the provincial bioregions of the Region, the Northern Shelf Province is the best sampled for demersal fish and invertebrates. Most data are associated with scientific studies and sampling of prawns and fish trawling. Localised upwellings offshore, around islands and offshore reefs, are also known to be hotspots for marine biodiversity in the provincial bioregion (DEWHA, 2008b).

Timor Province

This provincial bioregion covers almost 15% of the NWMR predominantly covering the continental slope and abyss between Broome and Cape Bougainville in WA. Water depth ranges from about 200 m near the shelf break to 5,920 m over the Argo Abyssal Plain. In addition to the Argo Abyssal Plain, the major geomorphic features are the Scott Plateau, the Ashmore Terrace, part of the Rowley Terrace and the Bowers Canyon. Important features of the bioregion include Ashmore Reef, Cartier Island, Seringapatam Reef and Scott Reef (DEWHA, 2008b).

The bioregion is dominated by warm, oligotrophic waters of the Indonesian Throughflow. In this bioregion the thermocline in the water column is pronounced and associated with the generation of internal tides. The variety of geomorphic features in the Timor Province, coupled with the variation in bathymetry, results in several distinct habitats and biological communities. The reefs and islands of the bioregion are regarded as particular hotspots for biodiversity. A high level of endemicity exists in demersal fish communities of the continental slope in the Timor Province and two distinct communities have been identified associated with the upper slope and mid slope (DEWHA, 2008b).

The bioregion supports commercial fisheries, and the petroleum industry (DEWHA, 2008b).

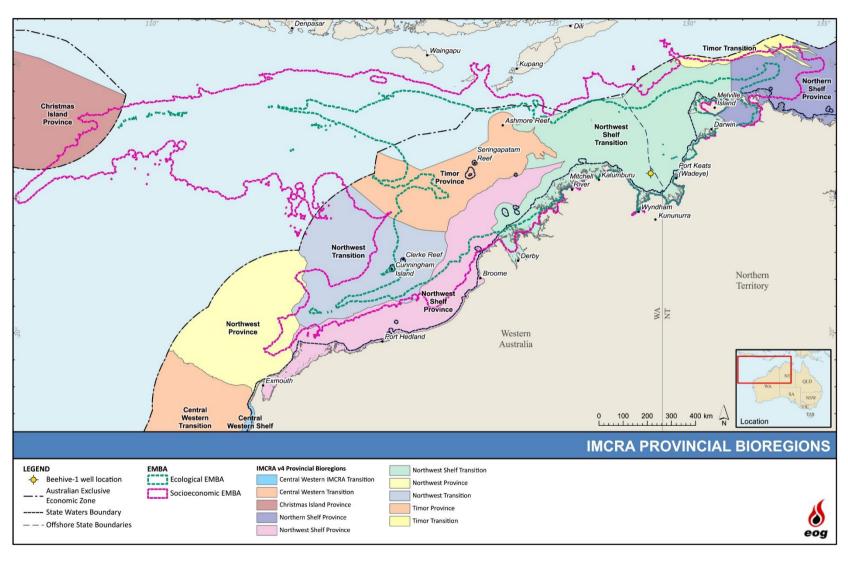


Figure 5.2. Provincial bioregions intersected by the EMBA

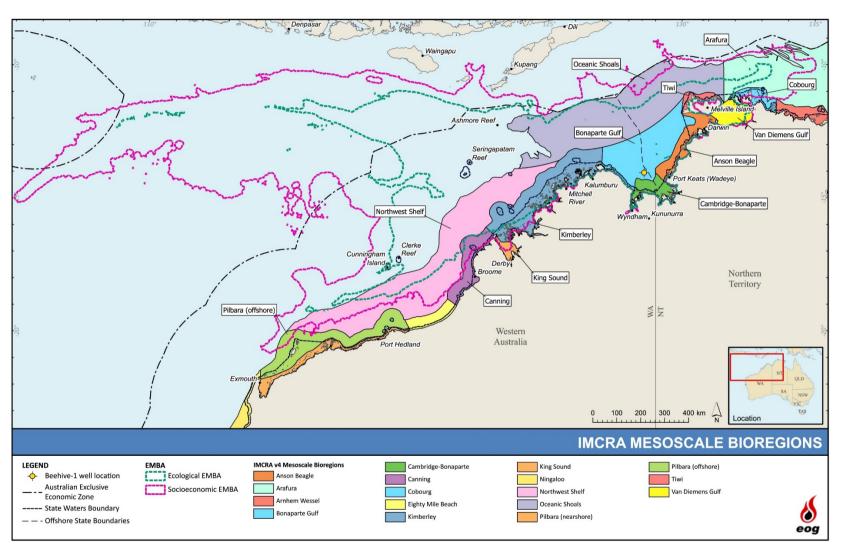


Figure 5.3. Mesoscale bioregions intersected by the EMBA

5.1.4. Climate

The northwest of Australia has a tropical climate with hot and humid summers and warm winters. There are two distinct seasons known as the northwest monsoon, which occurs from late October to mid-March ('wet season'); and the southeast monsoon, which occurs from May to mid-October ('dry season').

Air Temperature

Mean air temperatures range from a minimum of 11°C in winter to a maximum of 36°C in summer (Condie *et al.*, 2006). During summer, hot and dry wind from the north-east, which comes from the desert, can become really intense, with air temperatures reaching above 40°C.

Rainfall

Regular and high rainfall is a characteristic of the northwest monsoon, mainly over coastal areas and during tropical cyclones. This is caused by large amounts of moisture being gathered as the monsoon crosses the sea from the Asian high-pressure belt on its way to the intertropical convergence zone, which drifts southward close to, or over, northern Australia. On the contrary, the southeast monsoon originates from the southern hemisphere high-pressure belt and is relatively dry and cool (DSEWPC, 2012). Low rainfall and humidity are associated with the southeast monsoon.

Historical rainfall data in the region shows the highest mean monthly rainfall occurs from January to March (BoM, 2022a).

Cyclones

Cyclones are common in the region resulting in severe storms with gale force winds and a rapid rise in water levels. The cyclone season typically occurs between November and April (BoM, 2022b). Cyclones result in severe storms with gale force winds and a rapid rise in water levels. Cyclones in the Australian region are influenced by several factors, and in particular variations in the El Niño –Southern Oscillation, generally more tropical cyclones occur across the coast during La Niña years than during El Niño years. On average about eleven cyclones form in the Australian region (90-160° E) each cyclone season (BoM, 2022b).

The average number of tropical cyclones through the Australian region and surrounding waters in El Niño, La Niña, neutral years and using all years of data is presented in Figure 5.4. The data is based on a 48-year period from the 1969/70 to 2017/18 tropical cyclone season

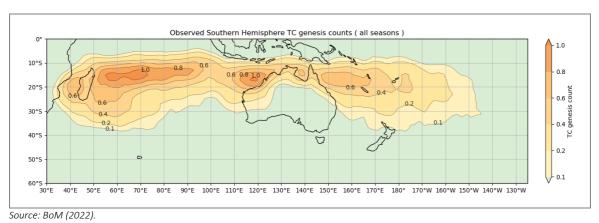


Figure 5.4. Average number of tropical cyclones in Australia from 1969 to 2018

Winds

Winds typically vary seasonally, with a tendency for south-westerly winds during September—March and south-easterly from May–July (Condie *et al.*, 2006). Transitional wind periods, during which either pattern may predominate, can be experienced in April—May and September of each year. September—March winds are more variable and are driven by high pressure cells that pass from west to east over the Australian continent. During May–July the relative position of the high-pressure cells moves further north, leading to prevailing easterly winds blowing from the mainland (Pearce *et al.*, 2003).

Seasonally averaged winds in the NWMR at 10 m above sea level during January, March, May, July, September and November are presented in Figure 5.5.

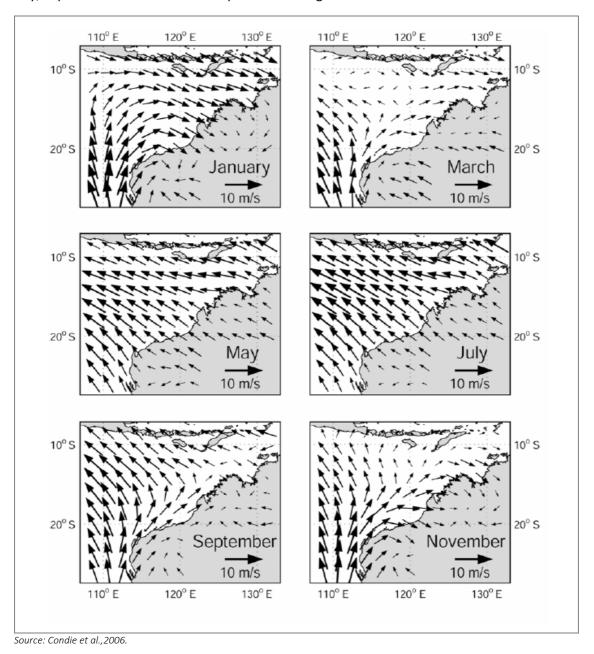


Figure 5.5. Seasonally averaged winds in the Northwest Marine Region

5.1.5. Oceanography

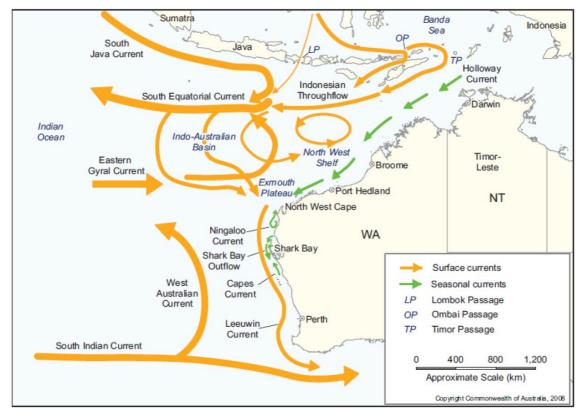
Currents

Broad-scale ocean circulation of the North Australian Shelf is dominated by the Indonesian Throughflow current system. The NWMR is influenced by a complex system of ocean currents that vary between seasons and years, which generally result in warm, nutrient-poor and low salinity surface waters (DEWHA, 2008b). Two ocean and coastal surface currents in the WA region are significant in shaping marine environmental conditions and climate. Forming on the NWS, the Leeuwin Current exerts a major influence on the distribution of marine life and WA's weather. The Indonesian Throughflow is a system of currents that carries water westward from the Pacific to the Indian Ocean through the deep passages and straits of the Indonesian Archipelago where warm, equatorial waters flow from one ocean to another, that influence the character of the Leeuwin Current (CSIRO, 2022).

During the wet season (December to March), monsoon winds push some of the waters of the Indonesian Throughflow eastwards, extending as far as the Gulf of Carpentaria. At the end of the Northwest monsoon (March-April), the pressure gradient is released, which releases a southwesterly flow of water across the shelf during autumn and winter, known as the Holloway Current (DEWHA, 2008b).

Currents in the NMR are driven largely by strong winds and tides, with only minor influences from oceanographic currents such as the Indonesian Throughflow and the South Equatorial Current. The net tidal flows that occur over time drive longer-term transport patterns through the region. The movement of tidal waters across the northern Australian marine environment is complex due to the barrier of islands and submerged reefs in the Torres Strait that hinder tidal energy entering from the Coral Sea (DSEWPC, 2012).

Surface currents that have some minor influence in the NMR include the Indonesian Throughflow and the South Equatorial Current. The Indonesian Throughflow brings warm water of lower salinity from the tropical western Pacific Ocean between the Indonesian islands to the Indo-Australian basin in the north-west of the region. The influence of the South Equatorial Current in the region is marginal, although the strength of its influence varies with the season (DSEWPC, 2012).


Figure 5.6 represents the major ocean currents in north-western Australian waters.

Sea Temperature and Salinity

Surface water temperatures and salinities in northern WA vary seasonally and are influenced by the Indonesian Throughflow. During the northwest monsoon, a thermocline flow of relatively cool water dominates resulting in the tropical Indian Ocean being cooled rather than warmed. The region typically has average sea surface temperatures of 28-30°C and salinities of 34-35 psu.

Two marine baseline studies in 2010 (wet season) and 2011 (dry season) within the Bonaparte Basin in support of GDF SUEZ Bonaparte LNG Project were undertaken by Environmental Resources Management Australia Pty Ltd (ERM). The studies indicated that temperature gradients throughout the water column did not display a thermocline, however a vertical gradient in seawater temperature was observed in which temperature decreased progressively from the surface to the bottom ranging from 32.1°C to 25.3°C (ERM 2011).

Source: DEWHA, 2008b.

Figure 5.6. Ocean currents along the Northwest Australian continental shelf

Tides

The tides of the region are mixed and predominantly semi-diurnal (two high tides and two low tides per day), with well-developed spring to neap tidal variation (DEWHA, 2008b). The Kimberley region within the NWMR has some of the largest tides in Australia, along a coastline adjoining an open ocean. Tides increase in amplitude from with an increase in amplitude from south to north, which corresponds with the increasing width of the shelf (Holloway, 1983).

Tides and winds strongly influence water flow in the coastal zone and over the inner to midshelf, whereas flows over the outer-shelf, slope, rise and deeper waters are influenced by large scale regional circulation (DEWHA, 2008b).

Tides are semi-diurnal (two high tides and two low tides each day) and generally quite large; up to 10 m during spring tide and less than 3 m in the neap tides for the Kimberley region (DEWHA, 2008b). Water flows in the deeper waters are influenced more by large scale regional water circulation than tides and winds that influence the coastal regions. Tides contribute to the vertical mixing of surface water layers and sediments, but this is more evident in shallow waters than deep waters (DEWHA, 2008b).

The JBG is subject to semi-diurnal tides with two high and low tides per day, and has the largest tidal energy observed anywhere in the world (>7 m) (Rothlisberg *et al.*, 2005). Within the Bonaparte Gulf (situated in the Northwest Shelf Transition provincial bioregion), tides range from 2-3 m offshore (microtidal) rising to 3-4 m inshore (mesotidal).

Waves

In the JBG, the Southern Ocean swell is higher in winter than in summer as a result of northerly migration of swell-generating storms. The wave period and significant wave height generated by this swell is highly dependent on the exact location within the basin. For example, the JBG is protected from the Southern Ocean swell; therefore, swells affecting the area are limited to those generated by cyclones or prolonged storm winds (Maxwell *et al.*, 2004). The region is considered a moderate-energy environment except when influenced by tropical cyclones which generate short-term but major fluctuations in sea levels. Swells generated may have periods of 6-18 seconds and wave heights of 0.5-9 m and are dependent on the size, intensity, speed and relative location of the cyclone.

One of the most unique features of the NWMR is the occurrence of internal waves. Internal waves are dynamic, episodic events, which are strongly influenced by topography and generated by internal tides (DEWHA, 2008b). Internal tides occur at the thermocline, where the warm, low salinity waters of the Indonesian Throughflow overlay colder, more saline, deeper ocean waters. Internal tides are large in scale, frequently occurring across an ocean basin and forced by the gravitational pull of the moon and sun. An internal tide can rise and fall at a different rate to the surface tide but are typically occur semi-diurnal (twice daily) (Holloway *et al.*, 1997) and may travel either towards the shore, or away from the shore across the shelf and out into deeper water (DEWHA, 2008b).

Water Quality

The Indonesian Throughflow brings in oligotrophic waters (low in nutrients) from the western Pacific Ocean through to the Indian Ocean (DEWHA, 2008b). Exceptions in the region occur in the event of local or regional upwelling activity at the shelf break, where deeper, cooler nutrient-rich water is brought to the surface (DEWHA, 2008b). These upwelling activities include, but are not limited to, internal wave and tide regimes, horizontal shear due to strong tidal currents and tropical cyclones. However, understanding of the nature and spatial distribution of biological productivity in the region is limited (DEWHA, 2008b).

Major inputs of fine silt sediments from the Ord, Victoria and Keep River systems occur during the wet season, creating vast areas of high turbidity, particularly in the southern part of the Gulf. The sediments are deposited to form sand bars and mud flats which are themselves the source of high turbidity throughout the year as sediments are resuspended by tidal movements. Though there is only limited marine and nearshore water quality data available, as there are no major developments or population centres near the Beehive-1 well location, the potential for existing pollution is limited.

A study conducted by Holloway et al in 1985 into the mechanisms of nitrogen supply in the NWS indicated the NWMR is an oligotrophic (low in nutrients) environment. Nutrient enrichment of the shelf occurs through river runoff, tidal mixing, internal tides, low frequency circulation, upwelling, and tropical cyclones that induce oceanic mixing and further upwelling (Holloway *et al.*, 1985).

Ambient Ocean Sound

Physical and biological processes contribute to natural background sound. Physical processes include that of wind, waves, rain and earthquakes, whilst biological noise sources include vocalisations of marine mammals and other marine species.

Wind is a major contributor to noise between 100 Hz and 30 kHz and can reach 85-95 dB re $1\mu Pa^2/Hz$ under extreme conditions (WDCS, 2004). Rain may produce short periods of high

underwater sound with a flat frequency spectra to levels of 80 dB re $1\mu Pa^2/Hz$ and magnitude 4 earthquakes have been reported to have spectral levels reaching 119 dB re $1\mu Pa^2/Hz$ at frequency ranges of 5-15 Hz.

Turnpenny and Nedwell (1994) found that in sensitive species such as the cod, continuous ambient sound alone resulted in auditory masking, and that sound had to be 20 dB above ambient sound to be audible. A comparison of biological and anthropological sounds in the marine environment is provided in Table 5.5 of Section 5.2.2 of Chapter 5.

5.1.6. Physical Environment

Bathymetry

Water depths in the NWMR range from 0 to 5,980 m. The NWMR is relatively shallow, with greater than 40% of the total area in water depths of less than 200 m and greater than 50% in depths of less than 500 m (Baker *et al.*, 2008). Water depths in the spill EMBA range from $^{\sim}100$ m (offshore) to <10 m (inshore).

Bathymetry in parts of the south of the JBG is strongly influenced by the strong tidal movement and channels of the Ord, Keep, Victoria and Fitzmaurice rivers. A series of extensive sandbars, known as the King Shoals and Medusa Banks, have been generated in the southwest by the strong outflows of sediment-laden water from the Cambridge Gulf. Similar sandbars can be found in the southeast of the JBG. Bathymetry of the spill EMBA is presented in Figure 5.7.

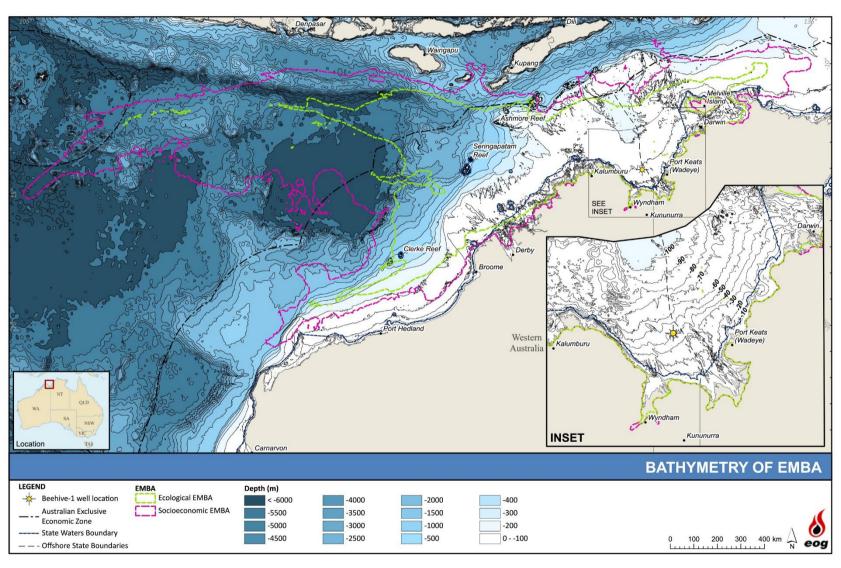


Figure 5.7. Bathymetry of the spill EMBA

Geomorphology

The seafloor of the NWMR comprises an extensive area of continental shelf, slope, rise and abyssal plain/deep ocean floor. The seafloor of the NWMR comprises an extensive area of continental shelf, slope, rise and abyssal plain/deep ocean floor. Most of the region consists of continental slope (61%) or continental shelf (28%) and a range of features such as canyons, plateau, terraces, ridges, reefs, banks and shoals. Over half of the total area of banks and shoals in Australian marine jurisdiction occurs in the NWMR, including 39% of terraces and 56% of deeps, holes and valleys (DSEWPC, 2012).

Sediment texture and composition displays a zoning with depth, and sand and gravel dominate the shelf area whilst mud dominates the lower slope and abyssal plain/deep ocean floor. Calcium carbonate concentrations throughout the region are generally highest along the shelf to the shelf edge and are associated with reefs (Baker *et al.*, 2008).

Ten key geomorphic features have been identified in the JBG (Przeslawski *et al.*, 2011). The inner gulf comprises mostly shelf with sand banks and valleys. The outer gulf and Timor Sea mostly comprise of basin with banks/shoals, terraces and pinnacles separated by deep hole/valley features and escarpment.

The benthic environment of the JBG is linked to its geomorphic features, with the majority of the area characterised by infaunal plains, with some localised reefs and outcrops supporting sponge gardens. Seabed morphology in parts of the JBG is influenced by the strong tidal movement and channels of the Ord, Keep, Victoria and Fitzmaurice rivers. A series of extensive sandbars, known as the King Shoals and Medusa Banks (approximately 72 km and 66 km south respectively of the Beehive-1 exploration well location), have been generated by the strong outflows of sediment-laden water from Cambridge Gulf. Similar sandbars can be found in the south-east of the JBG. The Beehive-1 exploration well location is located entirely within the 'shelf' geomorphic feature, which is typically characterised by extensive sediment plains and high sediment deposition from the coastal rivers to the south (Figure 5.8).

The NMR seafloor comprises a wide continental shelf with water depths generally less than 70 m although water depths range from approximately 10 m to a maximum known depth of 357 m (DSEWPC, 2012). It contains the Van Diemen Rise, characterised by complex geomorphology with features including shelves, shoals, banks, terraces and valleys like the Malita Shelf Valley, which provides a significant connection between the Joseph Bonaparte Gulf and the Timor Trough. In addition, numerous limestone pinnacles up to tens of kilometres in length and width, lie within the Bonaparte Basin (DSEWPC, 2012).

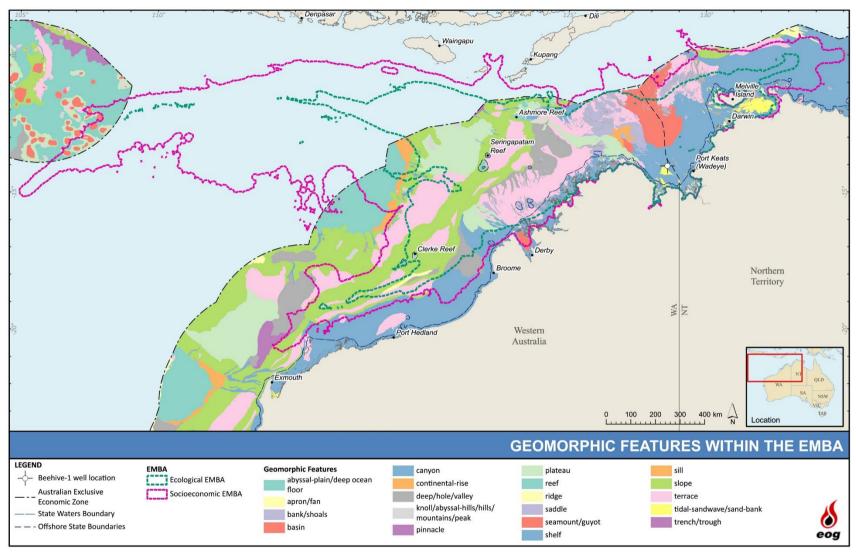


Figure 5.8. Geomorphic features of the EMBA

Sedimentology

The sedimentology of the NWMR is varied due to the diversity of physical features from coral reefs to major canyons that act as conduits for sediment and nutrient transport (DSEWPC, 2012). The region is made up of a tropical carbonate shelf dominated by sand and gravel to 15° latitude, while the outer shelf/ slope zone is dominated by mud (Baker *et al.*, 2008). It has a relatively homogenous rise and abyssal plain/ deep ocean floor that is dominated by non-carbonate mud because it occurs below the carbonate compensation depth (Baker *et al.*, 2008).

Major contributors to sediment mobilisation in the NWMR include storm events, tropical cyclones; internal tides; and ocean currents, including the Leeuwin current (Baker *et al.*, 2008). Sediments of the middle shelf region are predominantly influenced by tidal processes, including internal tides (Baker *et al.*, 2008).

Sedimentology in the NMR is also varied, with physical features including shallow canyons, which mainly consist of calcium carbonate, based sediments, as well as limestone pinnacles and reefs (DEWHA, 2008b).

The continental shelf in the JBG is the widest in Australia, extending up to 400 km from the shore. The sedimentology of the JBG is unique, with most of the inner shelf being characterised by relatively flat expanses of soft sediment seabed with localised rocky outcrops, gravel deposits and sands banks. The soft sediments in the region typically consist of sandy and muddy substrate, occasionally made up of patches of coarser sediments (Baker *et al.*, 2008). The inner shelf section of the JBG receives significant loads of sediments from several large rivers including the Daly and Victoria rivers (Przeslawski *et al.*, 2011).

The distribution of seabed sediments in the JBG, and in particular within the Sahul Shelf, reflects the present-day oceanographic condition and displays a distinct seaward fining pattern (Lees 1992, in Baker *et al.*, 2008). Sediment sampling undertaken by ERM) in 2010 and 2011 (within WA-6-R and NT/RL1, more than 100 km north of the Beehive-1 exploration well location) confirms that the area is mainly dominated by sand, with similar proportions of smaller gravel, silt and clay (ERM, 2011). The top layer of sediment in the JBG from ~3 km to 35 km offshore is expected to be greater than 1 m in depth and consists of sand and gravel with variable proportions of clay. This material is primarily alluvium, derived from sedimentary sandstones and basal conglomerate. Sonar images indicate some minor paleochannels in this area containing mega-ripple or sand waves. These sediments are generally unconsolidated coarse sand, fine gravel interspersed with areas of flat and featureless seabed containing very soft to firm gravelly clays (Woodside, 2004).

The main drainage channels for the Victoria River System occur from approximately 35 km to 58 km offshore. This area is dynamic as currents and tidal influence are constantly changing the seabed features in the area. Due to the dynamic nature of the channels, the thickness of the top layer of sediment is expected to be variable. A top layer greater than one metre in depth and consisting of sands and gravels with variable proportions of clay is expected from 59 km to 65 km offshore, with some minor paleochannels occurring. The influence of alluvial inputs diminishes from around 60 km offshore to the Blacktip Wellhead Platform (WHP), which is located approximately 20 km northwest of the Beehive-1 exploration well location. This top layer increases to greater than two metres in depth from 66 km offshore and the sediments range from loose silty/clayey sands from 66 km to 75 km and very soft clayey silt and silty clay from 75 km offshore to the Blacktip WHP location (Woodside, 2004). Again, the seabed alternates between flat and featureless seabed containing very soft to firm silty clay and an area of hummocky seabed containing mega-ripple or sand waves, though the seabed is generally flat to gently sloping from about 66 km offshore to the Blacktip WHP location (Woodside, 2004).

5.2. Coastal Environments

The physical coastal environment described in this section is defined by the potential extent of dispersion of low threshold entrained hydrocarbons predicted under the MDO spill scenario (i.e., the socio-economic EMBA), which stretches from the northern Kimberley coast in WA to West Arnhem in the NT including (noting that the ecological EMBA does not intersect the shoreline and there is no accumulation of hydrocarbons on the shoreline at concentrations that may cause ecological harm).

Shoreline habitats are defined as those habitats that are adjacent to the water along the mainland and islands that occur above the Lowest Astronomical Tide (LAT), and most often in the intertidal zone. Table 5.1 provides a description of the shoreline types according to shoreline receptors (areas defined in this EP to inform oil spill response planning purposes and are referred to as 'sectors') that are intersected by the socioeconomic EMBA. Descriptions of the shoreline habitats for each sector are derived from the Australian Coastal Geomorphology Smartline database.

Maps of the coastal habitats of the shoreline sectors intersected by the EMBA is provided in Figure 5.9 to Figure 5.23. These maps note the maximum probability of shoreline loading from a LoWC.

The following section broadly categorises shoreline habitats as the following biological communities that were identified to occur within the socio-economic EMBA: sandy beaches, rocky shorelines, tidal flats, mangroves and islands.

5.2.1. Sandy Beaches

Sandy beaches are the dominant shoreline type on the eastern coast of the JBG with only occasional rocky headlands and river estuaries leading to the ocean. These environments are remote and are unlikely to have any significant anthropogenic presence. The beaches may provide roosting and nesting habitat for sand nesting birds and turtles, such as plovers and flatback turtles, respectively.

For the purposes of this description, sandy beaches include areas of mixed sandy shore/mixed sandy sediments on bedrock, sand beach/alluvium/shore/dune/foredunes (see Table 5.1).

Sandy beaches provide habitat to a variety of burrowing invertebrates and subsequently provide foraging grounds for shorebirds (Garnet and Crowley, 2000). The number of species and densities of benthic macroinvertebrates that occur in the sand are typically inversely correlated with sediment grain-size and exposure to wave action, and positively correlated with sedimentary organic content and the amount of detached and attached macrophytes (Wildsmith *et al.*, 2005). However, the distributions of these fauna among habitats will also reflect differences in the suite of environmental variables that characterize those habitats (Wildsmith *et al.*, 2005).

Sandy beaches are found scattered throughout the coastline of northwest WA and the NT with large areas on the western side of the Dampier Archipelago, north and south of Broome (approximately 140 km in length) (Figure 5.10), Derby-West Kimberley (10.6 km) (Figure 5.11), Mitchell River (23.9 km) (Figure 5.12), Wyndham-East Kimberley sector (150 km) (Figure 5.13), Ashmore Reef/Cartier Island (14.5 km) (Figure 5.14), Scott Reef/Browse Island (~2 km) (Figure 5.15), north of Cox-Finniss (25.8 km) (Figure 5.19) and Litchfield (4.8 km) (Figure 5.20).

5.2.2. Rocky Shorelines

Rocky shores can include pebbles/cobbles, boulders and rocky limestone cliffs (often at the landward edge of reef platforms). Rocky outcrops typically consist of hard bedrock, but some of the coastline has characteristic limestone karsted cliffs with an undercut notch. Rocky shorelines can vary from habitats where there is bedrock protruding from soft sediments to cliff like structures that form headlands. Rocky shorelines are an important foraging area for seabirds and habitat for invertebrates found in the intertidal splash zone (Morton and Britton cited in Jones, 2004). For the purposes of this description, rocky shorelines include areas of hard bedrock/cliff (> 5 m)/hard rocky shore, rocky shore and soft bedrock (Table 5.1).

Rocky shorelines are the dominant shoreline type on the western coast of the JBG that is intersected by the socio-economic EMBA. Hard bedrock shorelines are also found in all of the shoreline sectors except for Ashmore Reef/Cartier Island (Figure 5.14), Scott Reef/Browse Island (Figure 5.15) and Victoria-Daly (Figure 5.16). The longest length of coastline consisting of hard bedrock cliffs and shore are found in the following shoreline sectors: Derby-West Kimberley (2,261 km) (Figure 5.11) and Mitchell River (3,837 km) (Figure 5.12).

While there are some stretches of sandy beaches on the west coast of the JBG, they are confined to the sheltered bays and inlets. The exposed rocky shores would be exposed to wave action from the surrounding gulfs and as such are likely to provide habitat for intertidal algae and shell species.

5.2.3. Tidal Flats

Tidal flats (also referred to as mudflats) are comprised of layers of fine mud due to the ongoing deposition of estuarine silts, which combines with deposition of fine sands by tidal movements. For the purposes of this description, tidal flats include areas of tidal flats (sand, mud, sediments)/mangroves, marshy sediment flats/marshy saline sediment flats, saline mudflats and muddy sediments /alluvium/sediment flats (Table 5.1).

These areas provide important habitat for mud and sand-dwelling invertebrates such as crabs, prawns, shells and worms and sheltered habitat for larval and juvenile fishes. Due to the diversity of infauna, they are also an important foraging habitat for various shorebird species including egrets, plovers and oystercatchers.

The socio-economic EMBA intersects tidal flats (sand, mud, sediment) are found in all of the shoreline sectors except for Ashmore Reef/Cartier Island (Figure 5.14), Scott Reef/Browse Island (Figure 5.15) and Victoria-Daly (Figure 5.16). The longest length of coastline consisting of tidal flats are found in the following shoreline sectors: Derby-West Kimberley (100 km) (Figure 5.11), Mitchell River (55 km) (Figure 5.12), and Wyndham-East Kimberley (1,062 km) (Figure 5.13).

Tidal sediments flats (inferred from mangroves) are predominantly found in the NT from the Victoria-Daly coastline extending up to and including West Arnhem (Figure 5.16 to Figure 22).

Marshy sediment flats including marshy saline sediment flats are commonly found along the Cox-Finniss sector (Figure 5.19) toward and including the West Arnhem sector (NT) (Figure 5.22).

5.2.4. Mangroves

Mangroves commonly occur in sheltered coastal areas in tropical and sub-tropical latitudes (Kathiresan and Bingham, 2001). Mangroves are found wherever suitable conditions are present including wave-dominated settings of deltas, beach/dune coasts, limestone barrier islands and ria/archipelago shores (Semeniuk, 1993). For the purposes of this description, mangroves include

areas of tidal flats (sand, mud, sediments)/mangroves and marshy sediment flats/marshy saline sediment flats (Table 5.1).

Mangroves are important primary producers and have a number of ecological and economic values, including reducing coastal erosion and providing habitat for a variety of epibenthic, infaunal and meiofaunal invertebrates (Kathiresan and Bingham, 2001). Crustaceans known to inhabit the mud in mangrove systems include fiddler crabs, mud crabs, shrimps and barnacles, while water channels of the system support various finfish. Mangroves and their associated invertebrate-rich mudflats are also an important habitat for migratory shorebirds from the northern hemisphere, as well as some avifauna that are restricted to mangroves as their sole habitat (Garnet and Crowley, 2000).

Mangrove habitat intersected by the socio-economic EMBA typically occur along the banks of the major rivers and estuarine environments of the southern JBG including at Quoin Island (138 km southeast of the Beehive-1 exploration well location) and Clump Island (141 km southeast) and along the southern coastline of Dorcherty Island (102 km east), including the Tiwi Islands and Vernon Islands (located 345 km in the most north-easterly extent of the spill EMBA) (see Figure 5.23).

Shoreline ecological aerial and ground surveys were conducted from Darwin in the NT to Broome in WA in response to the Montara oil spill during 2009 (Pearce & Duke, 2013). A distance of approximately 5,100 km of shoreline was surveyed, analysed and mapped to quantitatively characterise coastal ecological features. Mangroves were found to grow along 63% of the surveyed shoreline and salt marshes occurred over 24% of the shoreline.

5.2.5. Islands

Several rocky and sandy islands are located within the socio-economic EMBA that provide intertidal and shoreline habitats for a variety of marine fauna and ecological communities, including many small islands along the north Kimberley coast Browse Island, including sand islands at Ashmore Reef and Cartier Island (as described in Section 5.3.1 and Section 5.4.7), the Tiwi Islands (including Melville and Bathurst Islands (Figure 5.23) and Vernon Islands, as described in Section 5.3.1). For the purposes of this description, islands include reef/coral outer with sandy shore (Table 5.1).

Table 5.1 Description of shoreline receptors by type in the EMBA

						С	Description	n of shorel	ine by typ	e					
EMBA shoreline sector	Alluvial sediment/plain	Beach sediment/ridges	Colluvium	Tidal flats (sand, mud, sediment)/Mangroves	Hard bedrock/Cliff (>5 m)/Hard rocky shore	Marshy sediment flats/Marshy saline sediment flats	Mixed sandy shore/Mixed sandy sediments on bedrock	Muddy sediments/alluvium/sediment flats	Reef/Coral outer with sandy shore	Rocky shore	Saltpans/saline mudflats	Sandy beach/alluvium/shore/dune/foredune	Sediment plain/sediment deposits	Soft bedrock	Unclassified
Broome		Х		Х	Х		Х		Х		Х	Х			Х
Derby-West Kimberley		Х		Х	Х				Х		Х				Х
Mitchell River	Х	Х		Х	Х						Х	Х		Х	Х
Wyndham-East Kimberley	х	Х		Х	Х						Х	Х	Х	Х	Х
Victoria-Daly		Х		Х							Х	Х	Х		Х
Thamarrurr		Х		Х	Х							Х	Х	Х	
Daly	Х			Х	Х							Х	Х	Х	
Cox-Finniss	Х	Х		Х	Х	Х	Х	Х		Х	Х	Х	Х	Х	Х
Litchfield				Х	Х	Х	Х	Х		Х	Х	Х		Х	Х
South Alligator				Х	Х	Х	Х	Х			Х	Х	Х	Х	
West Arnhem	Х		Х	Х	Х	Х		Х			Х	Х	Х	Х	Х

							Description	n of shorel	ine by typ	e					
EMBA shoreline sector	Alluvial sediment/plain	Beach sediment/ridges	Colluvium	Tidal flats (sand, mud, sediment)/Mangroves	Hard bedrock/Cliff (>5 m)/Hard rocky shore	Marshy sediment flats/Marshy saline sediment flats	Mixed sandy shore/Mixed sandy sediments on bedrock	Muddy sediments/alluvium/sediment flats	Reef/Coral outer with sandy shore	Rocky shore	Saltpans/saline mudflats	Sandy beach/alluvium/shore/dune/foredune	Sediment plain/sediment deposits	Soft bedrock	Unclassified
Bathurst and Melville Islands	Х		Х	х	Х	Х	Х	Х			Х	Х	Х	Х	
Scott Reef/Browse Island									Х			Х			
Ashmore Reef/Cartier Island									Х			Х			

Кеу:

X = shoreline type present.

Unclassified is defined as the 13,045 km of shoreline of the EMBA that has no known coastal geomorphological classification.

Source: Australian Coastal Geomorphology Smartline. Note GoogleEarth Pro imagery was used in the absence of GIS data for unclassified areas.

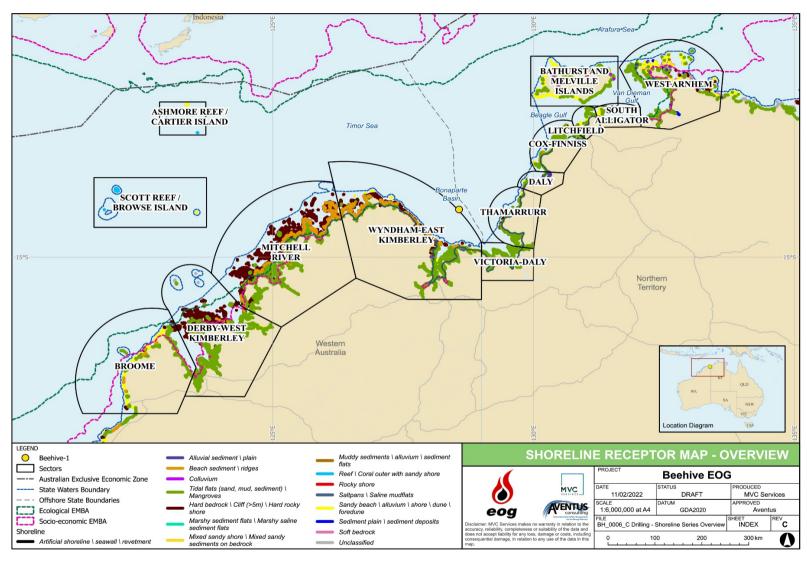


Figure 5.9. Overview of the shoreline receptors intersected by the EMBA

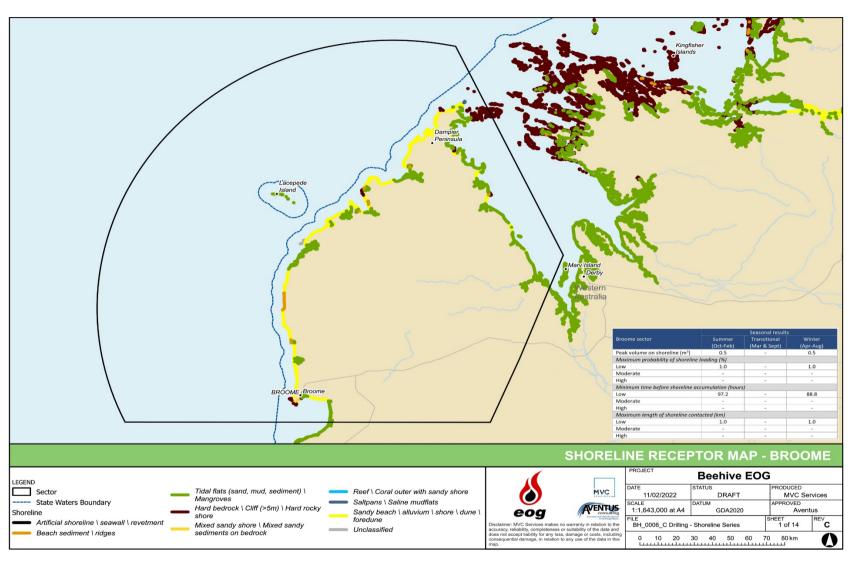


Figure 5.10. EMBA shoreline sector - Broome

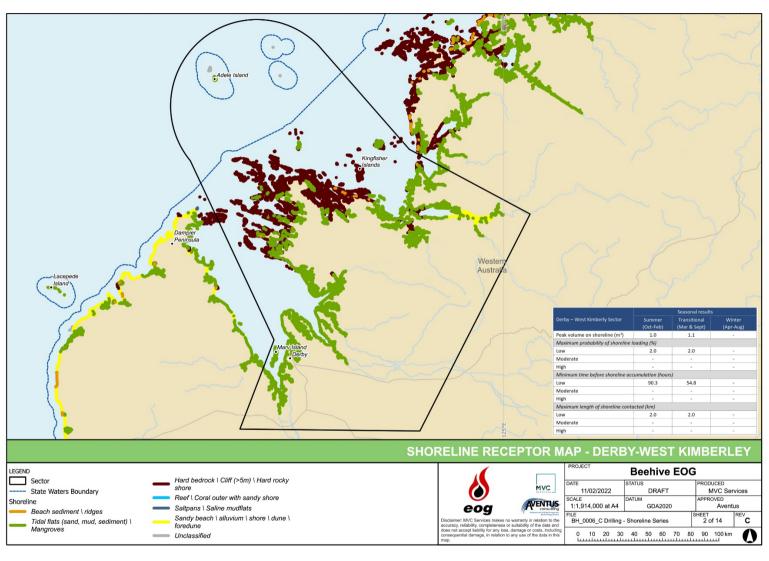


Figure 5.11. EMBA shoreline sector - Derby-West Kimberley

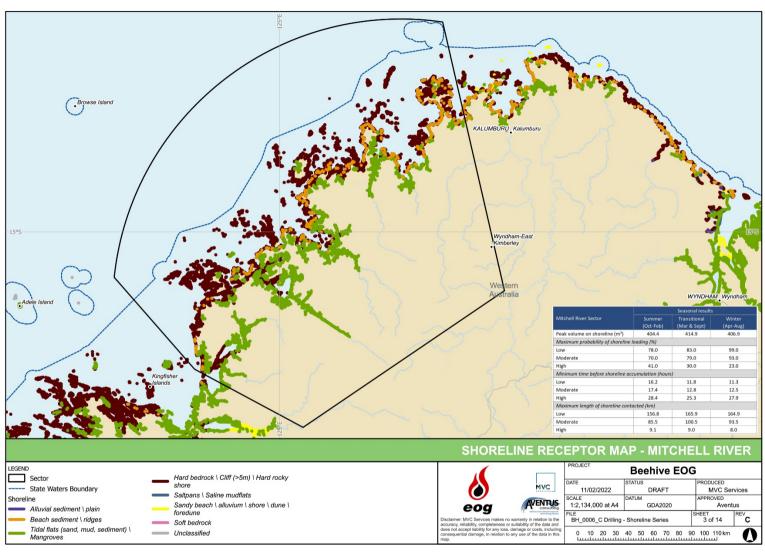


Figure 5.12. EMBA shoreline sector - Mitchell River

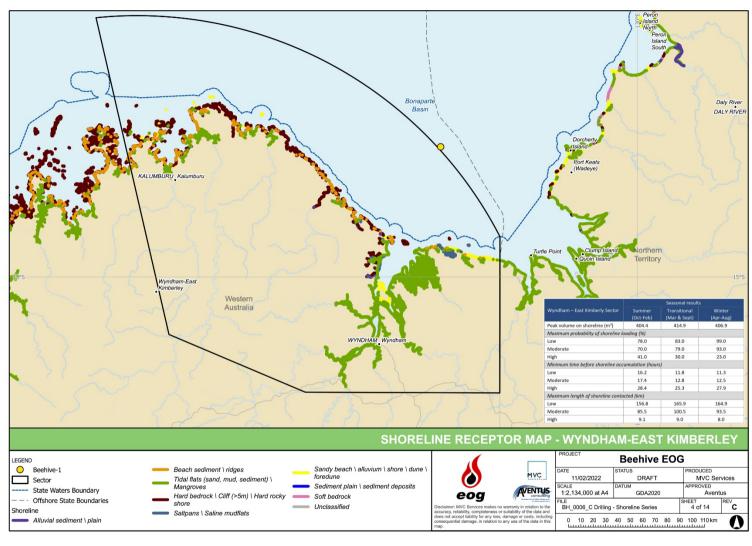


Figure 5.13. EMBA shoreline sector - Wyndham-East Kimberley

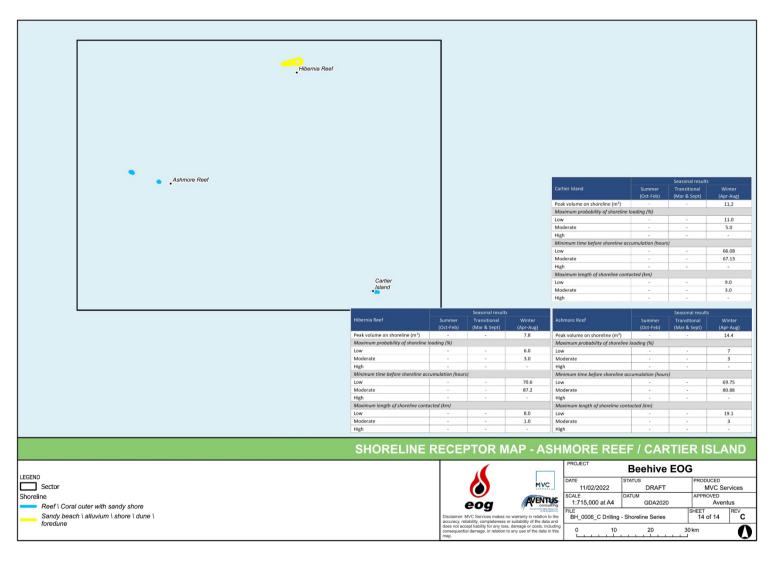


Figure 5.14. EMBA shoreline sector - Ashmore Reef & Cartier Island

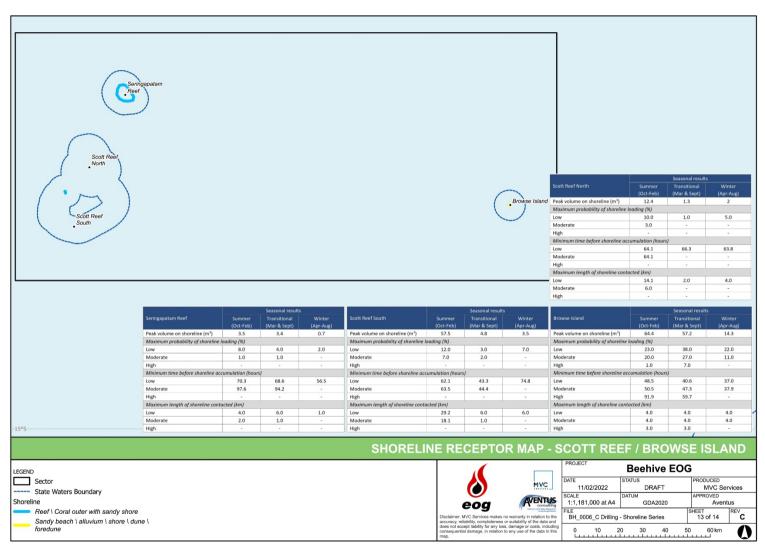


Figure 5.15. EMBA shoreline sector - Scott Reef & Browse Island

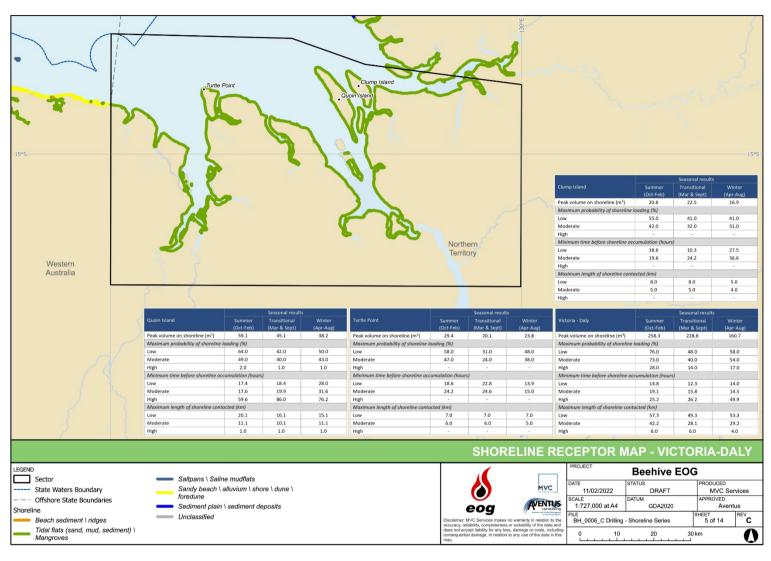


Figure 5.16. EMBA shoreline sector - Victoria-Daly

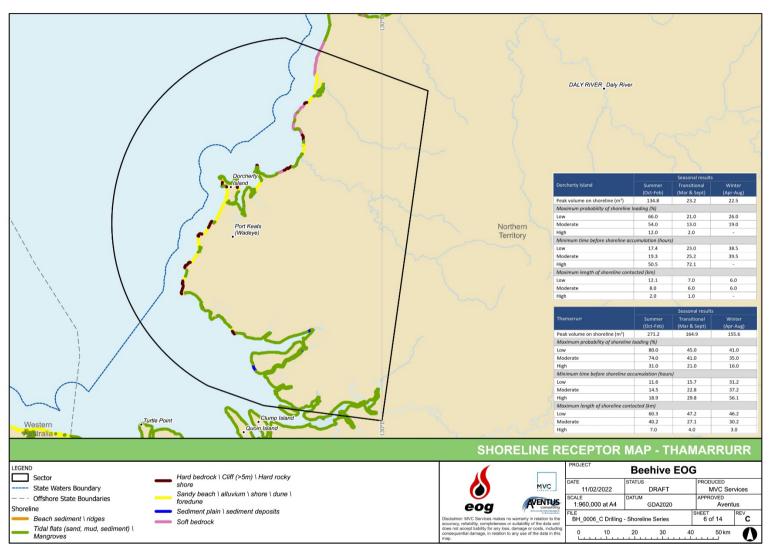


Figure 5.17. EMBA shoreline sector - Thamarrurr

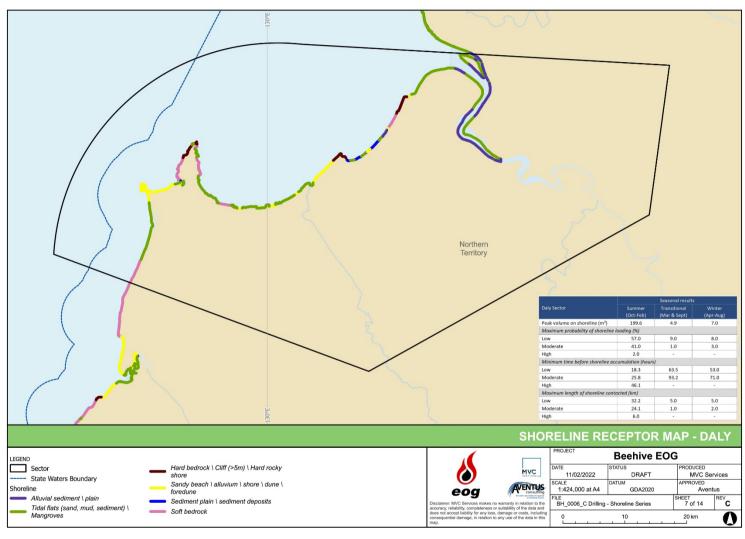


Figure 5.18. EMBA shoreline sector - Daly

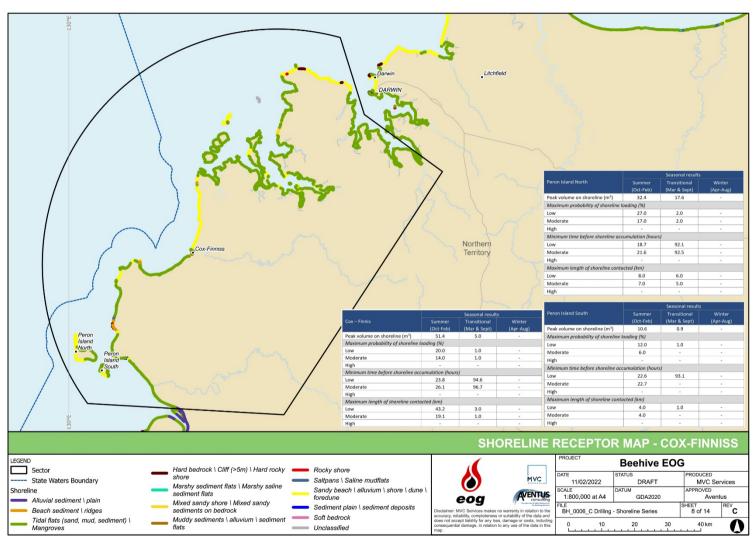


Figure 5.19. EMBA shoreline sector - Cox-Finniss

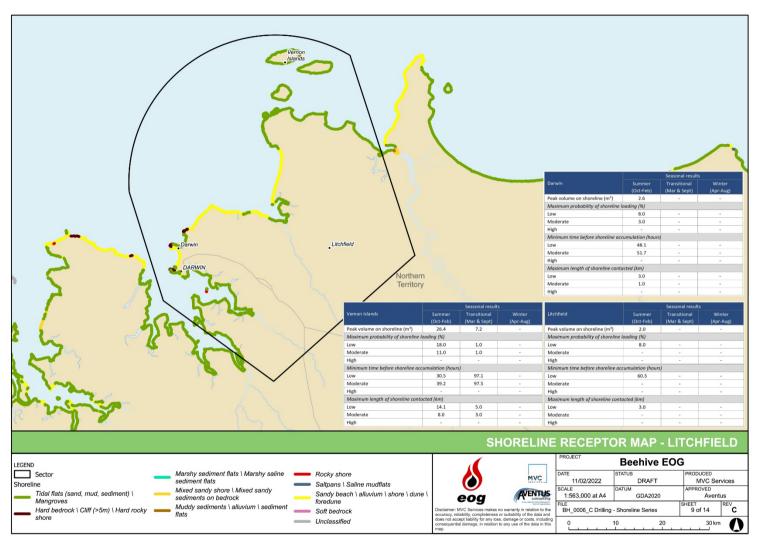


Figure 5.20. EMBA shoreline sector - Litchfield

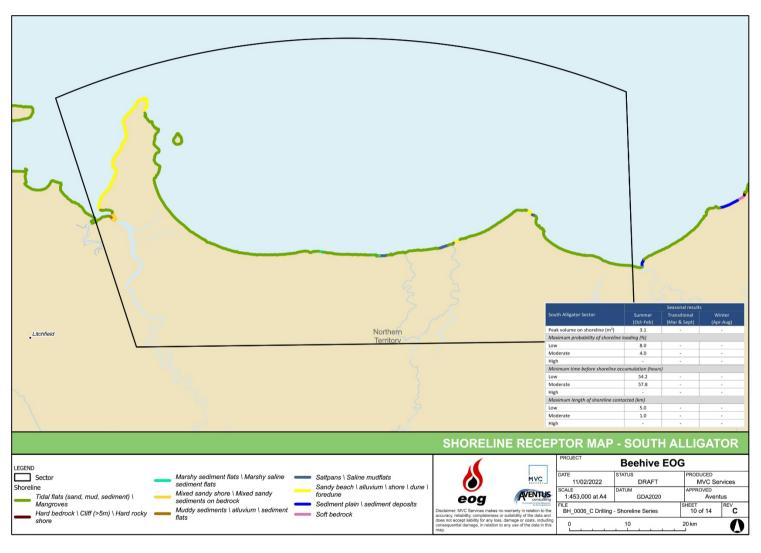


Figure 5.21. EMBA shoreline sector - South Alligator

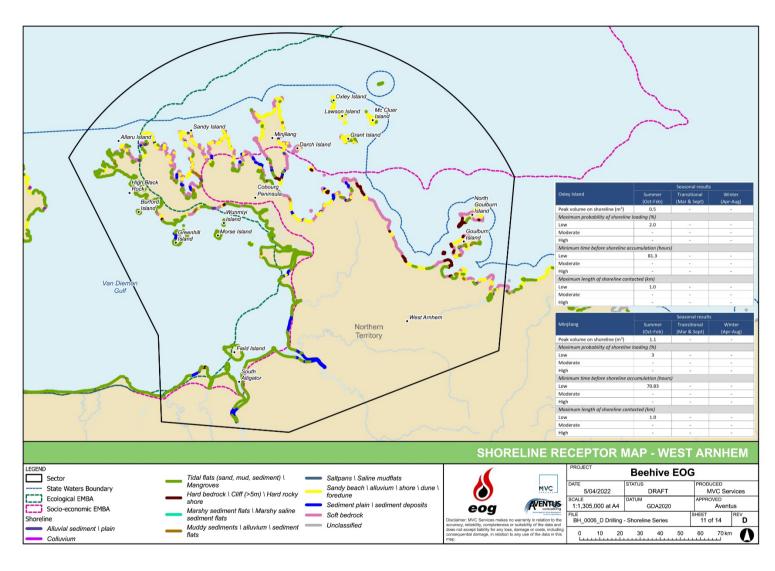


Figure 5.22. EMBA shoreline sector - West Arnhem

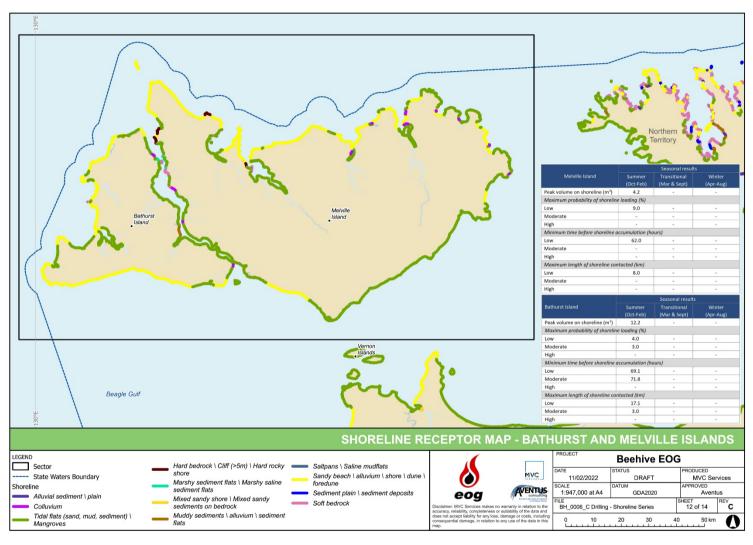


Figure 5.23. EMBA shoreline sector - Melville and Bathurst islands

5.3. Biological Environment

The sources listed at the start of this chapter have been used in the preparation of this section. Additionally, BIAs are identified for those species that may occur in the spill EMBA. BIAs are spatially defined areas, defined by the DAWE based on expert scientific knowledge, where aggregations of individuals of a species are known, or likely, to display biologically important behaviour such as breeding, foraging, resting or migration (DAWE, 2021a). The BIAs do not represent a species' full distribution range.

5.3.1. Benthic Assemblages

The benthic environment of the JBG is linked to its geomorphic features, with the majority of the area characterised by infaunal plains, with some localised reefs and outcrops supporting sponge gardens. Przeslawski et al (2011) provides an overview of the benthic environment associated with the different geomorphic features within the EMBA (see Figure 5.8), which are outlined below.

- Slope the majority of the Northwest marine bioregion consists of either continental slope or continental shelf. Biological productivity is reliant upon seasonal changes in the strength of surface and subsurface currents.
- Shelf sediment plains that are swept by strong tidal currents and are subject to large
 influxes of suspended sediment and freshwater, particularly during the wet season. Support
 diverse infaunal communities that play a key ecological role by contributing to nutrient
 cycling and sediment turnover (bioturbation) at the local scale. Low abundance of
 crustaceans, echinoderms and sessile epifauna are expected.
- Banks/shoals elevated features with a relatively high proportion of hard substrate that support patches of moderately dense octocoral and sponge gardens which in turn provide habitat for other epifauna and cryptofauna. Banks support high numbers of epifaunal species. Infaunal species richness is moderately high in bank sediments. Very few macroalgae (including *Halimeda*) or reef-forming hard corals were recorded. Carbonate banks and shoals occur predominantly in the JBG (Baker et al., 2008), with the Glomar Shoals and Rowley Shoals situated within the NWS region. Many shoals identified within the socio-economic EMBA are also found offshore in the NT region including the Timor Sea (see Table 5.2 and Figure 5.24).
- Basin low-relief expanses of unconsolidated sediment, and the available biological data suggests that these habitats are dominated by infauna with limited epifauna.
- Canyons the canyons on the slope of the Argo Abyssal Plain and Scott Plateau and to the
 north of Scott Reef (in the NWMR) are a unique seafloor feature associated with small
 periodic upwellings that enhance biological productivity and aggregations of marine life
 (DEWHA, 2008b). The tributary canyons of the Arafura Depression located in the NMR are a
 key ecological feature (KEF) known to support both benthic and pelagic habitats including a
 diverse range of invertebrates (e.g., sponges, corals, sea anemones, tunicates, worms,
 crustaceans, brittle stars and feather stars).
- Cliffs and coral reefs within the EMBA, offshore coral reefs include Ashmore reef and
 Hibernia Reef, Cartier Island, Browse Island, the Vernon Islands, with many other islands in
 coastal waters supporting fringing coral reefs. Submerged cliffs and coral reefs of the
 Kimberley and atolls and reefs on the edge of the continental shelf support a high diversity of
 benthic filter-feeders and producers.

- Deep/hole/valley dominated by flat soft sediment expanses. Support low-moderate numbers of epifaunal species and include many debris-swept channels, which in places expose small patches of underlying rock that support moderate densities of sessile animals.
- Tidal-sandwave/sand bank high disturbance, soft substrate, limited biota.
- Pinnacles limestone pinnacles of the of the Bonaparte Depression are thought to be
 associated with enhance local biological productivity due to the movement of water around
 these features to facilitate mixing of nutrients and sediments. Associated communities
 include sessile benthic invertebrates including hard and soft corals and sponges (DEWHA,
 2008b).

Infaunal communities

The offshore marine environment off WA (from Busselton) to the Northern Territory (NT) border is dominated by soft sediment seabeds; sandy and muddy substrates, occasionally interspersed with hard substrates covered with sand veneers, and rarely, exposed hard substrate. In shallow waters, non-coral benthic invertebrates may form part of the mosaic of benthic organisms found on hard substrates, alongside macrophytes and coral colonies. As light reduces with water depth, non-coral benthic invertebrates are the dominant community, albeit at low densities.

Infauna are animals that inhabit sandy or muddy surface layers of the ocean floor these may include deposit feeders, filter-feeders, grazers and predators. The distribution of infauna and benthic invertebrate species is influenced by many physical parameters (e.g., water temperature, dissolved oxygen, pH, salinity) and biological (e.g., primary productivity, acclimatisation) factors.

Within the EMBA deep offshore areas such as the Northwest Transition support infauna such as sediment burrowing polychaetes and isopods.

Crustaceans

See EP Chapter 5. Crustaceans are found throughout the EMBA primarily in the inner shelf (30 m to 60 m water depth) and the continental slope (between 200 m to 1000 m) of the NWS region, although little is known about the benthic environment in the latter (DWHA, 2008b).

Molluscs

See EP Chapter 5. Molluscs are also found in the mid shelf (60 m to 100 m water depth) of the NWS region which includes the Glomar Shoals. Distinct assemblages of molluscs are also found in depths between 100 m to 200 m and 200 m to 500 m with no overlap. Areas of the continental slope, offshore from North West Cape to the southern boundary of the NWMR Region of 200 m to 4,000 m contain molluscs and large isopods that feed on particulate organic matter (DEWHA, 2008b).

Reefs, Shoals and Banks

Coral reefs are habitats with high diversity of corals, associated fish and other species of both commercial and conservation importance. No reef habitats have been identified within the ecological EMBA; however, the socio-economic EMBA does overlap with areas of coral reef habitats. The closest identified coral reef habitat is located within the Joseph Bonaparte Gulf AMP (JBG AMP). Emu Reefs (located 97 km northeast of Beehive-1) was recently surveyed by traditional owners of the Thamarrur region in partnership with the Australian Institute of Marine Science (AIMS), Eni Australia and Parks Australia. The survey deployed Baited Remote Underwater Video Systems (BRUVS) and captured a diversity of fish, sharks and crabs as well as the protected and culturally significant eyebrow wedgefish (*Rhynchobatus palpebratus*) (Parks Australia, 2021).

Oceanic shoals and banks are abrupt geological features that rise from the deep continental shelf to within 15-20 m of the sea surface. These unique habitats contain submerged reefs that support a very high diversity of coral reef ecosystems (Heyward *et al.*, 2017). It is likely that the open oceanic environment that the northwest banks and shoals are situated in contributes to their high species diversity and abundance as their exposure to oceanic influences may enhance productivity and in turn the diversity of species inhabiting them (Parks Australia, 2021). There are no identified oceanic shoals or banks located within the ecological EMBA, however, there are several identified shoals and banks in the western extent of the socio-economic EMBA including Holothuria Banks, Tait Bank, Penguin Shoal and Bassett-Smith Shoal (RPS, 2021).

Though there is a paucity of information relevant to these specific features, studies of similar nearby shoals not located in the EMBA have found a high diversity of free-living corals, sponges, gorgonian soft corals, hard corals, rhodoliths, tropical fish, rays and sharks (Heyward *et al.*, 2017; Moore *et al.*, 2017; Heyward *et al.*, 2010). It is expected that the shoals and banks located in the western extent of the socio-economic EMBA may include a similar assemblage of species.

In total there are approximately 306 shoals that are known to occur within or in close proximity to the socio-economic EMBA; of these 53 are named and 242 are unnamed. Table 5.2 lists the shoals present within the EMBA and location by depth below sea surface. The vast majority of the identified shoals are located in water depths greater than 10 m. Many of these shoals are marked on marine charts and are popular areas for recreational fishing, however given the paucity of information, only publicly accessible information in relation to features is included in Table 5.2.

Identified banks, reefs and shoals in relation to the EMBA are presented in Figure 5.24.

Table 5.2. Shoals present within the socio-economic EMBA

Name	Area of coverage (km²)	Minimum depth below water (m)	Maximum depth below water (m)	Key features
Abbott Shoal	3.4	10	24	-
Afghan Shoal	59.8	6	35	-
Ann Shoals	8.8	4	25	-
Barbara Shoal	9.5	4	22	-
Barcoo Shoal	8.0	3	50	-
Barracouta Shoal	9.0	19	139	Supports reef building corals, seagrass and algae, particularly the calcareous green algae <i>Halimeda</i> spp but very little seagrass (Heyward <i>et.al.</i> , 2010).
Bassett-Smith Shoal	6.8	13	97	-
Beagle Shoals	7.9	3	24	-
Big Bank Shoals	96.0	1	303	Submerged carbonate banks in the Timor Sea, which rise up from depths of 200 to 300 metres to within 20 m to 30 m below sea level. Supports 3 distinct ecosystems: algaedominated by <i>Halimeda</i> , coral and filter feeding ecosystems.

Name	Area of coverage (km²)	Minimum depth below water (m)	Maximum depth below water (m)	Key features
Bill Shoal	1.0	9	15	-
Britomart Shoal	1.4	9	36	-
Calder Shoal	80.4	20	73	-
Cootamundra Shoal	84.4	15	98	Ancient coral reefs consisting of flat-topped banks of fossil coral platforms.
Deep Shoal 1	2.0	25	63	-
Deep Shoal 2	2.6	115	120	-
Echuca Shoal	12.3	19	104	Predominantly an extensive claystone; organic-rich, oil-prone marine shale.
Eugene McDermott Shoal	4.8	19	101	Coral shoal
Evans Shoal	49.7	15	69	-
Fantome Shoal	3.6	13	297	-
Fitzpatrick Shoal	12.4	9	38	
Giles Shoal	8.3	2	22	
Goeree Shoal	2.1	23	83	According to a survey done in 2016 by the Australian Institute of Marine science, Goeree Shoal displayed unique patterns of hard coral, sponge and Halimeda. Fish communities appeared relatively stable in terms of richness and abundance, clearly indicating that Goeree shoals support diverse benthic communities as well as benthic primary producers and many species typical of tropical coral reef ecosystems. (Heyward et.al, 2017)
Hancox Shoal	14.4	5	28	
Heywood Shoal	23.3	18	95	
Howland Shoals	0.4	3	12	
Jabiru Shoals	21.7	13	261	
Jones Shoal	1.8	10	28	
Karmt Shoal	263.5	2	316	
King Shoals				See North Kimberley Marine Park (section 5.4.9)
Lowry Shoal	3.0	10	23	
Mangola Shoal	2.7	11	233	
Margaret Shoal	11.4	1	17	
Marie Shoal	8.9	11	63	
Marsh Shoal	2.8	7	19	

Name	Area of coverage (km²)	Minimum depth below water (m)	Maximum depth below water (m)	Key features
Mataram Shoal	21.9	3	45	
Mermaid Shoal	326.1	30	17	
Money Shoal	20.1	0	65	
Moss Shoal	4.0	11	72	
Newby Shoal	4.8	19	74	
Ommaney Shoals	6.5	6	24	
Parry Shoal	62.8	13	80	
Pee Shoal	3.3	10	332	
Penguin Shoal	17.3	4	49	
Rainbow Shoals	0.7	9	30	
Renard Shoals	5.4	5	22	
Shepparton Shoal	41.6	19	57	
Skottowe Shoal	9.9	12	27	
Taiyun Shoal	17.2	3	30	
Tassie Shoal	8.1	12	78	
Van Cloon Shoal	37.7	16	62	
Vee Shoal	3.2	12	171	
Victoria Shoal	9.3	2	13	
Vulcan Shoal	11.5	17	133	Supports reef building corals, seagrass and algae, particularly the calcareous green algae <i>Halimeda</i> spp but very little seagrass (Heyward <i>et.al.</i> , 2010). Contains an extensive field of the seagrass <i>Thallasodendron ciliatum</i> .
Wells Shoal	6.3	7	25	

Source: High-resolution depth model for Northern Australia – 30m (Geoscience Australia), except for a small area in the vicinity of Clerke/Mermaid/Imperieuse reef which is standard ausbath 2009 v4 (~250m resolution). Australian Stratigraphic Units Database (accessed May 2022). Note the absence of information regarding key features is marked as "-".

A description of the most well-known reefs, shoals and islands within the socio-economic EMBA is provided here.

Scott and Seringapatam Reefs

The Scott and Seringapatam reefs are regionally significant due to its high representation of species not found in coastal waters off WA and unusual nature of its fauna that has affinities with the oceanic reef habitats of the Indo-West Pacific as well as the reefs of the Indonesian region. Scott Reef is important for its contribution to understanding long-term geomorphological and reef formation processes and past environments (Gilmour and Smith, 2013).

Scott Reef is the largest of the oceanic reef systems off WA and comprises two major formations: North Reef and South Reef, separated by a channel 2 km wide and between 400 and 700 m

deep. North Reef is an annular reef enclosing a shallow lagoon (as is Seringapatam) and South Reef is a crescent-shaped reef with a deeper and more extensive lagoon environment.

Scott Reef is the region's best-understood reef from the point of view of resident communities and how they function and change. The most comprehensive datasets come from a long-term monitoring program run by AIMS has provided the most comprehensive dataset of the reef's resident communities. A diverse assemblage of hard coral species has been recorded from the shallow and deep-water environments at Scott Reef, with 306 species from 60 genera and 14 families (Gilmour *et al*, 2012). Two hundred and ninety-five species have been recorded from shallow-water environments (<30 m) and 51 species from deep water habitats (>30 m). Community composition in the deep-water lagoon at South Reef is markedly different to the shallow-water habitats at Scott Reef. The shallow-water coral communities comprise typical reef front, lagoon and reef-flat assemblages, while the deepwater communities are dominated by extensive areas of foliaceous *Agariciidae*, *Pectinidae*, *Poritidae* and *Montipora* species, and fragile branching and plating Acropora species.

Compared with other offshore reefs in the region, Scott Reef appears to have a comparable diversity of hard corals. A shallow-water survey (0 - 20 m) of Ashmore, Scott and Seringapatam reefs and Mermaid Reef (Rowley Shoals) in 2006 recorded 211 species of corals at Mermaid Reef, 159 species at Seringapatam, 255 species at Ashmore Reef, and 201 and 224 species at North and South (Scott) reefs respectively (WAM, 2009). All coral taxa were predominantly widespread Indo-Pacific species that have clear affinities with the coral assemblages of Ashmore Reef and the Indonesian provinces to the north.

Ashmore Reef

Ashmore Reef is a commonwealth marine park (see Section 5.4.1). The marine fauna at Ashmore Reef has the highest diversity of the reefs on the North-West Shelf, with the mollusc fauna being substantially more diverse here (433 species) than either Scott and Seringapatam Reefs (279 species) or Rowley Shoals (DAWE, 2013). Ninety-nine species of decapod crustaceans have been recorded at Ashmore Reef compared with 56 for Scott and Seringapatam Reefs) and 178 echinoderms species have been recorded (compared with 119 species for Scott and Seringapatam and 90 species for Rowley Shoals). A total of 560 fish species have also been recorded at the reef, with the most species-rich fish families being the Gobiidae (small to midsized gobies, 66 species), Pomacentridae (small and brightly coloured damselfish and anemonefish, 66 species), Labridae (wrasse, 54 species) and Apogonidae (36 species) (DSEWPC, 2013).

Glomar Shoals

The Glomar Shoals are defined as a KEF for their high productivity and aggregations of marine life. Further information on the Glomar Shoals is provided in Section 5.4.7.

Rowley Shoals

The Rowley Shoals is defined as a KEF or its enhanced productivity and high species richness, that apply to both benthic and pelagic habitats within the feature. Further information on the Rowley Shoals is provided in Section 5.4.7.

King Shoals

The King Shoals sanctuary zone includes some of the only mapped tidal sand waves and banks in Kimberley, as well as containing a KEF carbonate banks and deep waters. Carbonate banks are significant due to their known potential to support high levels of biodiversity of reef fish,

sponges, corals, and filter feeders. The banks are likely to be foraging areas for the flatback turtle and are known to provide protection to the threatened species green sawfish and freshwater sawfish. (Department of Parks and Wildlife, 2016)

Cartier Island

Cartier Island is a commonwealth marine park (see Section 4.5.1) consisting of an un-vegetated sand cay surrounded by mature reef flats; it sits at the centre of a reef platform that rises steeply from the seabed. The island is composed of coarse sand and is stabilised by patches of beach rock around its perimeter. The effects of wind, tides and rain periodically expose and remove areas of shifting sandbanks. The island supports large populations of nesting marine turtles.

Cartier Island is located about 55 km southeast of the Ashmore Island complex and in the absence of specific information regarding species assemblages, is likely to host a similar assemblage of fish species to Ashmore Reef given their close proximity.

Browse Island

Browse Island is an isolated sandy cay surrounded by an intertidal reef platform and shallow fringing reef located 540 km northeast from the Beehive-1 exploration well location. This reef rises from a depth of 200 m and is a flat-topped, oval-shaped platform reef with a diameter of 2.2 km at its widest point. The benthic habitats and biotic assemblages are characteristic of coral platform reefs throughout the Indo-West region (Inpex, 2010). Intertidal habitats around Browse Island include a sandy beach (known for green turtle nesting (DAWE, 2021a) rocky beach, a lagoon supporting macroalgae and coral such as Acropora species and Porites species, a reef platform supporting sparse algal turf, and the reef crest (supporting hard corals such as *Goniastrae* spp and a high diversity of molluscs). The reef platform is barren in many places, and seagrasses are not present (Inpex, 2010).

Adele Island

Adele Island is a hook shaped island off the central Kimberley coast, located around 97 km north-northwest from Cape Leveque and 605 km from the Beehive-1 exploration well location. The island measures 2.9 km by 1.6 km with an area of 2.17 km². Its surrounding sand banks sit atop a shallow-water limestone platform, surrounded by an extensive reef system.

Adele Island is an important site for breeding seabirds with several Japan-Australia Migratory Birds Agreement (JAMBA), China-Australia Migratory Birds Agreement (CAMBA) and Republic of Korea Migratory Birds Agreement (ROKAMBA) listed species breeding there, with rookeries of cormorants, Australian pelicans, lesser frigate birds (2,000-5,700 breeding pairs), brown booby (1,500-8,500 breeding pairs), red-footed booby and masked booby (DSEWPC, 2008; Kimberley Coast, 2013).

Cunningham Island

Cunningham Island is an unvegetated sand cay surrounded by a small lagoon which lies near the northern extent of Imperieuse Reef. The island is situated 1,115 km from Beehive-1 and its shoreline is dominated by white sandy shores and low-lying beach rock. There is limited data on the benthic assemblages supported by the island.

Bedwell Island

Bedwell Island a small sandy cay inside Clerke Reef situated 1,060 km from Beehive-1. The island is home to one of only two colonies of red-tailed tropicbirds in WA. The tropicbirds nest on the

island, along with wedge-tailed shearwaters, white-bellied sea-eagles, various terns, eastern reefegrets and even a pair of white-tailed tropicbirds.

Lacepede Islands

The Lacepede Islands situated 756 km from the Beehive-1 well location provide critical nesting and internesting habitat for green turtles and are the site of the largest green turtle rookery in Western Australia. The Commonwealth waters surrounding the islands are important for migrating marine turtles as they move between nesting and feeding sites in this bioregion and beyond. The Lacepede Islands also support some of the largest brown booby colonies in Western Australia. Other seabirds also breed in the area, including lesser frigatebirds, bridled terns, roseate terns and common noddies. The surrounding waters are likely to provide food for seabird species (DEWHA, 2008b).

Tiwi Islands

Located 20 km north of Darwin, the Tiwi Islands are made up of two main islands namely Melville Island (Australia's second largest island) and Bathurst Island (Department of Natural Resources, Environment, the Arts and Sport, 2009) The coasts of the Tiwi Islands support important nesting sites for marine turtles, internationally significant seabird rookeries, and some major aggregations of migratory shorebirds (Department of Natural Resources, Environment, the Arts and Sport, 2009).

Vernon Islands

The Vernon islands are located in the Clarence Strait in the NT, between the Australian mainland at Gunn Point and Melville Island's southernmost point, Cape Gambier (Tiwi Land Council, 2013). There are three major islands making up the Vernon Islands group; north-west Vernon Island, south-west Vernon Island and east Vernon Island, including a large reef and numerous lesser reefs and sand islands (Tiwi Land Council, 2013). The Vernon Islands are rich in mangrove forests, reef systems, rocky shelves and stacks, and seagrass and algal beds (Tiwi Land Council, 2013). The islands are an important coral reef locality, and there is a small number of naturally occurring deep holes (up to 20 m deep) which support coral communities with high species diversity (Tiwi Land Council 2013). The waters surrounding the Vernon Islands support populations of dugong and turtles (Tiwi Land Council, 2013).

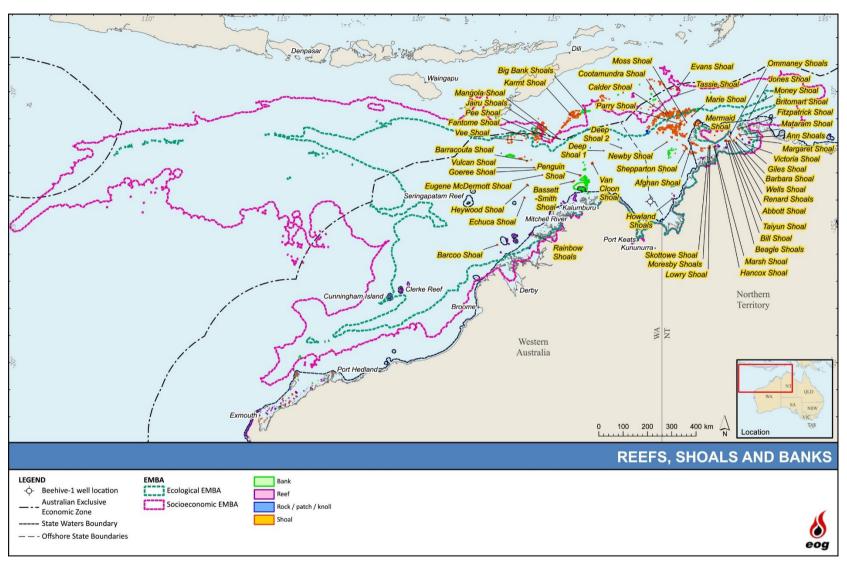


Figure 5.24. Reefs, shoals and banks intercepted by the EMBA

5.3.2. Flora

Marine flora is generally limited to mangroves and seagrass beds and macroalgae, which is generally confined to shallow, nearshore waters.

Mangroves

Mangroves provide nutrient to surrounding waters and are also important habitat and nursery areas for fish and invertebrates. The north Kimberley region contains some of the most species rich systems of mangroves in the world (DPaW, 2016). The mangroves and estuarine habitats of the north Kimberley support a range of threatened, protected and culturally important species including estuarine crocodiles, turtles, dolphins, sawfish, mud crabs, fish and specialist mangrove birds (DPaW, 2016).

In the JBG, mangroves occur in river estuaries. The mangroves surrounding the Ord River are notable in terms of their structural complexity and diversity. Fourteen species of mangroves have been identified within the Ord River alone (Pedretti & Paling, 2001). This diverse area is known to support significant habitats for saltwater crocodiles, migratory birds and supports populations of the commercially exploited species of red-legged banana prawn (*Penaeus indicus*) (Kenyon *et al.*, 2004).

Seagrass Beds and Macroalgae

Seagrass beds and macroalgae communities are the primary food source for many marine species and provide important habitats and nursery grounds (Heck *et al.*, 2003; Wilson *et al.*, 2010). Within the north Kimberley marine region, seagrass and macroalgae communities are an important source of primary productivity. They provide vital habitat for juvenile fish, turtles and dugongs and can be found around Cape Londonderry (182 km northwest from the Beehive-1 exploration well location), is within the spill EMBA (DPAW, 2016).

5.3.3. Plankton

Plankton is a key component in oceanic food chains and comprises two elements; phytoplankton and zooplankton, as described in Section 5.4.3 of Chapter 5.

5.3.4. Finfish, Sharks and Rays

There are 61 fish species listed under the EPBC Act with potential to occur in the spill EMBA (DAWE, 2022a). This includes nine species listed as threatened, eleven species listed as migratory and a further 44 listed marine species, all of which are Sygnathiformes (seahorses, pipefishes and their relatives) (Table 5.3).

The likely temporal presence and absence of these fish species in the EMBA is illustrated in Figure 5.13 in Section 5.4.4 of Chapter 5. Species listed as threatened or migratory are described in this section. BIAs for fish species that overlap the EMBA are presented in Table 5.4.

Table 5.3. EPBC Act-listed finfish, sharks and rays that may occur in the EMBA

Scientific name		EP	BC Act Status		Pr	esence	BIA intersected by	Recovery Plan
	Common name	Threatened	Migratory	Marine	Ecological EMBA	Socio-economic EMBA	ecological EMBA?	in place?
Anoxypristis cuspidate	Narrow sawfish	-	Yes	-	-	Yes	No	-
Carcharias taurus	Grey nurse shark (west coast population)	V	-	-	-	Yes	No	RP
Carcharodon carcharias	Great white shark	V	Yes	-	Yes	Yes	No	RP
Carcharhinus longimanus	Oceanic whitetip shark	-	Yes	-	Yes	Yes	No	-
Glyphis garricki	Northern river shark	E	-	-	Yes	Yes	No	CA, RP
Glyphis glyphis	Speartooth shark	CE	-	-	Yes	Yes	No	CA
Isurus oxyrinchus	Shortfin mako	-	Yes	-	Yes	Yes	No	-
Isurus paucus	Longfin mako	-	Yes	-	Yes	Yes	No	-
Manta alfredi	Reef manta ray	-	Yes	-	Yes	Yes	No	-
Manta birostris	Giant manta ray	-	Yes	-	Yes	Yes	No	-
Milyeringa veritas	Blind gudgeon	V	-	-	-	-	No	-
Pristis clavate	Dwarf sawfish	V	Yes	-	Yes	Yes	Yes	CA, RP
Pristis pristis	Largetooth sawfish	V	Yes	-	Yes	Yes	No	CA, RP
Pristis zijsron	Green sawfish	V	Yes	-	Yes	Yes	Yes	CA, RP
Rhincodon typus	Whale shark	V	Yes	-	Yes	Yes	Yes	CA
Sphyrna lewini	Scalloped Hammerhead	CD	-	-	Yes	Yes	No	-

Scientific name	Common name	EP	BC Act Status		Pro	esence	BIA intersected by	Recovery Plan
Scientific name	Common name	Threatened	Migratory	Marine	Ecological EMBA	Socio-economic EMBA	ecological EMBA?	in place?
Thunnus maccoyii	Southern Bluefin Tuna	CD	-	-	Yes	Yes	No	-
Seahorses, pipefish and pip	pehorses							
Acentronura larsonae	Helen's pygmy pipehorse	-	-	Yes	-	Yes	-	-
Bhanotia fasciolata	Corrugated pipefish	-	-	Yes	Yes	Yes	-	-
Bulbonaricus brauni	Braun's pughead pipefish	-	-	Yes	-	Yes	-	-
Campichthys tricarinatus	Three-keel pipefish	-	-	Yes	Yes	Yes	-	-
Choeroichthys brachysoma	Pacific short-bodied pipefish	-	-	Yes	Yes	Yes	-	-
Choeroichthys latispinosus	Murion Island pipefish	-	-	Yes	-	Yes	-	-
Choeroichthys suillus	Pig-snouted pipefish	-	-	Yes	Yes	Yes	-	-
Corythoichthys amplexus	Fijian banded pipefish	-	-	Yes	Yes	Yes	-	-
Corythoichthys flavofasciatus	Reticulate pipefish	-	-	Yes	Yes	Yes	-	-
Corythoichthys haematopterus	Reef-top pipefish	-	-	Yes	Yes	Yes	-	-
Corythoichthys intestinalis	Australian messmate pipefish	-	-	Yes	Yes	Yes	-	-
Corythoichthys schultzi	Schultz's pipefish	-	-	Yes	Yes	Yes	-	-
Cosmocampus banneri	Roughridge pipefish	-	-	Yes	Yes	Yes	-	-

Scientific name	Common name	EP	BC Act Status		Pro	esence	BIA intersected by	Recovery Plan in place?	
Scientific Hame		Threatened	Migratory	Marine	Ecological EMBA	Socio-economic EMBA	ecological EMBA?		
Doryrhamphus dactyliophorus	Banded pipefish	-	-	Yes	Yes	Yes	-	-	
Doryrhamphus excisus	Bluestripe pipefish	-	-	Yes	Yes	Yes	-	-	
Doryrhamphus janssi	Cleaner pipefish	-	-	Yes	Yes	Yes	-	-	
Doryrhamphus multiannulatus	Many-banded pipefish	-	-	Yes	-	Yes	-	-	
Doryrhamphus negrosensis	Flagtail pipefish	-	-	Yes	-	Yes	-	-	
Festucalex cinctus	Girdled pipefish	-	-	Yes	Yes	Yes	-	-	
Festucalex scalaris	Ladder pipefish	-	-	Yes	-	Yes	-	-	
Filicampus tigris	Tiger pipefish	-	-	Yes	Yes	Yes	-	-	
Halicampus brocki	Brock's pipefish	-	-	Yes	Yes	Yes	-	-	
Halicampus dunckeri	Red-hair pipefish	-	-	Yes	Yes	Yes	-	-	
Halicampus grayi	Mud pipefish	-	-	Yes	Yes	Yes	-	-	
Halicampus nitidus	Glittering pipefish	-	-	Yes	Yes	Yes	-	-	
Halicampus spinirostris	Spiny-snout pipefish	-	-	Yes	Yes	Yes	-	-	
Haliichthys taeniophorus	Ribboned pipehorse	-	-	Yes	Yes	Yes	-	-	
Hippichthys cyanospilos	Blue-speckled pipefish	-	-	Yes	Yes	Yes	-	-	
Hippichthys parvicarinatus	Short-keel pipefish	-	-	Yes	Yes	Yes	-	-	

Scientific name	Camana mana	EP	BC Act Status		Pro	esence	BIA intersected by	Recovery Plan	
Scientific name	Common name	Threatened	Migratory	Marine	Ecological EMBA	Socio-economic EMBA	ecological EMBA?	in place?	
Hippichthys penicillus	Beady pipefish	-	-	Yes	Yes	Yes	-	-	
Hippocampus angustus	Western spiny seahorse	-	-	Yes	Yes	Yes	-	-	
Hippocampus histrix	Spiny seahorse	-	-	Yes	Yes	Yes	-	-	
Hippocampus kuda	Spotted seahorse	-	-	Yes	Yes	Yes	-	-	
Hippocampus planifrons	Flat-face seahorse	-	-	Yes	Yes	Yes	-	-	
Hippocampus spinosissimus	Hedgehog seahorse	-	-	Yes	Yes	Yes	-	-	
Hippocampus trimaculatus	Three-spot seahorse	-	-	Yes	Yes	Yes	-	-	
Micrognathus micronotopterus	Tidepool pipefish	-	-	Yes	Yes	Yes	-	-	
Phoxocampus belcheri	Black rock pipefish	-	-	Yes	-	Yes	-	-	
Solegnathus hardwickii	Pallid pipehorse	-	-	Yes	Yes	Yes	-	-	
Solegnathus lettiensis	Gunther's pipehorse	-	-	Yes	Yes	Yes	-	-	
Solenostomus cyanopterus	Robust ghost pipefish	-	-	Yes	Yes	Yes	-	-	
Syngnathoides biaculeatus	Double-end pipehorse	-	-	Yes	Yes	Yes	-	-	
Trachyrhamphus bicoarctatus	Bentstick pipefish	-	-	Yes	Yes	Yes	-	-	

Scientific name	Common name	EP	EPBC Act Status			esence	BIA intersected by	Recovery Plan	
Scientific flame	Common name	Threatened	Migratory	Marine	Ecological EMBA	Socio-economic EMBA	ecological EMBA?	in place?	
Trachyrhamphus Iongirostris	Straightstick pipefish	-	-	Yes	Yes	Yes	-	-	

Definitions

EPBC Act	Description
Listed threatened species	A native species listed in Section 178 of the <i>EPBC Act</i> as either extinct, extinct in the wild, critically endangered, endangered, and vulnerable or conservation dependent.
Listed migratory species	A native species that from time to time is included in the appendices to the Bonn Convention and the annexes of JAMBA, CAMBA and ROKAMBA, as listed in Section 209 of the <i>EPBC Act</i> .
Listed marine species	As listed in Section 248 of the EPBC Act.

FFG Act	Description
Listed (L)	Listed as threatened
Nominated (N)	Nominated for listing as threatened but has not yet been listed. In some cases, the taxon may have received a preliminary or final recommendation indicating that it is eligible or ineligible for listing. In other cases, the nomination might not yet have been considered.
Invalid or ineligible (I)	Nominated but rejected for listing as threatened on the basis that the taxon was considered to be invalid (either undescribed or not widely accepted) or ineligible (taxon does not satisfy any of the primary listing criteria) by the SAC.
Delisted (D)	Previously listed as threatened but subsequently removed from the Threatened List following nomination for delisting.

Key

EPBC status	V	Vulnerable
(@ February 2022)	E	Endangered
	CE	Critically endangered
BIA	Α	Aggregation
	D	Distribution (i.e., presence only)
	F	Foraging
	М	Migration

Recovery plans	CA	Conservation Advice
(under the EPBC Act 1999)	CD	Conservation Dependent
	СМР	Conservation Management Plan

RP Recovery Plan

Table 5.4. BIAs of fish species within the EMBA

Species	BIA	Location within the EMBA
Dwarf sawfish	Nursing and pupping	Fitzroy River Mouth, May & Robinson River - tidal tributaries. King Sound (Inshore waters).
	Foraging	Camden Sound - eastern shore.
Largetooth sawfish (Freshwater sawfish)	Foraging and nursing	King Sound - tidal tributaries King Sound (Inshore waters).
Green sawfish Foraging		Camden Sound. Cape Leveque.
	Nursing and pupping	Cape Leveque.
Whale shark	Foraging	Northward from Ningaloo (outside of the EMBA) along 200 m isobath, extending offshore off the Kimberley coastline (within the EMBA).

Note: Biologically important areas have not yet been identified for seahorse or pipefish species in the North-west Marine Region as stated in the Species group report card—bony fishes (Supporting the marine bioregional plan for the North-west Marine Region (Commonwealth of Australia, 2012) accessed via DAWE (February 2022).

Grey nurse shark (west coast population) (EPBC Act: Vulnerable)

The grey nurse shark (*Carcharias taurus*) has a broad inshore distribution, primarily in subtropical to cool temperate waters (Last and Stevens, 2009). The west coast population of grey nurse shark are predominantly found in the south-west coastal waters of WA (DAWE, 2021b) and has been recorded as far north as the Northwest Shelf (NWS) (DoE, 2014b).

Grey nurse sharks are often observed hovering motionless just above the seabed, in or near deep sandy-bottomed gutters or rocky caves, and in the vicinity of inshore rocky reefs and islands (Pollard *et al.*, 1996). The species has been recorded at varying depths but generally found between 15–40 m (DoE 2014b).

Grey nurse sharks have also been recorded in the surf zone, around coral reefs, and to depths of around 200 m on the continental shelf. They generally occur either alone or in small to medium sized groups, usually of fewer than 20 sharks (Pollard *et al.*, 1996). Grey nurse sharks that are observed alone are thought to be moving between aggregation sites (DAWE, 2021). Grey nurse sharks are often observed aggregating around inshore rocky reefs or islands (DoE, 2014b). At these locations, grey nurse sharks are typically found near the seabed (at depths of 10 m to 40 m) in deep sandy or gravel filled gutters, or in rocky caves (DoE, 2014b). There are no known aggregation sites critical to the grey nurse shark in WA waters (DoE, 2014b).

There are no biologically important aggregation, breeding or foraging areas intersected by the spill EMBA; however, it is likely that individuals may transit through the spill EMBA.

Great white shark (EPBC Act: Vulnerable, Listed migratory)

The great white shark (*Carcharodon carcharias*) is widely distributed and located throughout temperate and sub-tropical waters with their known range in Australian waters including all coastal areas except the NT (DAWE, 2021b). Studies of the great white shark indicates that they appear to be largely transient, with a few longer-term residents; however, individuals are known to return to feeding grounds on a seasonal basis (Klimey and Anderson, 1996). Observations of

adult white sharks are more frequent around fur-seal and sea lion colonies whilst juveniles are known to congregate in certain key areas.

There are no biologically important aggregation, breeding or foraging areas intersected by the spill EMBA; however, it is likely that individuals may transit through the spill EMBA.

Shortfin make shark (EPBC Act: Listed migratory)

The shortfin mako (*Isurus oxyrinchus*) is a pelagic species with a circumglobal, wide ranging oceanic distribution in tropical and temperate seas (Mollet *et al.*, 2000). It is widespread in Australian waters, recorded in offshore waters all around the continent's coastline with exception of the Arafura Sea, the Gulf of Carpentaria and Torres Strait (DAWE, 2021b). Shortfin makos are also highly migratory and travel large distances (DAWE, 2021b).

Due to their widespread distribution in Australian waters, their presence in the spill EMBA is likely to be limited to transiting individuals.

Longfin mako shark (EPBC Act: Listed migratory)

The longfin mako is widely distributed; however, it is rarely encountered and can be found along the WA coastline as a far south as Geraldton (Last and Stevens, 2009). There is limited research into the species within Australian waters; however, Sepulveda et al (2004) recorded southern Californian juveniles favoured surface waters, while larger adults were frequently observed at depths of up to 250 m. Whilst assumed to be a deep-dwelling shark, sightings on the ocean surface, and the species' diet, suggest a greater depth range (Reardon *et al.*, 2006).

Though there is limited information about the longfin make, their presence in the spill EMBA is likely to be limited to transiting individuals.

Whale shark (EPBC Act: Vulnerable, listed migratory)

The whale shark (*Rhincodon typus*) is a filter-feeding shark and is the largest known species of fish in the world (DAWE, 2021b). It is considered to be an oceanic and coastal species, commonly seen far offshore but also closer inshore near coral atolls (DAWE, 2021b). Whale sharks generally prefer tropical to warm temperate waters where surface sea temperature ranges from 21° to 25 °C (DAWE, 2021b). In Australian waters the whale shark is commonly seen in waters off northern WA, NT and Queensland with only very occasional sightings off Victoria and South Australia (Last and Stevens, 2009). The movements of whale sharks are not well documented; however, they are known to seasonally aggregate (March and April) in shallow tropical waters off the North West Cape in WA (DAWE, 2021b).

Whale sharks may occur within the spill EMBA. A foraging BIA is intersected by the socio-economic EMBA (see Table 5.4 and Figure 5.25) and hence, individuals may forage in the far western extent of the EMBA.

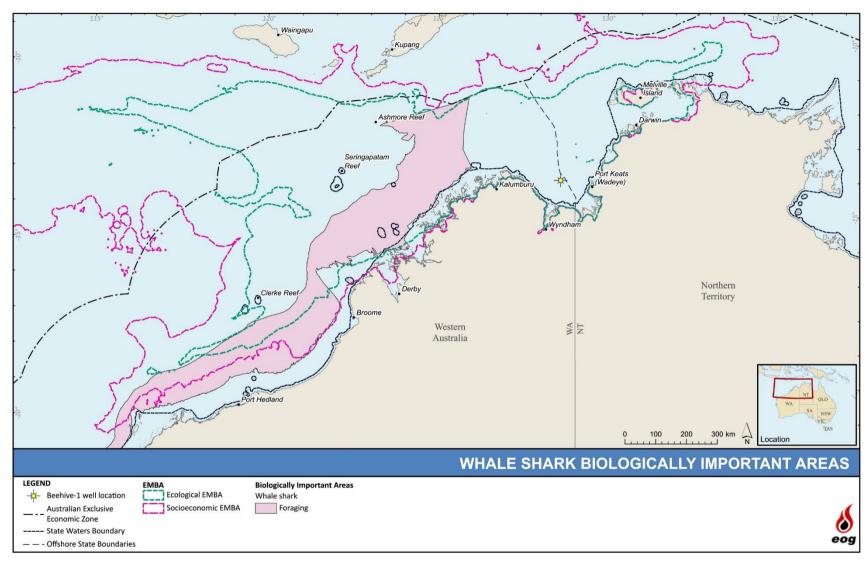


Figure 5.25. Whale shark BIA intersected by the spill EMBA

Northern river shark (EPBC Act: Endangered)

The northern river shark (*Glyphis garricki*) is an elasmobranch capable of living and moving between freshwater and seawater. The species utilises rivers, tidal sections of large tropical estuarine systems, macro tidal embayments, inshore and offshore marine habitats. The species is listed as endangered under the EPBC Act, based partly on its limited geographic distribution (TSSC, 2014a). Within Australia, the northern river shark is known to occur in WA and the NT, occupying both marine and freshwater environments including the JBG, Daly River, Adelaide River and the South and East Alligator Rivers (TSSC, 2014a) (Figure 5.26). Whilst northern river sharks have been observed well offshore, the extent to which this occurs is unknown (TSSC, 2014a). Individuals may be present within the nearshore areas of the spill EMBA.

Speartooth shark (EPBC Act: Listed Critically Endangered)

Speartooth sharks (*Glyphis glyphis*) occur in geographically distinct locations across northern Australia in the NT including Queensland, having been recorded in tidal rivers and estuaries with turbid waters, fine muddy substrates and temperatures ranging from 27 °C to 33°C (DoE, 2014c). In the NT, they are found in the Van Diemen Gulf drainage, including the Adelaide River, South, East and West Alligator rivers and Murganella creek (DoE, 2014c). Due to their similarity to bull sharks, it is thought that adult speartooth sharks may live outside of rivers in the coastal marine environment (DoE 2014c). Given the species preference for estuarine and coastal waters, the speartooth shark may be present in the socioeconomic EMBA along the NT coastline. Given the absence of BIAs for this species, significant numbers are not expected to be impacted.

Blind Gudgeon (EPBC Act: Listed vulnerable)

The blind gudgeon is a small fish known to occur on the Cape Range Peninsula in the arid NW of WA (Humphreys and Feinberg, 1995) and at Barrow Island, to the northeast of the Cape Range Peninsula, off the WA coastline (Humphreys ,1999). The species is known only from the underground waters which lie beneath the narrow coastal plain of the Cape Range Peninsula in WA (Allen, 1982; Humphreys and Blyth, 1994) in water temperatures ranging from 27°C to 30°C in May and Aug (Mees, 1962)

Although the PMST report identifies this species or its habitat may be present within the EMBA, the closest area of presence is 33 km southeast from the southern extent of the socioeconomic EMBA. Therefore given the location preference and there are no BIAs for this species, the blind gudgeon is not expected to occur within the spill EMBA.

Oceanic whitetip shark (EPBC Act: Listed migratory)

Within Australian waters, the oceanic whitetip shark (*Carcharhinus longimanus*) is found from Cape Leeuwin, WA, through parts of the NT and down the east coast of Queensland and NSW to Sydney (Last and Stevens, 2009). It has not been recorded within the Gulf of Carpentaria or the Arafura Sea. The oceanic whitetip shark is a circumglobal deep-water pelagic species inhabiting tropical to warm-temperate waters (Compagno, 1984). Oceanic whitetip sharks prefer water temperatures above 20°C and can reach depths of >180 m (Castro *et al.*, 1999).

Given the species distribution in deep offshore waters, the presence of the species within the spill EMBA is expected to be ${\sf I}$

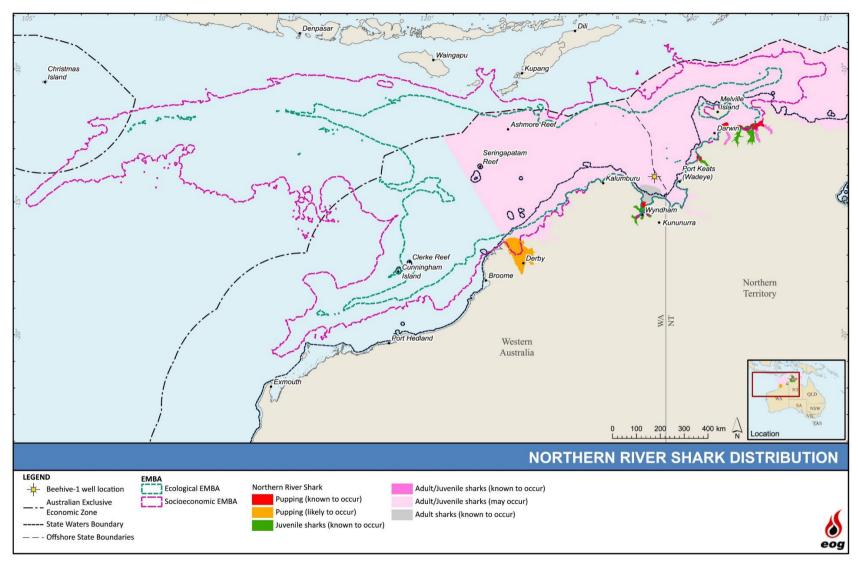


Figure 5.26. Northern river shark presence in the region

Reef manta ray (EPBC Act: Listed migratory)

The reef manta ray (*Manta alfredi*) has a circum-global range in tropical and sub-tropical waters with sightings between waters off Perth, all along the northern coastline of Australia to the waters off the Solitary Islands, NSW (Marshall *et al.*, 2011a). While this species tends to inhabit nearshore environments, it is known to occurs in waters as deep as 300 m and has been sighted around offshore coral reefs, rocky reefs and seamounts (Marshall *et al.*, 2011a). In addition, it makes seasonal migrations of several hundred kilometres (Marshall *et al.*, 2011a).

Despite there being no known aggregation sites within close proximity to the EMBA, reef manta rays may be present in the EMBA as transiting individuals.

Giant manta ray (EPBC Act: Listed migratory)

The giant manta ray (*Manta birostris*) has a widespread distribution along the coast of Australia and is known to seasonally migrate between aggregation sites (Marshall *et al.*, 2011b). The giant manta ray is commonly sighted along productive coastlines with regular upwelling, oceanic island groups and particularly offshore pinnacles and seamounts (Marshall *et al.*, 2011b).

This species has also been recorded within the Oceanic Shoals Marine Park, which is located within the EMBA (Nichol *et al.*, 2013). Despite there being no known aggregation sites within close proximity to the drill site, giant manta rays may be present in the EMBA as transiting individuals.

Narrow sawfish (EPBC Act: Listed migratory)

The narrow sawfish lives in coastal and estuarine habitats across northern Australia and is generally restricted to shallow waters (less than 40 m) (D'Anastasi *et al.*, 2013). The species is known to occur in the Gulf of Carpentaria but its distribution and migration is largely unknown. The narrow sawfish has the potential to occur within the spill EMBA because it has been caught as bycatch by the NPF in these areas (Tonks *et al.*, 2008).

Dwarf sawfish (EPBC Act: Vulnerable, Listed migratory)

The dwarf sawfish (*Pristis clavata*) usually inhabits shallow (2–3 m deep) coastal waters and estuarine habitats. Its distribution is considered to extend north from Cairns around the Cape York Peninsula in Queensland, across northern Australian waters to the Pilbara coast in WA (DAWE, 2021b). The dwarf sawfish uses its rostrum to stun schooling fish by sideswiping or threshing while swimming through a school. The main prey species is popeye mullet (*Rhinomugil nasutus*). The main threats to dwarf sawfish are habitat loss and entanglement in fishing nets.

Adult dwarf sawfish are known to occur in the nearshore areas of the spill EMBA (Figure 5.27). The EMBA overlaps with foraging, nursing and pupping BIAs in Camden Sound (eastern shore), and some sections of the Fitzroy River Mouth, May & Robinson River tidal tributaries and inshore waters of King Sound respectively (see Table 5.4 and Figure 5.27).

Largetooth sawfish (EPBC Act: Vulnerable, Listed migratory)

Largetooth sawfish (*Pristis pristis*) also known as the freshwater sawfish, utilise both freshwater (juvenile) and marine (adult) environments during the different stages of its lifecycle (TSSC, 2014b). Within Australia, largetooth sawfish have been recorded in numerous drainage systems across northern WA, NT and northern Queensland (TSSC, 2014b). Growing up to 7 m in length, the largetooth sawfish feeds on fishes and benthic invertebrates. The saw is used to stun schooling fish, such as mullet, and for extracting molluscs and small crustaceans from the benthic sediment. Nursing areas for the species include Eighty Mile Beach, Roebuck Bay and King Sound (which is also a known foraging area).

The spill EMBA overlaps areas where adult largetooth sawfish are known to occur. BIAs that overlap the EMBA are shown in Table 5.4 and Figure 5.28.

Green sawfish (EPBC Act: Vulnerable, Listed migratory)

The green sawfish (*Pristis zijsron*) occurs in both inshore and offshore marine coastal waters of northern Australia. Green sawfish have been recorded in very shallow water (less than one metre) to offshore trawl grounds in over 70 m of water (Stevens *et al.*, 2005). Despite being found in deep water, evidence suggests that the range of green sawfish is mostly restricted to the inshore coastal fringe, with a strong association with mangroves and adjacent mudflats (Stevens *et al.*, 2008). Its current known distribution stretches from Broome, WA around northern Australia and down the east coast as far as Jervis Bay, NSW (DAWE, 2021b).

The main threats to green sawfish are habitat loss and entanglement in fishing nets. The EMBA overlaps areas where both adult and juvenile sawfish are known to occur and is adjacent to the inner waters of the southern JBG where pupping of this species is likely to occur (Figure 5.29). It has also been caught as bycatch from the NPF in the area overlapped by the drill site and spill EMBA and therefore is likely to be present in both (Tonks *et al.*, 2008). BIAs for this species that overlap the EMBA are listed in Table 5.4.

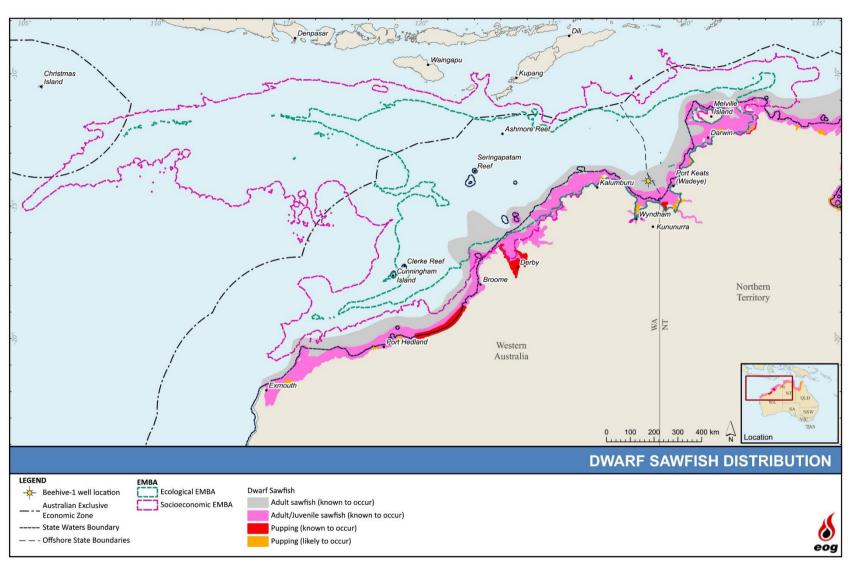


Figure 5.27. Dwarf sawfish presence in the region

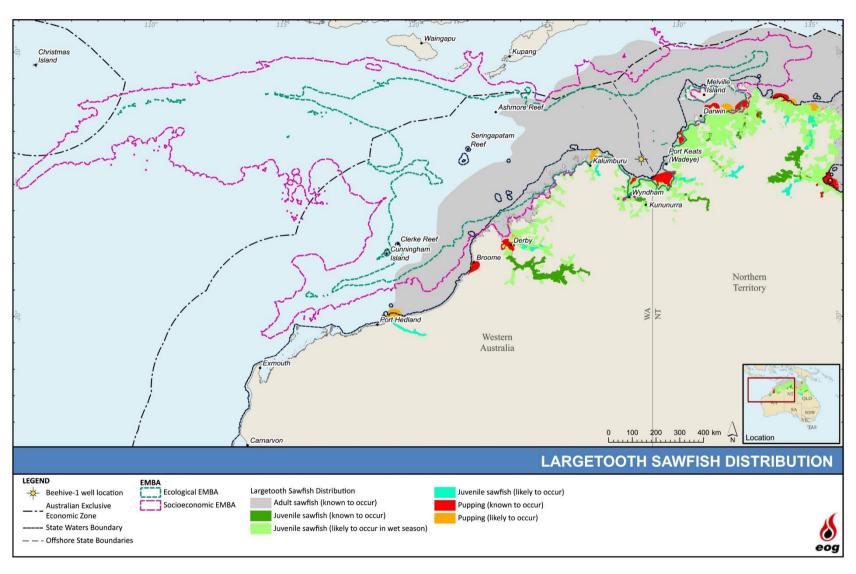


Figure 5.28. Largetooth sawfish presence in the region

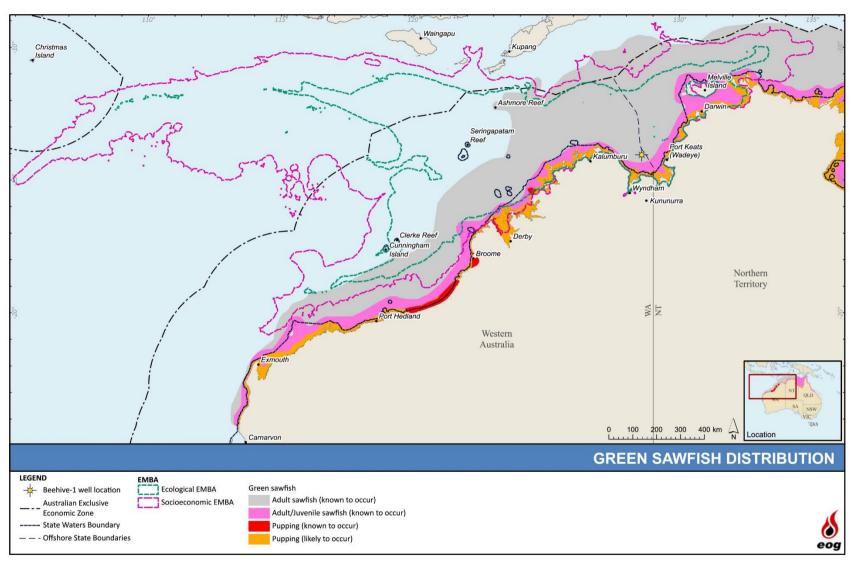


Figure 5.29. Green sawfish presence in the region

Scalloped hammerhead (EPBC Act: Conservation Dependent)

The scalloped hammerhead (*Sphyrna lewini*) is a relatively large, fusiform-bodied, moderately slender shark. has a circum-global distribution in tropical and sub-tropical waters. This species has a strong genetic population structuring across ocean basins as it rarely ventures into or across deep ocean waters, but ranges quite widely over shallow coastal shelf waters. Within Australian waters the scalloped hammerhead extends from New South Wales (around Wollongong, where it is less abundant), around the north of the continent and then south into Western Australia to approximately Geographe Bay, though it is rarely recorded south of the Houtman Abrolhos Islands (TSSC, 2018a). It is currently under threatened listing assessment (current status is Conservation Dependent) which is due 30 April 2022.

As per the PMST report, breeding of the scallop hammerhead is known to occur in the EMBA.

Southern Bluefin Tuna (EPBC Act: Conservation Dependent)

The Southern Bluefin Tuna (*Thunnus maccoyii*) is highly migratory, occurring globally in waters between 30–50° S, though the species is mainly found in the eastern Indian Ocean and in the south-west Pacific Ocean. There is a single known spawning ground between Java and northern WA (TSSC, 2010). It is currently under threatened listing assessment (current status is Conservation Dependent) which is due 30 October 2023.

As per the PMST report, breeding of the southern bluefin tuna is known to occur in the EMBA.

Sygnathids (EPBC Act: Listed marine species, FFG Act: Not listed)

Thirty-five (35) of the 47 marine ray-finned fish species identified in the EPBC Act PMST (74%) are sygnathiformes, which includes seahorses, seadragon, pipehorse and pipefish. The majority of these fish species are associated with seagrass meadows, macroalgal seabed habitats, reefs and sponge gardens located in shallow, inshore waters (e.g., protected coastal bays, harbours and jetties) less than 50 m deep. They are sometimes recorded in deeper offshore waters, where they depend on the protection of sponges and rafts of floating seaweed such as *Sargassum*. It is likely that sygnathid species will occur in the deeper waters of the spill EMBA.

The PMST species profile and threats profiles indicate that the sygnathiforme species listed for the EMBA are widely distributed throughout northern and north-western Australian waters. The diverse range of ecological niches afforded by reef sites would be expected to provide suitable habitat for these listed species.

5.3.5. Marine Mammals

The PMST indicates that 15 whale species and 16 dolphin species may occur within or migrate through the spill EMBA (DAWE, 2022). These species are presented in Table 5.5 and a description focused on threatened species follows.

The likely temporal presence and absence of cetaceans in the EMBA is illustrated in Figure 5.18 in Section 5.4.5 of Chapter 5.

The species listed as threatened or migratory are described in this section. BIAs for marine mammals that overlap the EMBA are presented in Table 5.6.

Table 5.5. EPBC Act-listed cetaceans that may occur in the spill EMBA

		EPBC Act Status			Presence		BIA	
Scientific name	Common name	Threatened	Migratory	Marine	Ecological EMBA	Socio- economic EMBA	intersected by ecological EMBA?	Recovery Plan in place?
Whales								
Balaenoptera acutorostrata	Minke whale	-	-	Yes	-	Yes	No	-
B. bonaerensis	Antarctic minke whale	-	Yes	Yes	-	Yes	No	-
B. borealis	Sei whale	V	Yes	Yes	Yes	Yes	No	CA
B. edeni	Bryde's whale	-	Yes	Yes	Yes	Yes	No	-
B. musculus	Blue whale	Е	Yes	Yes	Yes	Yes	Yes	CMP
B. physalus	Fin whale	V	Yes	Yes	Yes	Yes	No	CA
Eubalaena australis	Southern right whale	Е	Yes	Yes	-	Yes	No	CMP
Indopacetus pacificus	Longman's beaked whale	-	-	Yes	Yes	Yes	No	-
Kogia breviceps	Pygmy sperm whale	-	-	Yes	Yes	Yes	No	-
K. simus	Dwarf Sperm Whale	-	-	Yes	Yes	Yes	No	-
Megaptera novaeangliae	Humpback whale	-	Yes	Yes	Yes	Yes	Yes	-
Mesoplodon densirostris	Blainville's beaked whale	-	-	Yes	Yes	Yes	No	-
Mesoplodon ginkgodens	Ginko-toothed beaked whale	-	-	Yes	Yes	Yes	No	-

		EPBC Act Status			Presence		BIA	
Scientific name	Common name	Threatened	Migratory	Marine	Ecological EMBA	Socio- economic EMBA	intersected by ecological EMBA?	Recovery Plan in place?
Physeter macrocephalus	Sperm whale	-	Yes	Yes	Yes	Yes	No	-
Ziphius cavirostris	Cuvier's beaked whale	-	-	Yes	Yes	Yes	No	
Dolphins			'				"	
Delphinus delphis	Common dolphin	-	-	Yes	Yes	Yes	-	-
Feresa attenuata	Pygmy killer whale	-	-	Yes	-	Yes	-	-
Globicephala macrorhynchus	Short-finned pilot whale	-	-	Yes	Yes	Yes	-	-
Grampus griseus	Risso's dolphin	-	-	Yes	-	Yes	-	-
Lagenodelphis hosei	Fraser's dolphin	-	-	Yes	Yes	Yes	-	-
Orcaella brevirostris	Australian snubfin dolphin	-	Yes	Yes	Yes	Yes	-	-
Orcinus orca	Killer whale	-	Yes	Yes	Yes	Yes	-	-
Peponocephala electra	Melon-headed whale	-	-	Yes	Yes	Yes	-	-
Pseudorca crassidens	False killer whale	-	-	Yes	Yes	Yes	-	-
Sousa sahulensis	Australian humpback dolphin	-	Yes	Yes	Yes	Yes	-	-
Stenella attenuata	Spotted dolphin	-	-	Yes	Yes	Yes	-	-
Stenella coeruleoalba	Striped dolphin	-	-	Yes	Yes	Yes	-	-

Scientific name	Common name	EPBC Act Status			Presence		BIA	
		Threatened	Migratory	Marine	Ecological EMBA	Socio- economic EMBA	intersected by ecological EMBA?	Recovery Plan in place?
Stenella longirostris	Long-snouted spinner dolphin	-	-	Yes	Yes	Yes	-	-
Steno bredanensis	Rough-toothed dolphin	-	-	Yes	Yes	Yes	-	-
Tursiops aduncus	(Indo-Pacific) spotted bottlenose dolphin	-	-	Yes	Yes	Yes	-	-
Tursiops truncatus	Bottlenose dolphin	-	-	Yes	Yes	Yes	-	-
Dugong			1	1	1	ı	1	1
Dugong dugon	Dugong	-	Yes	Yes	Yes	Yes	-	-

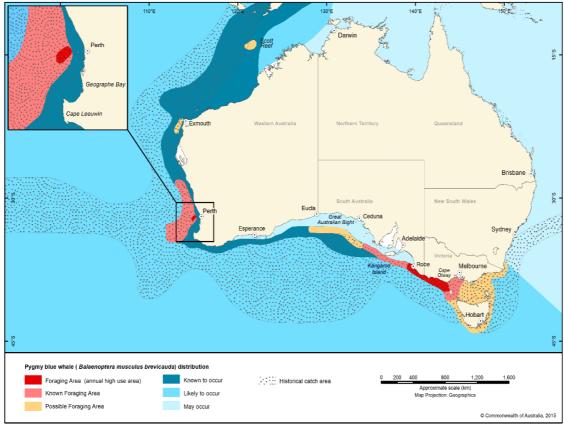
Legend and key is the same as Table 5.2.

Table 5.6. BIAs of marine mammals within the EMBA

Species	BIA	Location within the EMBA				
Pygmy blue	Foraging	Scott Reef.				
whale Migration		Augusta to Derby (tend to pass along the shelf edge at depths of 500 m to 1,000 m; appear close to coast in the Exmouth-Montebello Islands area on southern migration). Indonesia - Banda Sea.				
Humpback whale	Calving	Kimberley/Coastal North Lacepede Island, Camden Sound.				
	Migration (northern and southern)	The migration corridor extends from the coast to out to approximately 100 km offshore in the Kimberley region extending south to Northwest Cape.				
	Nursing	Kimberley/Coastal North Lacepede Island, Camden Sound.				
	Resting	Camden Sound.				
	Foraging	Port Essington (Cobourg Peninsula). Van Diemen Gulf (East Alligator River). Van Diemen Gulf (South Alligator). Darwin Harbour. King Sound Southern Sector. Pender Bay. Carnot & Beagle Bay.				
	Breeding	Port Essington (Cobourg Peninsula). Van Diemen Gulf (East Alligator River). Van Diemen Gulf (South Alligator). Darwin Harbour. Port Nelson, York Sound, Prince Frederick Harbour. Prince Regent River. Camden Sound Area - Walcott Inlet, Doubtful Bay, Deception Bay, Augustus Island (Kuri Bay).				
	Calving	Maret and Biggee Island. Willie Creek.				
	Significant habitat (unknown behaviour)	Napier Broome Bay/Deep Bay. Vansittart Bay, Anjo Peninsula. Bougainville Peninsula. Admiralty Gulf and Parry Harbour.				
Australian snubfin dolphin	Foraging	Ord River (high density prey). Cape Londonderry and King George River (high density prey). Napier Broome Bay/Deep Bay (high density prey). Vansittart Bay (Anjo Peninsula) (high density prey). Bougainville Peninsula (high density prey). Admiralty Gulf & Parry Harbour. Maret and Biggee Island.				

Species	BIA	Location within the EMBA
		Port Nelson, York Sound, Prince Frederick Harbour. Prince Regent River (high density prey). Camden Sound Area (Walcott Inlet, Doubtful Bay, Deception Bay, Augustus Island (Kuri Bay)). King Sound North, Yampi Sound and Talbot Bay Fjord area near horizontal falls. King Sound Southern Sector.
	Breeding	Port Essington (Cobourg Peninsula). Van Diemen Gulf (South Alligator River). Darwin Harbour. Ord River. Napier Broome Bay/Deep Bay. Vansittart Bay (Anjo Peninsula). Bougainville Peninsula. Admiralty Gulf & Parry Harbour. Port Nelson, York Sound, Prince Frederick Harbour. Prince Regent River (high density prey). Camden Sound Area (Walcott Inlet, Doubtful Bay, Deception Bay, Augustus Island (Kuri Bay)). King Sound North, Yampi Sound and Talbot Bay Fjord area near horizontal falls. King Sound Southern Sector.
	Calving	Port Essington (Cobourg Peninsula. Van Diemen Gulf (South Alligator River). Darwin Harbour. Ord River. Napier Broome Bay/Deep Bay. Vansittart Bay (Anjo Peninsula). Bougainville Peninsula. Admiralty Gulf & Parry Harbour. Port Nelson, York Sound, Prince Frederick Harbour. Prince Regent River (high density prey). Camden Sound Area (Walcott Inlet, Doubtful Bay, Deception Bay, Augustus Island (Kuri Bay)). King Sound North, Yampi Sound and Talbot Bay Fjord area near horizontal falls. King Sound Southern Sector.
	Resting	Ord River. Napier Broome Bay/Deep Bay. Vansittart Bay (Anjo Peninsula). Bougainville Peninsula. Admiralty Gulf & Parry Harbour. Port Nelson, York Sound, Prince Frederick Harbour. Camden Sound Area (Walcott Inlet, Doubtful Bay, Deception Bay, Augustus Island (Kuri Bay)).
Indo-Pacific spotted	Foraging	Port Essington (Cobourg Peninsula) (provisioning young). Darwin Harbour.

Species	BIA	Location within the EMBA
bottlenose dolphin		Camden Sound Area - Walcott Inlet, Doubtful Bay, Deception Bay, Augustus Island (Kuri Bay).
		King Sound North and Yampi Sound and Talbot Bay Fjord area near horizontal falls.
		King Sound Southern Sector.
	Breeding	Port Essington (Cobourg Peninsula) (provisioning young).
		Darwin Harbour (provisioning young).
		King Sound North and Yampi Sound and Talbot Bay Fjord area
		near horizontal falls.
		King Sound Southern Sector.
	Calving	Camden Sound Area - Walcott Inlet, Doubtful Bay, Deception Bay, Augustus Island (Kuri Bay).
		King Sound North and Yampi Sound and Talbot Bay Fjord area near horizontal falls.
		King Sound Southern Sector.
Dugong	Foraging	Kimberley coast (Dampier Peninsula).
		Ashmore Reef – south (high density).
		Ashmore Reef – west (high density).
	Breeding	Ashmore Reef – west.
	Calving	Ashmore Reef – west.
	Nursing	Ashmore Reef – west.


Pygmy blue whale (EPBC Act: Endangered, Listed migratory)

Pygmy blue whales are described in Section 5.4.5 of Chapter 5.

The EMBA is considered within the 'likely' distribution of the species and therefore pygmy blue whales may be present in the region during the southern migration period (September to December) (DoE, 2015b).

There is a foraging, migration and distribution BIA located off the Northwest Shelf is and Scott Reef (within the EMBA) is considered to be a 'possible' foraging area (see Table 5.6 and Figure 5.30).

Source: DoE (2015a)

Figure 5.30. Pygmy blue whale BIAs

Southern right whale (EPBC Act: Endangered, Listed migratory)

The southern right whale (*Eubalaena australis*) is present in the southern hemisphere between approximately 30° and 60°S. The species feeds in the Southern Ocean in summer, moving close to the Australian shore in winter.

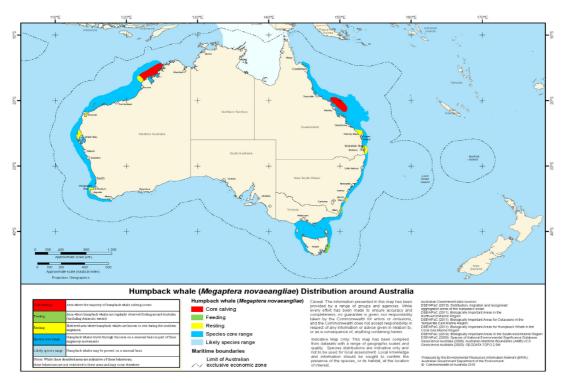
In Australian waters, the southern right whales distribution range from Perth, along the southern coastline, to Sydney. Sightings have been recorded as far north as Exmouth although these are rare (Bannister *et al.*, 1996). BIAs including calving and aggregation areas are recorded for this species along the southern coastline of Australia (DAWE, 2021a).

There are no established or emerging coastal aggregation areas, nor breeding or calving BIAs for the southern right whale in the spill EMBA. Given the preference for the southern coastline of Australia, it is unlikely that southern right whales will be present the spill EMBA.

Humpback whale (EPBC Act: Vulnerable, Listed migratory)

Humpback whales are described in Section 5.4.5 of Chapter 5 and their distribution is illustrated in Figure 5.31.

Humpback whales travel northbound from Northwest Cape, along the continental shelf and pass the west of the Muiron, Barrow and Montebello Islands (within the EMBA), peaking in late July (Jenner et al. 2001). Southbound migrations are more diffuse and irregular with no obvious peak. The southerly migration extends parallel to the coast on the 20-30 m depth contour from Lacepede Islands (north of Broome) (Jenner et al. 2001, DEWHA, 2008b). An increase in southerly



migrating individuals may be observed between the North West Cape and the Montebello Islands around November (Jenner et al. 2001).

In the NWMR, humpback whales are known to have breeding and foraging grounds between Broome and the northern end of Camden Sound, with the highest concentrations occurring between June and September (DEWHA, 2008b). Camden Sound appears to be the northern most limit for the majority of the west coast whales (Figure 5.32) (Jenner *et al.*, 2001). Although, the breeding and calving BIA for humpbacks off the west Kimberley coastline extends as far as Bigge Island (offshore from Mitchell Plateau) located within the spill EMBA.

Given the activity timing is outside of the humpback whale period of peak presence in north western Australia (June – September), it is unlikely that the whales are present in significant numbers within the EMBA.

The humpback whale migration (north and south) BIA is located in the EMBA. Other BIAs for this species that overlap the EMBA are presented in Table 5.6 and Figure 5.33.

Source: TSSC (2015a).

Figure 5.31. Distribution of the humpback whale around Australia

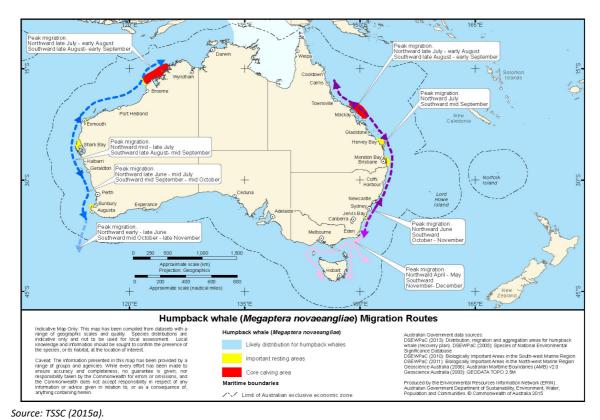


Figure 5.32. Migration routes of humpback whales around Australia

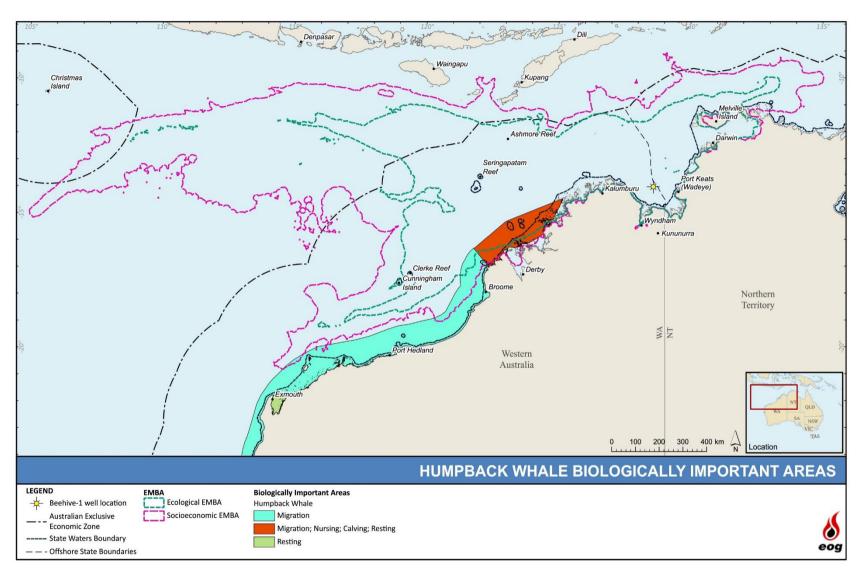


Figure 5.33. Humpback whale BIA intersected by the spill EMBA

Sei whale (EPBC Act: Vulnerable, Listed migratory)

Sei whales are described in Section 5.4.5 of Chapter 5.

Based upon the species preference for deep offshore waters, the wide ranging nature of this species, and the small number of sei whale sightings in Australia, the presence of the species within the EMBA is likely to be low.

Fin whale (EPBC Act: Vulnerable, Listed migratory)

Fin whales are described in Section 5.4.5 of Chapter 5.

Based on the fin whale preference for deep offshore waters and the minimal sightings in the coastal waters of the EMBA, the presence of this species in the spill EMBA is considered to be limited.

Sperm whale (EPBC Act: Vulnerable, listed migratory)

Sperm whales (*Physeter macrocephalus*) are the largest of the toothed whales and are generally found in pods of up to 50 individuals (DAWE, 2021b). Sperm whales have a global distribution. They generally inhabit deeper oceanic waters with a water depth of 600 m or more and are uncommon in waters less than 300 m (DoEE 2019a).

The PMST indicates that the species is known to occur within the EMBA. No BIAs for the species are recorded in the spill EMBA.

It is possible that sperm whales may transit through the spill EMBA, but they are not expected to be present in significant numbers.

Bryde's whale (EPBC Act: Listed migratory)

Fin whales are described in Section 5.4.5 of Chapter 5.

on small crustaceans, such as euphausids, copepods, pelagic red crabs and cephalopods.

The PMST indicates that the species may occur within the EMBA. However, there are no feeding or breeding BIAs within the EMBA.

Killer whale (EPBC Act: Listed migratory)

Killer whales are described in Section 5.4.5 of Chapter 5.

Sightings of killer whale around the Australian coast are typically recorded along the continental slope and shelf, and predominantly in the vicinity of seal colonies, which are not known to exist in the region (DEWHA 2008b). No areas of significance and no determined migration routes have been identified for this species within waters off WA (DoEE, 2019a).

The EMBA is unlikely to represent important habitat for this species. Therefore, killer whales are unlikely to be present in the EMBA.

Australian humpback dolphin (EPBC Act: Listed migratory)

Australian humpback dolphins (*Sousa sahulensis*) are found primarily in coastal waters and feed mainly on fish associated with coastal-estuarine waters (DAWE, 2021b). In Queensland and the NT, Australian humpback dolphins are mainly found in water less than 20 km from the nearest river mouth, and in water less than 15–20 m deep (DAWE, 2021b). They are generally found in river mouths, mangroves, seagrass beds, tidal channels and inshore reefs. They are known to have resident groups that forage, feed, breed and calve in state and territory waters. Calves may be born throughout the year, but peaks in summer and spring have been reported.

Humpback dolphin foraging BIAs are located along the Kimberley coastline, including breeding, and calving. A breeding BIA for the species are also located in Darwin Harbour (approximately 300 km north-east of the drill site). Foraging BIAs are also located in Van Diemen Gulf and Port Essington (Cobourg Peninsula) (see Table 5.6 and Figure 5.34).

The PMST indicates that the species is known to occur within the EMBA. The coastal area of the socio-economic EMBA overlaps the significant habitat BIA for this species located in the north Kimberley coastline and NT coastline are outlined in Table 5.6 and Figure 5.34. Therefore, the species is likely to be present in the spill EMBA.

Australian snubfin dolphin (EPBC Act: Listed migratory)

Australian snubfin dolphins (*Orcaella brevirostris*) occur mostly in protected shallow waters close to the coast, and close to river and creek mouths, including the shallow coastal waters and estuaries along the Kimberley coast and Cambridge Gulf (DAWE, 2021b). Within Australian waters, Australian snubfin dolphins have been recorded almost exclusively in coastal and estuarine waters (DAWE, 2021b). All available data on the distribution and habitat preferences of Australian snubfin dolphins indicate that they mainly occur in one location: shallow coastal and estuarine waters of Queensland, NT and northern WA (DAWE, 2021b). Australian snubfin dolphins share similar habitat preference with Australian humpback dolphins, with these two species potentially occurring in the same area through most of their Australian range (DAWE, 2021b).

Feeding primarily occurs in shallow waters (less than 20 m) close to river mouths and creeks (DAWE, 2021b). This includes a variety of habitats, from mangroves to sandy bottom estuaries and embayments, to rock and/or coral reefs. Prey for this species includes fish of the families Engraulidae, Clupeidae, Chirocentridae, Anguillidae, Hemirhampidae, Leiognathidae, Apogonidae, Pomadasydae, Terapontidae and Sillaginidae, typically associated with shallow coastal waters and estuaries in tropical regions (DAWE, 2021b).

Off the WA Kimberley coast, the development of infrastructure, mostly associated with the petroleum industry and iron ore activities, and seismic surveys and petroleum explorations are of concern and are suspected to have an impact at the local level at all affected sites. This threat to Australian snubfin dolphins is considered likely to continue into the future, with the potential to increase its impact as habitat degradation and loss increase with increased human population requirements (DAWE, 2021b).

The PMST indicates that the species is known to occur within the EMBA. The EMBA overlaps with the resting, calving, breeding and foraging BIA as outlined in Table 5.6 and Figure 5.35.

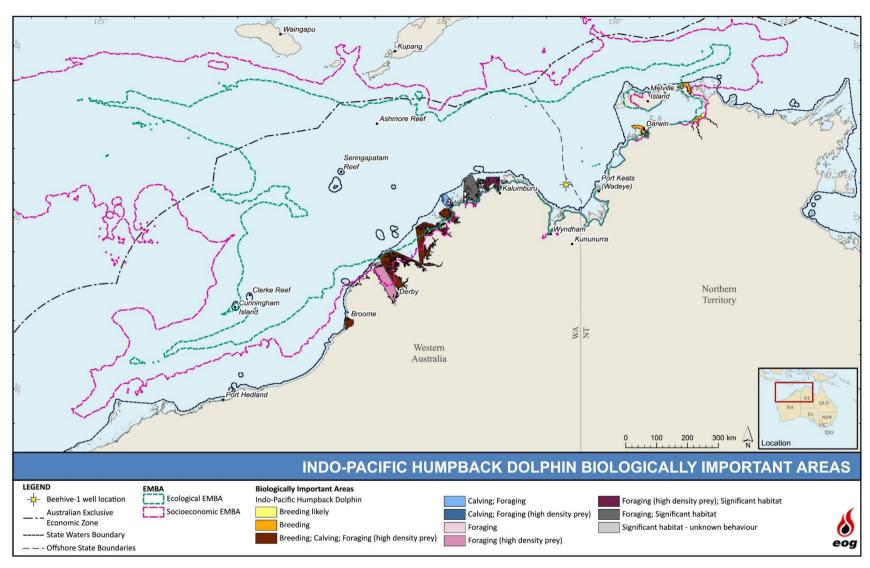


Figure 5.34. Australian humpback dolphin BIA intersected by the spill EMBA

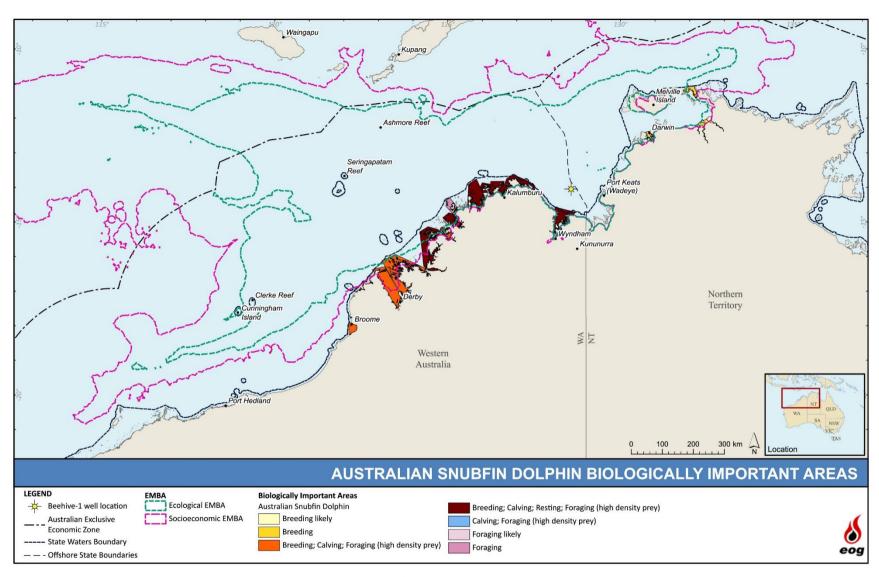


Figure 5.35. Australian snubfin dolphin BIA intersected by the spill EMBA

Dugong (EPBC Act: Listed marine, migratory)

Dugongs are described in Section 5.4.5 of Chapter 5.

Dugongs have been reported to occur along the coastline from Cape Hay to Pearce Point with the main populations concentrated around Dorcherty Island (Woodside, 2004), approximately 102 km east of the drill site. The closest dugong foraging BIA is located south of Ashmore Reef, with additional foraging BIA on the Kimberley coastline off the Dampier Archipelago (within the spill EMBA) (see Table 5.6). Ashmore Reef supports a population of less than 50 individuals that are genetically distinct from other Australian populations. The reef provides breeding and feeding habitats, with seagrass beds of the reef flats and lagoon their preferred food source. Breeding occurs year round at Ashmore Reef (DoEE, 2019a). An additional three BIAs for this species overlaps with the EMBA (see Table 5.6 and Figure 5.36).

Therefore, dugongs are likely to be present in the nearshore areas of the spill EMBA.

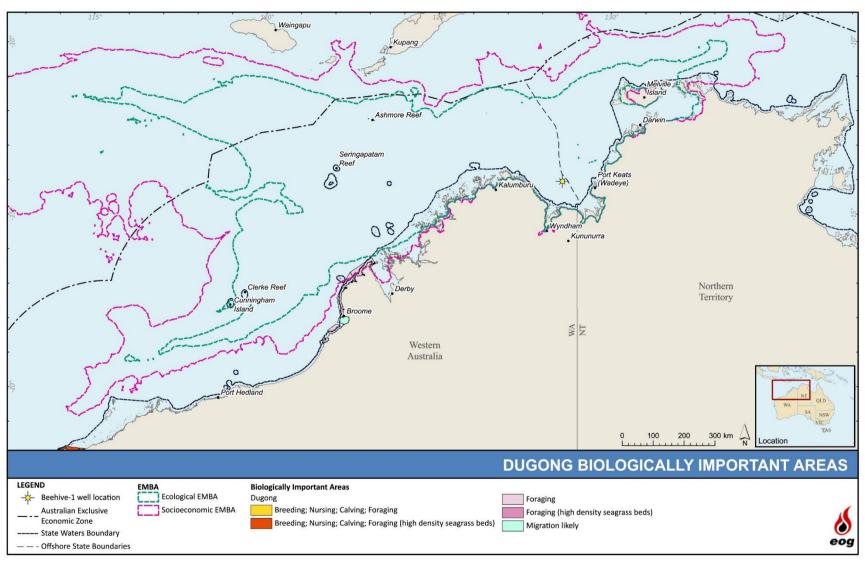


Figure 5.36. Dugong BIA intersected by the spill EMBA

5.3.6. Marine Reptiles

Six species of marine turtle are listed under the EPBC Protected Matters Search Tool (PMST) as potentially occurring in the EMBA, as listed in Table 5.7 (DAWE, 2022a). Three of the turtle species are listed as endangered, with the other three listed as vulnerable. Additionally, 26 species of seasnake were identified as potentially occurring in the EMBA (two of which are listed as critically endangered). Two species of crocodile were also identified.

Species of marine turtles listed in Table 5.7 occur in and nest on the sandy beaches of WA, all of which are likely to be present within the spill EMBA. Details on these species are provided in this section. Ecological stages and temporal occupation of the turtle species is presented in Figure 5.20 in Section 5.4.6 of Chapter 5.

BIAs for turtle species that overlap the EMBA are presented in Table 5.8.

Table 5.7 EPBC Act-listed marine reptiles that may occur in the spill EMBA

Scientific name		EPBC Act Status			Presence		BIA intersected	Recovery Plan
Scientific fiditie	Common name	Threatened	Migratory	Marine	Ecological EMBA	Socio-economic EMBA	by spill EMBA?	in place?
Turtles								
Caretta caretta	Loggerhead turtle	Е	Yes	Yes	Yes	Yes	Yes	F
Chelonia mydas	Green turtle	V	Yes	Yes	Yes	Yes	Yes	I, F
Dermochelys coriacea	Leatherback turtle	Е	Yes	Yes	Yes	Yes	Yes	-
Eretmochelys imbricate	Hawksbill turtle	V	Yes	Yes	Yes	Yes	Yes	-
Lepidochelys olivacea	Olive ridley turtle	Е	Yes	Yes	Yes	Yes	Yes	I, F
Natator depressus	Flatback turtle	V	Yes	Yes	Yes	Yes	Yes	I, F
Seasnakes								
Acalyptophis peronii	Horned seasnake	-	-	Yes	Yes	-	No	-
Aipysurus apraefrontalis	Short-nosed seasnake	CE	-	Yes	Yes	Yes	No	CA
Aipysurus duboisii	Dubois' seasnake	-	-	Yes	Yes	Yes	No	-
Aipysurus eydouxii	Spine-tailed seasnake	-	-	Yes	Yes	Yes	No	-
Aipysurus foliosquama	Leaf-scaled seasnake	CE	-	Yes	Yes	Yes	No	CA
Aipysurus fuscus	Dusky seasnake	-	-	Yes	Yes	Yes	No	-
Aipysurus laevis	Olive seasnake	-	-	Yes	Yes	Yes	No	-
Aipysurus tenuis	Brown-lined seasnake	-	-	Yes	Yes	Yes	No	-
Astrotia stokesii	Stokes' seasnake	-	-	Yes	Yes	Yes	No	-

Calandifia nama	6	EPBC Act Status			Presence		BIA intersected	Recovery Plan
Scientific name	Common name	Threatened	Migratory	Marine	Ecological EMBA	Socio-economic EMBA	by spill EMBA?	in place?
Disteira kingii	Spectacled seasnake	-	-	Yes	Yes	Yes	No	-
Disteira major	Olive-headed seasnake	-	-	Yes	Yes	Yes	No	-
Emydocephalus annulatus	Turtle-headed seasnake	-	-	Yes	Yes	Yes	No	-
Enhydrina schistosa	Beaked seasnake	-	-	Yes	Yes	Yes	No	-
Ephalophis greyi	North-western mangrove seasnake	-	-	Yes	Yes	Yes	No	-
Hydrelaps darwiniensis	Black-ringed seasnake	-	-	Yes	Yes	Yes	No	-
Hydrophis atriceps	Black-headed seasnake	-	-	Yes	Yes	Yes	No	-
Hydrophis coggeri	Slender-necked seasnake	-	-	Yes	Yes	Yes	No	-
Hydrophis czeblukovi	Fine-spined seasnake	-	-	Yes	Yes	Yes	No	-
Hydrophis elegans	Elegant seasnake	-	-	Yes	Yes	Yes	No	-
Hydrophis inornatus	Plain seasnake	-	-	Yes	Yes	Yes	No	-
Hydrophis mcdowelli	Small-headed seasnake	-	-	Yes	Yes	Yes	No	-
Hydrophis ornatus	Spotted seasnake	-	-	Yes	Yes	Yes	No	-
Hydrophis pacificus	Large-headed seasnake	-	-	Yes	Yes	Yes	No	-

Scientific name	Common name	EPBC Act Status			Presence		BIA intersected	Recovery Plan
		Threatened	Migratory	Marine	Ecological EMBA	Socio-economic EMBA	by spill EMBA?	in place?
Lapemis hardwickii	Spine-bellied seasnake	-	-	Yes	Yes	Yes	No	-
Parahydrophis mertoni	Northern mangrove seasnake	-	-	Yes	Yes	Yes	No	-
Pelamis platurus	Yellow-bellied seasnake	-	-	Yes	Yes	Yes	No	-
Crocodiles	Crocodiles							
Crocodylus johnstoni	Freshwater crocodile	-	-	Yes	Yes	Yes	No	-
Crocodylus porosus	Salt-water crocodile	-	Yes	Yes	Yes	Yes	No	-

Legend and key is the same as Table 5.2.

Table 5.8. BIAs of marine turtles within the EMBA

Species	BIA	Location within the EMBA
Loggerhead turtle	Foraging	James Price Point. Western Joseph Bonaparte Depression.
Green turtle	Foraging	Field Island (west and east). Joseph Bonaparte Gulf. James Point Price. Montgomery Reef.
	Inter-nesting	Islands north-east of Cobourg Peninsula. Northwest of Melville Island. Lacepede Island. Montebello Islands.
	Inter-nesting buffer	Islands north-east of Cobourg Peninsula (20 km buffer). Northwest of Melville Island (20 km buffer). Cassini Island. Cartier Island. Ashmore Reef. Scott Reef.
	Nesting	Cassini Island (low density nesting site). Ashmore Reef (low density nesting site). Scott Reef (major nesting site).
	Mating	Montebello Islands (very high-density mating aggregations in inner lagoons and sheltered beaches).
Leatherback turtle	Inter-nesting	Cobourg Peninsula.
Hawksbill turtle	Foraging	Ashmore Reef. Cartier Island.
	Inter-nesting	Islands north-east of Cobourg Peninsula. Greenhill Island (off Cobourg Peninsula). Ashmore Reef. Scott Reef. Dampier Archipelago (islands to the west of the Burrup Peninsula). Barrow Island. Thevernard Island.
	Inter-nesting buffer	Ashmore Reef. Scott Reef. Islands north-east of Cobourg Peninsula (20 km buffer). Greenhill Island (off Cobourg Peninsula) (20 km buffer). Dampier Archipelago (islands to the west of the Burrup Peninsula). Barrow Island
	Nesting	Ashmore Reef (low density nesting site). Scott Reef. West of Cape Lambert. Dampier Archipelago (islands to the west of the Burrup Peninsula). Barrow Island. Thevernard Island and south coast.
Olive ridley turtle	Foraging	Fog Bay Northern Joseph Bonaparte Gulf Western Joseph Bonaparte Depression Joseph Bonaparte Gulf Western Joseph Bonaparte Gulf - banks

Species	BIA	Location within the EMBA
	Inter-nesting	Islands north-east of Cobourg Peninsula
		Greenhill Island (off Cobourg Peninsula)
		Bathurst Island/Melville Island - North-west
		Fog Bay and the Cox Peninsula
Flatback turtle	Foraging	Western Joseph Bonaparte Depression
		James Price Point.
	Inter-nesting	Melville Island, Cobourg Peninsula.
		Scott Reef.
		Lacepede Island.
		Montebello Islands.
	Inter-nesting buffer	Melville Island, Cobourg Peninsula (80 km buffer).
		Cape Domett.
		Lacepede Island.
		Eighty Mile Beach.
		Delambre Island.
		Legendre Island, Huay Island.
		Dampier Archipelago (islands to the west of the Burrup
		Peninsula).
		Montebello Islands – Hermite Island, Northwest Island,
		Trimouille Island.
		Thevernard Island - South coast.
	Nesting	Dampier Archipelago (islands to the west of the Burrup
		Peninsula)
		Delambre Island
		Legendre Island, Huay Island.
		Montebello Islands – Hermite Island, Northwest Island,
		Trimouille Island.

Loggerhead turtle (EPBC Act: Endangered, listed migratory)

Loggerhead turtles are described in Section 5.4.6 of Chapter 5.

Loggerhead turtles are known to forage around the pinnacles of the Bonaparte Basin and the carbonate bank and terrace system of the Sahul Shelf KEFs. Two foraging BIAs for the loggerhead turtle overlap with the socio-economic EMBA (see Table 5.8 and Figure 5.37).

Green turtle (EPBC Act: Vulnerable, listed migratory)

Green turtles are described in Section 5.4.6 of Chapter 5.

Nesting on the Scott Reef-Sandy Islet and Browse Island has been observed all year round with peaks between December and January (DoEE, 2017c). Satellite tracking studies have shown that green turtles migrate between breeding beaches and feeding grounds off the northwest coast (DoE, 2017c). However, during the internesting periods green turtles are known to remain within 10 km of nesting beaches (DoE, 2017c). The foraging, nesting and interesting BIAs critical to the survival of green turtles that overlap the EMBA are presented in Table 5.8.

The NCVA identifies that the EMBA overlaps the foraging BIA for this species (Figure 5.38). As such, green turtles are likely to occur in the EMBA. The closest nesting and interesting BIAs are also intersected by the EMBA (Table 5.8 and Figure 5.38).

Leatherback turtle (EPBC Act; Endangered, listed migratory)

Leatherback turtles are described in Section 5.4.6 of Chapter 5.

No major nesting has been recorded in Australia, with isolated nesting recorded in Queensland and the NT (DSEWPC, 2012). Nesting occurs on tropical beaches and subtropical beaches (Marquez 1990), but no major centres of nesting activity have been recorded in Australia. The species is understood to migrate from Australian waters to breed at larger rookeries in neighbouring countries such as Indonesia, Papua New Guinea and Solomon Islands between December and January (DoE, 2008). The closest confirmed inter-nesting site for the leatherback turtle is at Cobourg Peninsula (DAWE, 2021b) located in the eastern extent of the EMBA (Table 5.8 and Figure 5.39).

Flatback turtle (EPBC Act: Vulnerable, listed migratory)

The flatback turtle (*Natador depressus*) is only found in Australian waters and some nearby waters in Indonesia and Papua New Guinea. It is commonly found in the NWMR and NMR, nesting in northern Australia and foraging in the region.

Breeding occurs all year round; however, in northern Australia most nesting occurs between June and August (DAWE, 2021b). Flatback turtle nesting is widespread across the islands and mainland beaches east of Dampier Peninsula in winter, with Cape Domett (within the spill EMBA) reported to support the highest density (Whiting *et al.*, 2008). Flatback turtles nest at Cape Domett throughout the year. The Recovery Plan for Marine Turtles in Australia 2017 -2027 (DoEE, 2017c) notes that the peak nesting period at Cape Domett is July to September. The Cape Domett nesting population appears to be one of the largest known nesting populations of this species, with an estimated yearly population in the order of several thousand turtles (Whiting *et al.*, 2008).

The 60 km inter-nesting buffer for flatback turtles in the Recovery Plan for Marine Turtles in Australia (Commonwealth of Australia, 2017) is based primarily on the movements of tagged inter-nesting flatback turtles along the Northwest Shelf reported by Whittock et al (2016), which found that flatback turtles may demonstrate inter-nesting displacement distances up to 62 km from nesting beaches. However, these movements were confined to longshore movements in nearshore coastal waters or travel between island rookeries and the adjacent mainland (Whittock *et al.*, 2016). There is no evidence to date to indicate flatback turtles swim out into deep offshore waters during the inter-nesting period. Flatback turtle hatchlings do not have an offshore pelagic phase. Instead, hatchlings grow to maturity in shallow coastal waters thought to be close to their natal beaches (DoEE, 2017c). Flatback turtle hatchlings do not undertake oceanic migrations like the juveniles of other turtle species do, but spend their juvenile life phase within continental shelf waters. The EMBA intersects an inter-nesting BIA, as illustrated in Figure 5.40 and outlined in Table 5.8.

Adult flatback turtles are primarily carnivorous, feeding on soft-bodied invertebrates. Juveniles eat gastropod molluscs, squid, siphonophores, and limited data indicate that cuttlefish, hydroids, soft corals, crinoids, molluscs and jellyfish are also eaten (DAWE, 2021b). The species has been recorded foraging in depths less than 10 m to over 40 m on the carbonate bank and terrace system of the Sahul Shelf KEF and around the pinnacles of the Bonaparte Basin KEF. The EMBA intersects a foraging BIA located in the Bonaparte Basin, as illustrated in Figure 5.40 and outlined in Table 5.8.

The NCVA identifies the area out to 60 km offshore from Cape Domett and Lacrosse Island in the Cambridge Gulf as an inter-nesting BIA for flatback turtles, which is intersected by the EMBA. Hence, it is likely that flatback turtles will be present in the EMBA.

Olive Ridley turtle (EPBC Act: Endangered, listed migratory)

The olive ridley turtle (*Lepidochelys olivacea*) has a worldwide tropical and sub-tropical distribution and is known to occur in both WA and the NT (DoEE 2017c). While nesting has been recorded in WA, it is far more common in the NT (DSEWPC, 2012).

Although olive ridley turtles nest all year round, nesting activity peaks around April to November, with the majority of nesting occurring from the Arnhem Land coast (including Bathurst Island, within the EMBA) to the northwest coast of Cape York Peninsula (Qld) (outside of the EMBA) (DSEWPC, 2012). After nesting, Olive Ridley turtles are known to migrate up to 1,050 km to various foraging areas (DAWE, 2021b), including the pinnacles of the Bonaparte Basin and the carbonate bank and terrace system of the Sahul Shelf KEF (DSEWPC, 2012).

The EMBA overlaps with the inter-nesting BIA of the olive ridley turtle located between Fog Bay and the Cox Peninsula (NT) (see Table 5.8 and Figure 5.41).

The olive ridley turtle is known to primarily forage in soft-bottom habitats ranging in depths from 6 – 35 m, though they are also known to forage in pelagic waters (DEWHA 2008b). Adult turtles forage for crabs, shrimp, tunicates, jellyfish, salps and algae in depths ranging from several metres to over 100 m (DAWE, 2021b). The NCVA identifies that EMBA overlaps with the foraging BIA for this species as outlined in Table 5.8 and Figure 5.41.

Hawksbill turtle (EPBC Act: Vulnerable, listed migratory)

Hawksbill turtles (*Eretmochelys imbricate*) are found in tropical, sub-tropical and temperate waters in all the oceans of the world (DoEE, 2017c). The hawksbill turtle is commonly found in the NWMR and NMR, nesting extensively along the coasts and foraging in the region.

As a juvenile, the hawksbill turtle feeds on plankton in the open ocean and then feeds on sponges, hydroids, cephalopods, gastropods, jellyfish, seagrass and algae as an adult (DAWE, 2021b). The species is also highly migratory, moving up to 2,400 km between foraging and breeding areas (DSEWPC, 2012). Due to genetic variability, Australia's population is considered to comprise of two distinct stocks; one in WA and the other in the northeast of Australia (DSEWPC, 2012). These distinct populations are also known to have significantly different breeding seasons.

Hawksbill turtles forage in waters ranging from 1.5 m to 84 m deep, and Fossette et al (2021) report that 17% of satellite tagged turtles (total n=42) foraged in waters greater than 20 m. Fossette et al (2021) reported less than a quarter of foraging area overlapped with designated foraging BIAs for hawksbill turtles (within the spill EMBA) and/or Commonwealth and Statemanaged protected areas.

The northeast sub-population breeds throughout the year with a peak nesting period during July to October (DSEWPC, 2012), while in the WA population breeding peaks around October to January.

The EMBA overlaps with foraging, nesting and inter-nesting BIAs for this species (see Table 5.8 and Figure 5.42.

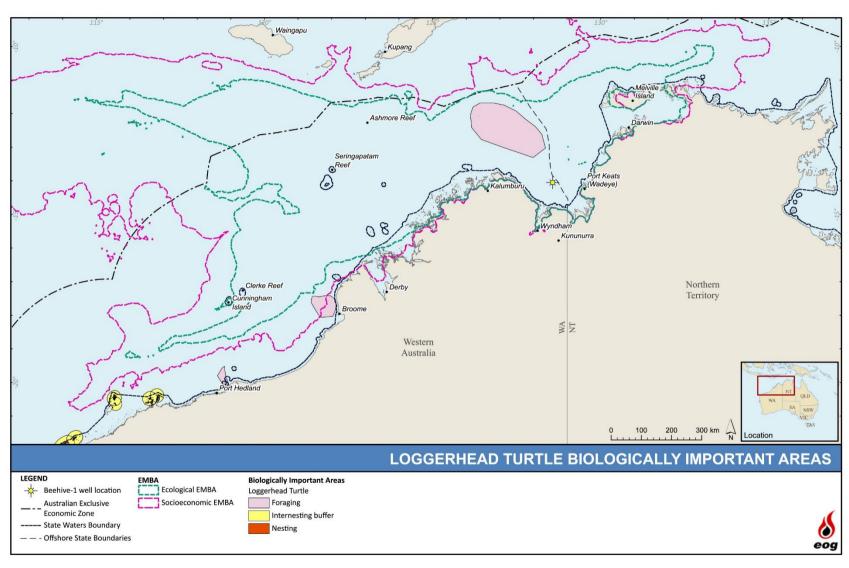


Figure 5.37. Loggerhead turtle BIA intersected by the spill EMBA

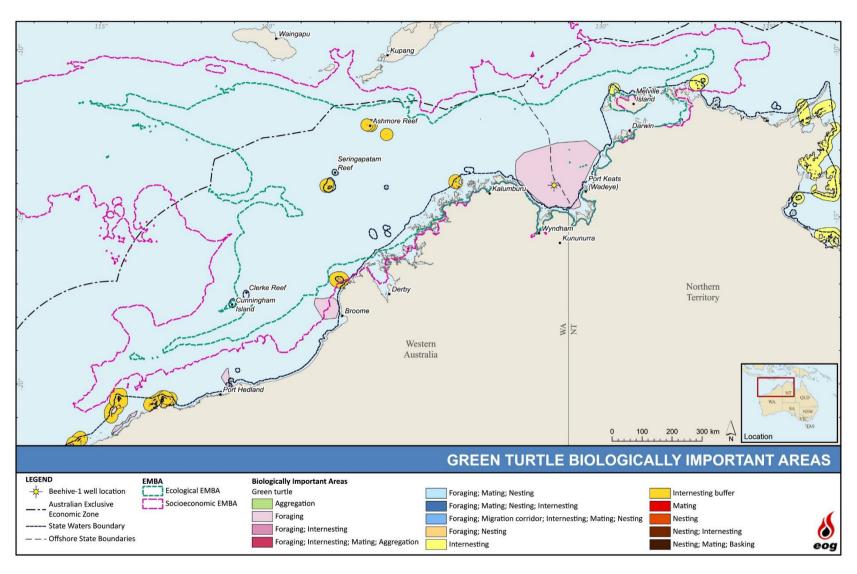


Figure 5.38. Green turtle BIA intersected by the spill EMBA

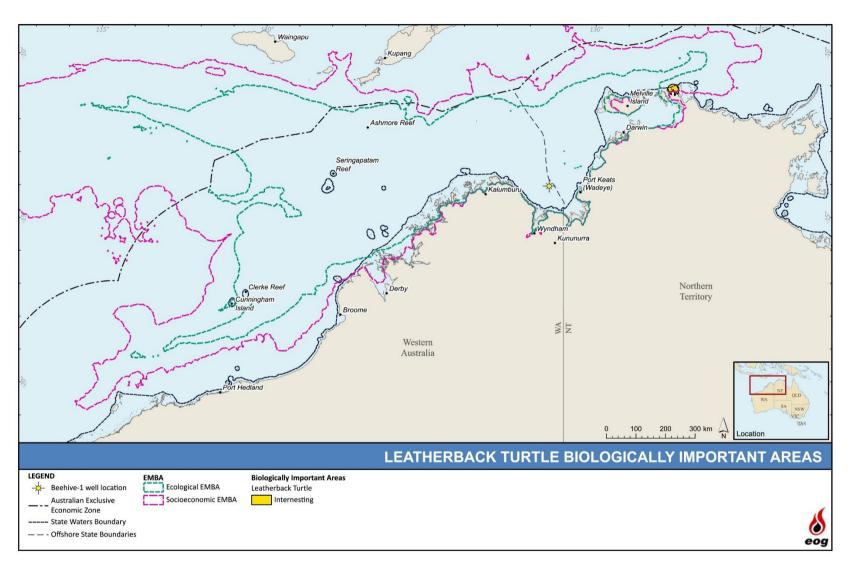


Figure 5.39. Leatherback turtle BIA intersected by the spill EMBA

Figure 5.40. Flatback turtle BIA intersected by the spill EMBA

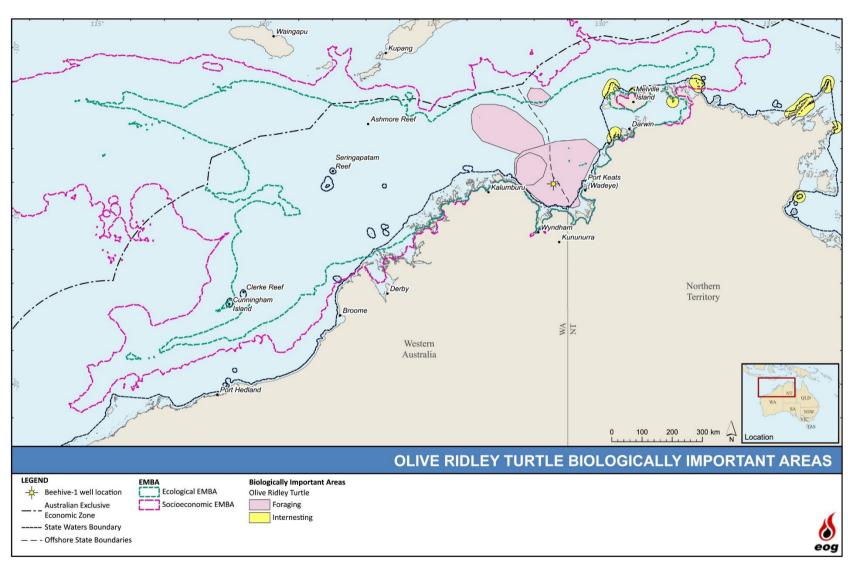


Figure 5.41. Olive Ridley turtle BIA intersected by the spill EMB

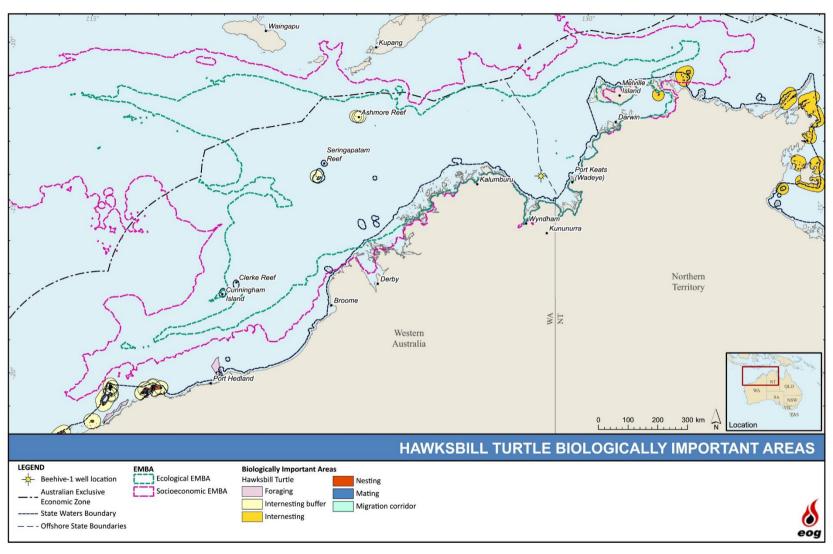


Figure 5.42. Hawksbill turtle BIA intersected by the spill EMBA

Short-nosed seasnake (EPBC Act: Critically Endangered)

The short-nosed seasnake (*Aipysurus apraefrontalis*) is endemic to WA and occurs throughout the Northwest Shelf and eastern Indian Ocean. This fully aquatic species can grow up to 90 cm in length and prefers shallow coastal reef habitats.

Given the shallow water distribution of the species it is unlikely the species will occur within the activity area, however the species and species habitat may occur in the spill EMBA. Cartier Island and Ashmore Reef are internationally significant sites for their abundance and diversity of seasnakes, both of which are located outside the EMBA.

Leaf-scaled seasnake (EPBC Act: Critically Endangered)

The only known populations of the leaf-scaled seasnake (*Aipysurus foliosquama*) species inhabit the shallow reef habitats of the Sahul Shelf and Ashmore Reef (Minton and Heatwole, 1975), which are both located outside the activity area and EMBA.

Given the shallow water distribution, it is unlikely the species will occur within the activity area, but the species and species habitat is known to occur in the EMBA.

Saltwater crocodile (EPBC Act: Listed migratory)

The saltwater crocodile (*Crocodylus porosus*) is distributed from King Sound, WA throughout coastal NT to Rockhampton in Queensland, where it can be found in coastal waters, estuaries, lakes, inland swamps and marshes up to 150 km inland from the coast (DAWE, 2021b).

Preferred nesting habitat of the saltwater crocodile includes elevated, isolated freshwater swamps that do not experience the influence of tidal movements. Floating rafts of vegetation also provide important nesting habitat. In the NT, most nest sites are found on the north-west banks of rivers (DAWE, 2021b). The species nest during the wet season with peak nesting during January and February. Whilst sightings of saltwater crocodiles far out to sea have been recorded, it is more likely to be encountered in the coastal areas of the socio-economic EMBA than in the activity area.

5.3.7. Avifauna

There are 84 bird species (31 seabirds and 52 shorebirds) listed under the EPBC Act with potential to occur in the spill EMBA (DAWE, 2022a).

The majority of these are listed as migratory and marine species, with four listed as critically endangered, five as endangered and three as vulnerable. The PMST results includes terrestrial species of birds that are protected under the EPBC Act. Figure 5.25 in Section 5.4.7 of Chapter 5 illustrates the likely temporal presence and absence and ecological stages of these bird species in the activity area and EMBA. The species listed as threatened (Table 5.9) or with a BIA intersected by the EMBA (see Table 5.10) are described in this section.

Many of the birds listed in Table 5.9 are listed in the following international conventions that aim to protect the birds themselves and their habitat:

- Republic of Korea Migratory Birds Agreement 2006 (ROKAMBA);
- Agreement between the Government of Australia and the Government of the People's Republic of China for the Protection of Migratory Birds and their Environment 1986 (CAMBA);
- Convention on the Conservation of Migratory Species of Wild Animals (Bonn Convention) 1979;
- Agreement between the Government of Australia and the Government of Japan for the Protection of Migratory Birds and Birds in Danger of Extinction and their Environment 1974 (JAMBA); and
- Convention on Wetlands of International Important especially as Waterfowl Habitat 1971 ('Ramsar Convention', see also Section 5.4.4).

Table 5.9. EPBC Act-listed bird species that may occur in the spill EMBA

			EPBC Act Stat	us	Pre	sence		Recovery Plan in place?
Scientific name	Common name	Threat ened	Migratory	Marine	Ecological EMBA	Socio- economic EMBA	BIA intersected by ecological EMBA?	
Seabirds								
Anous stolidus	Common noddy	-	Yes	Yes	Yes	Yes	No	-
Anous tenuirostris melanops	Australian lesser noddy	V	-	Yes	Yes	Yes	No	CA
Anous minutus	Black noddy	-	-	Yes	Yes	Yes	No	No
Anseranas semipalmata	Magpie goose	-	-	Yes	Yes	Yes	No	No
Ardenna pacifica	Wedge-tailed shearwater	-	Yes	Yes	Yes	Yes	Yes	-
Bubulcus ibis	Cattle egret	-	-	Yes	Yes	Yes	Yes	-
Calonectris leucomelas	Streaked shearwater	-	Yes	Yes	Yes	Yes	No	-
Chalcites osculans	Black-eared cuckoo	-	-	Yes	Yes	Yes	No	No
Fregata andrewsi	Christmas Island Frigatebird	E	Yes	Yes	Yes	Yes	No	-
Fregata ariel	Lesser frigatebird	-	Yes	Yes	Yes	Yes	Yes	-
Fregata minor	Greater frigatebird	-	Yes	Yes	Yes	Yes	Yes	-
Haliaeetus leucogaster	White-bellied sea-eagle	-	-	Yes	Yes	Yes	No	-
Hydroprogne caspia	Caspian tern	-	Yes	Yes	Yes	Yes	No	-
Macronectes giganteus	Southern giant petrel	E	Yes	Yes	-	Yes	No	RP
Onychoprion anaethetus	Bridled tern	-	Yes	Yes	Yes	Yes	Yes	-

			EPBC Act Stat	us	Presence			
Scientific name	Common name	Threat ened	Migratory	Marine	Ecological EMBA	Socio- economic EMBA	BIA intersected by ecological EMBA?	Recovery Plan in place?
Pandion haliaetus	Osprey	_	Yes	Yes	Yes	Yes	No	-
Papasula abbotti	Abbott's booby	Е	-	Yes	Yes	Yes	No	CA
Phaethon lepturus	White-tailed tropicbird	-	Yes	Yes	Yes	Yes	Yes	-
Phaethon lepturus fulvus	Christmas Island white-tailed tropicbird	E	-	Yes	Yes	Yes	No	-
Phaethon rubricauda	Red-tailed tropicbird	-	Yes	Yes	Yes	Yes	No	-
Sterna bengalensis	Lesser crested tern	-	-	Yes	Yes	Yes	Yes	-
Sterna bergii	Crested tern	-	Yes	Yes	Yes	Yes	Yes	-
Sterna caspia	Caspian term	-	Yes	Yes	Yes	Yes	No	-
Sterna dougallii	Roseate tern	-	Yes	Yes	Yes	Yes	Yes	-
Sterna fuscata	Sooty tern	-	-	Yes	Yes	Yes	No	-
Sterna nereis	Fairy tern	-	-	Yes	Yes	Yes	No	-
Sternula albifrons	Little tern	-	Yes	Yes	Yes	Yes	Yes	-
Sula dactylatra	Masked booby	-	Yes	Yes	Yes	Yes	No	-
Sula leucogaster	Brown booby	-	Yes	Yes	Yes	Yes	Yes	-
Sula sula	Red-footed booby	-	Yes	Yes	Yes	Yes	Yes	-
Thalassarche carteri	Indian yellow- nosed albatross	V	Yes	Yes	-	-	No	-
Shorebirds								

			EPBC Act State	us	Pre	sence		Recovery Plan in place?
Scientific name	Common name	Threat ened	Migratory	Marine	Ecological EMBA	Socio- economic EMBA	BIA intersected by ecological EMBA?	
Acrocephalus orientalis	Oriental reed- warbler	-	Yes	Yes	Yes	Yes	No	-
Actitis hypoleucos	Common sandpiper	-	Yes	Yes	Yes	Yes	No	-
Apus pacificus	Fork-tailed swift	-	Yes	Yes	Yes	Yes	No	-
Arenaria interpres	Ruddy turnstone	-	Yes	Yes	Yes	Yes	No	-
Calidris acuminata	Sharp-tailed sandpiper	-	Yes	Yes	Yes	Yes	No	-
Calidris alba	Sanderling	-	Yes	Yes	Yes	Yes	No	-
Calidris canutus	Red knot	E	Yes	Yes	Yes	Yes	No	CA
Calidris ferruginea	Curlew sandpiper	CE	Yes	Yes	Yes	Yes	No	CA
Calidris melanotos	Pectoral sandpiper	-	Yes	Yes	Yes	Yes	No	-
Calidris ruficollis	Red-necked stint	-	Yes	Yes	Yes	Yes	No	-
Calidris subminuta	Long-toed stint	-	Yes	Yes	-	Yes	No	-
Calidris tenuirostris	Great knot	CE	Yes	Yes	Yes	Yes	No	CA
Charadrius dubius	Little ringed plover	-	Yes	Yes	-	Yes	No	-
Charadrius leschenaultia	Greater sand plover	V	Yes	Yes	Yes	Yes	No	CA
Charadrius mongolus	Lesser sand plover	Е	Yes	Yes	Yes	Yes	No	CA
Charadrius ruficapillus	Red-capped Plover	-	-	Yes	Yes	Yes	No	-
Charadrius veredus	Oriental plover	-	Yes	Yes	Yes	Yes	No	-
Epthianura crocea tunneyi	Alligator Rivers Yellow Chat	E	-	-	Yes	Yes	No	CA
Erythrotriorchis radiatus	Red Goshawk	V	-	-	Yes	Yes	No	CA

			EPBC Act Stat	us	Presence			
Scientific name	Common name	Threat ened	Migratory	Marine	Ecological EMBA	Socio- economic EMBA	BIA intersected by ecological EMBA?	Recovery Plan in place?
Erythrura gouldiae	Gouldian Finch	E	-	-	Yes	Yes	No	CA
Falco hypoleucos	Grey Falcon	V	-	-	Yes	Yes	No	CA
Gallinago megala	Swinhoe's snipe	-	Yes	Yes	-	Yes	No	-
Gallinago stenura	Pin-tailed snipe	-	Yes	Yes	-	Yes	No	-
Geophaps smithii blaauwi	Partridge Pigeon (western)	V	-	-	-	Yes	No	CA
Geophaps smithii smithii	Partridge Pigeon (eastern)	V	-	-	Yes	Yes	No	CA
Glareola maldivarum	Oriental pratincole	-	Yes	Yes	Yes	Yes	No	-
Himantopus himantopus	Pied Stilt	-	-	Yes	-	Yes	No	-
Limicola falcinellus	Broad-billed Sandpiper	-	Yes	Yes	Yes	Yes	No	-
Larus novaehollandiae	Silver gull	-	-	Yes	-	Yes	No	-
Limnodromus semipalmatus	Asian dowitcher	-	Yes	Yes	Yes	Yes	No	-
Limosa lapponica	Bar-tailed godwit	-	Yes	Yes	Yes	Yes	No	-
Limosa lapponica baueri	Nunivak bar-tailed godwit	V	-	-	Yes	Yes	No	CA
Limosa lapponica menzbieri	Northern Siberian bar-tailed godwit	CE	-	-	Yes	Yes	No	CA
Limosa limosa	Black-tailed godwit	-	Yes	Yes	-	Yes	No	-
Melanodryas cucullata melvillensis	Tiwi Islands Hooded Robin	CE	-	-	Yes	Yes	No	CA
Merops ornatus	Rainbow bee-eater	-	-	Yes	Yes	Yes	Yes	No

	Common name		EPBC Act Stat	us	Pre	sence		Recovery Plan in place?
Scientific name		Threat ened	Migratory	Marine	Ecological EMBA	Socio- economic EMBA	BIA intersected by ecological EMBA?	
Numenius madagascariensis	Eastern curlew	CE	Yes	Yes	Yes	Yes	No	CA
Numenius minutus	Little curlew	-	Yes	Yes	Yes	Yes	No	-
Numenius phaeopus	Whimbrel	-	Yes	Yes	Yes	Yes	No	-
Pluvialis fulva	Pacific golden plover	-	Yes	Yes	Yes	Yes	No	-
Pluvialis squatarola	Grey plover	-	Yes	Yes	Yes	Yes	No	-
Rostratula australis	Australian painted snipe	E	-	Yes	Yes	Yes	No	CA
Rostratula benghalensis (sensu lato)	Painted snipe	E	-	Yes	-	Yes	No	CA
Stiltia isabell7a	Australian Pratincole	-	-	Yes	Yes	Yes	No	-
Thalasseus bergii	Greater crested tern	-	Yes	Yes	-	Yes	No	-
Tringa brevipes	Grey-tailed tattler	-	Yes	Yes	Yes	Yes	No	-
Tringa glareola	Wood sandpiper	-	Yes	Yes	Yes	Yes	No	-
Tringa incana	Wandering tattler	-	Yes	Yes	Yes	Yes	No	-
Tringa nebularia	Common greenshank	-	Yes	Yes	Yes	Yes	No	-
Tringa stagnatilis	Marsh sandpiper	-	Yes	Yes	Yes	Yes	No	-
Tringa totanus	Common redshank	-	Yes	Yes	Yes	Yes	No	-
Xenus cinereus	Terek sandpiper	-	Yes	Yes	Yes	Yes	No	-

Table 5.10. BIAs of bird species within the EMBA

Species	BIA	Location within the EMBA
Wedge-tailed shearwater	Breeding	Kimberley coastline and islands including Ashmore Reef.
Lesser frigatebird	Breeding	Kimberley coastline and islands including Ashmore Reef.
Greater frigatebird	Breeding	Kimberley and Ashmore Reef.
White-tailed tropicbird	Breeding	Kimberley coastline and islands including Ashmore Reef.
Roseate tern	Foraging	Northwestern coastline and islands including Ashmore Reef.
	Breeding	Kimberley coastline and islands including Ashmore Reef.
Little tern	Breeding and resting	Kimberley coastline and islands including Ashmore Reef.
Crested tern	Breeding (in high	No. 2 Sandy Island (Cobourg Peninsula).
	numbers)	Seagull Island, off NW of Cape Van Diemen, Melville Island
Lesser crested tern	Breeding	Kimberley coastline and islands including Ashmore Reef.
Bridled tern	Breeding (in high numbers)	No. 2 Sandy Island (Cobourg Peninsula).
Brown booby	Breeding	Kimberley and northern Pilbara coasts and islands also Ashmore Reef.
Red-footed booby	Breeding	Northwest Kimberley and Ashmore reef.

Seabirds

Wedge-tailed shearwater (EPBC Act: Listed Migratory)

The wedge-tailed shearwater (*Ardenna pacifica*) is a medium-sized seabird and inhabits oceanic waters off WA except when roosting in colonies. Foraging at sea, the species feeds mostly on fish, cephalopods, insects, jellyfish and prawns. Ashmore Reef has been identified as an important area for this species (DEWHA, 2008b).

According to the National Conservation Values Atlas (NCVA) (DAWE, 2021a) the nearest BIA (Ashmore Reef) is greater than 500 km northwest of the drill site. It is likely that the species will be present in the spill EMBA (see Table 5.10 and Figure 5.43).

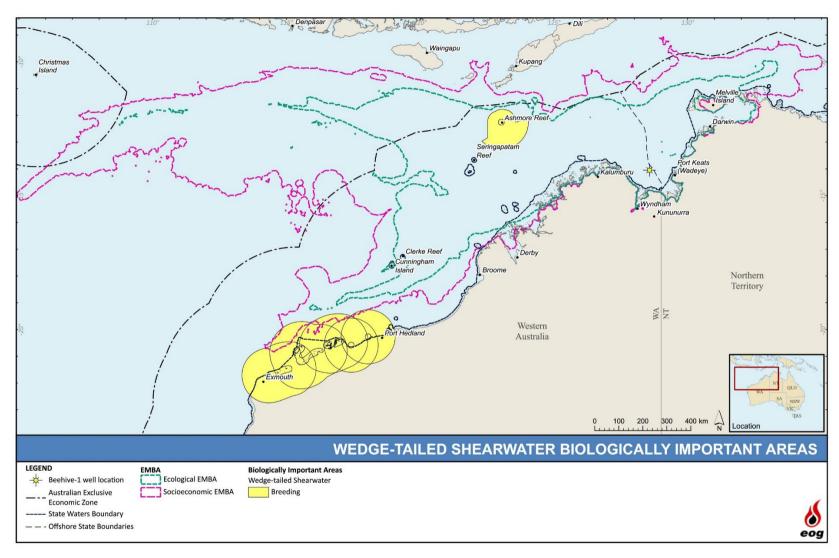


Figure 5.43. Wedge-tailed shearwater BIA intersected by spill EMBA

Christmas Island Frigatebird (EPBC Act: Endangered, Listed Migratory)

The Christmas Island frigatebird (*Fregata andrewsi*) is a very large seabird that primarily forages in the ocean for food, scooping marine organisms such as fish and squid (DAWE, 2021a). Christmas Island is the only place in the world where the Christmas Island frigatebird breeds and nests in the forest canopy (DAWE, 2021a).

Given the distance to breeding and nesting sites, it is unlikely that this species will be present in the activity or spill EMBA.

Southern giant petrel (EPBC Act: Endangered, Listed Migratory)

The southern giant petrel (*Macronectes giganteus*) is the largest of the petrels. They are a highly migratory bird and widespread throughout the Southern Ocean (DAWE, 2021a). This species occurs from Antarctic to subtropical waters and breeds on the Antarctic continent, peninsular and islands and on subantarctic islands and South America. Breeding occurs annually between August and March (DAWE, 2021a).

All waters within Australian jurisdiction can be considered foraging habitat, however the most critical foraging habitat is considered to be those waters south of 25 degrees where most species spend the majority of their foraging time. The southern giant petrel is an opportunistic scavenger and predator that scavenge on penguin carcasses and feed on seals and carrions. It also eats a wide variety of seabirds, penguin chicks, crustacean, kelp, fish, jellyfish and rabbits.

Given there are no breeding BIA for this species in the activity area and their preference to forage in southern waters off Australia, it is highly unlikely that the southern giant petrel will be present in the spill EMBA.

Roseate tern (EPBC Act: Listed Migratory)

The roseate tern (*Sterna dougallii*) occurs throughout various coastal habitats including beaches, reefs and sandy/coral islands. It is a specialist forager for small pelagic fish (DAWE, 2021b). The terns prefer nesting sites adjacent to clear shallow hunting areas. Nests are generally a bare scrape in sand, shingle or coral rubble. The species breeds in large mixed-species colonies from April to June, with breeding populations located around Ashmore Reef, Cartier Island and Scott Reef (located in the EMBA) (DEWHA, 2008b). Little information is available about migratory movements or timing through the northwest of Australia.

A breeding BIA for the species is intersected by the EMBA at coastal islands off the north Kimberley coast (Table 5.10 and Figure 5.44). Foraging, feeding or related behaviours are likely to occur within the offshore and coastal areas of the EMBA (Table 5.10).

Little tern (EPBC Act: Listed Migratory)

The little tern (*Sternula albifrons*) is a small and slender tern that is found throughout the coast from Broome extending to the NT. Breeding sites are widely distributed across the northwest of WA, with breeding occurring in late April-July and September to early January. There is a lack of information about their migration however however recorded numbers of the species are lowest in the dry season. The EMBA overlaps breeding and resting BIAs for this species along the Kimberley coast and islands including Ashmore Reef (see Table 5.10 and Figure 5.45).

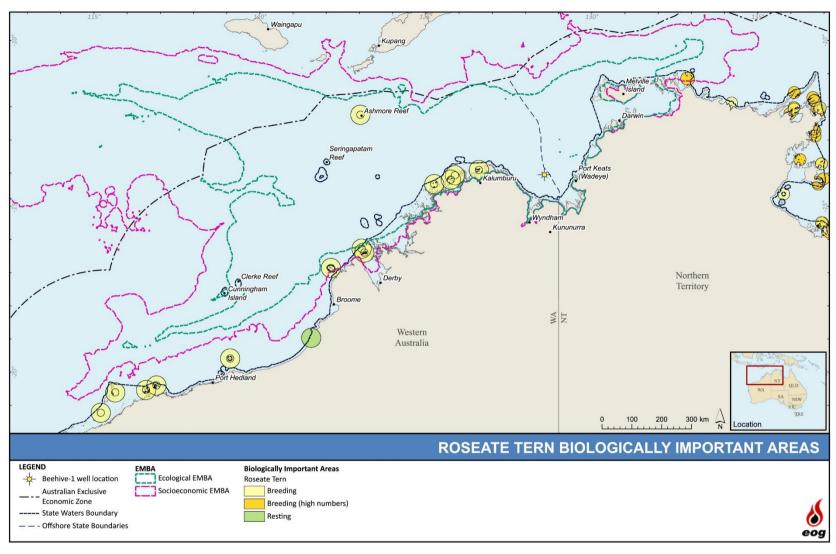


Figure 5.44. Roseate tern BIA intersected by spill EMBA

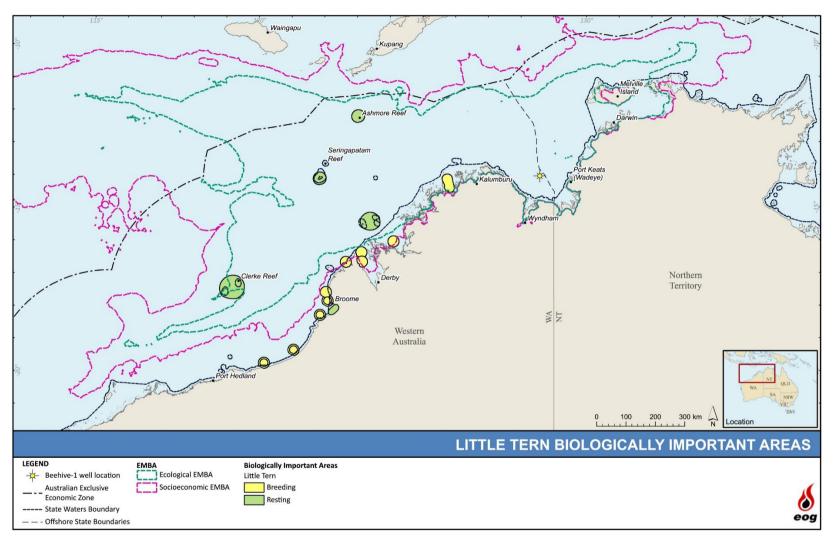


Figure 5.45. Little tern BIA intercepted by the spill EMBA

Lesser frigatebird (EPBC Act: Listed Migratory)

Lesser frigatebirds (*Fregata ariel*) are usually observed in tropical waters around the coast of northern WA, NT, Queensland and NSW (DSEWPC, 2012). They are often found foraging far offshore, especially during the non-breeding season where some large movements have been recorded (DSEWPC, 2012). During the breeding season (March - September), the lesser frigatebird's range remains close to the breeding colonies (DSEWPC, 2012).

Within the NWMR, the lesser frigatebird is known to breed on Adele, Bedout and West Lacepede islands, Ashmore Reef and Cartier Islands (DEWHA, 2008b). Breeding occurs between March and September along the Kimberley and Pilbara coasts and islands (DAWE, 2020b). The EMBA overlaps the Kimberley and Pilbara coasts and islands (including Ashmore Reef) breeding BIA for this species as presented in Table 5.10 and Figure 5.46.

Greater frigatebird (EPBC Act: Listed Migratory)

The great frigatebird (*Fregata minor*) has a global distribution range throughout the world's tropical seas. Great frigatebirds undertake regular migrations across their range. Breeding occurs from May to June and August, with the closest breeding colonies identified on Ashmore Reef and Adele Island (DAWE, 2020b). The great frigatebird forages in pelagic waters within 80 km of the breeding colony or roosting areas (ALA, 2022).

Great frigatebrids commonly eat fish species such as flying fish and squid. Prey is snatched while in flight, either from just below the surface or from the air, in the case of flying fish flushed from the water. The EMBA overlaps with the Kimberley and Ashmore Reef breeding BIAs for this species (Table 5.10 and Figure 5.47).

Lesser crested tern (EPBC Act: Listed Migratory)

The lesser crested tern (*Sterna bengalensis*) inhabits tropical and sub-tropical sandy and coral coasts and estuaries (DSEWPC 2012). In Australia, lesser crested terns are found on coasts and in coastal waters, primarily in northern Australia. The species occurs around most of the NT, with the highest density of confirmed sightings along the coast to the south-west of Darwin (DSEWPC 2012).

The species breeds on low-lying islands, coral flats, sandbanks and flat sandy beaches, and may move nesting sites from one year to the next (DSEWPC 2012). Lesser crested terns forage for small pelagic fish and shrimp in the surf and over offshore waters in areas of reef and deeper shelf waters (DSEWPC 2012). The spill EMBA partially overlaps with a lesser crested tern breeding BIA (Figure 5.48).

The EMBA overlaps with the Kimberley coast and islands including Ashmore Reef breeding BIAs for this species (Table 5.10 and Figure 5.48).

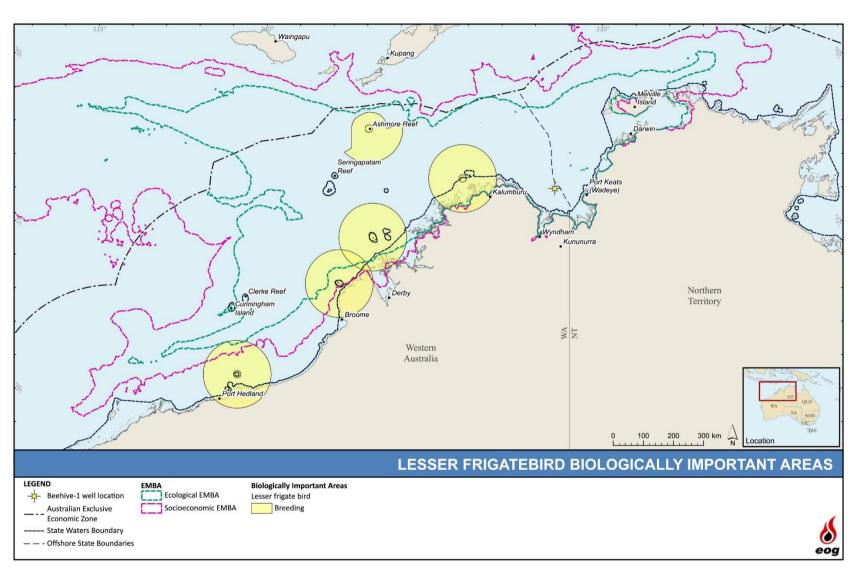


Figure 5.46. Lesser frigatebird BIA intersected by the spill EMBA

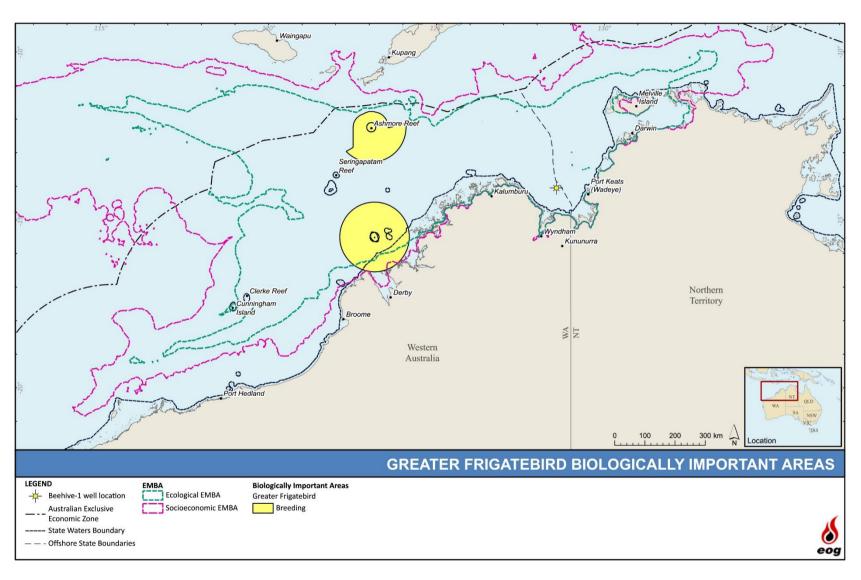


Figure 5.47. Greater frigatebird BIA intercepted by the spill EMBA

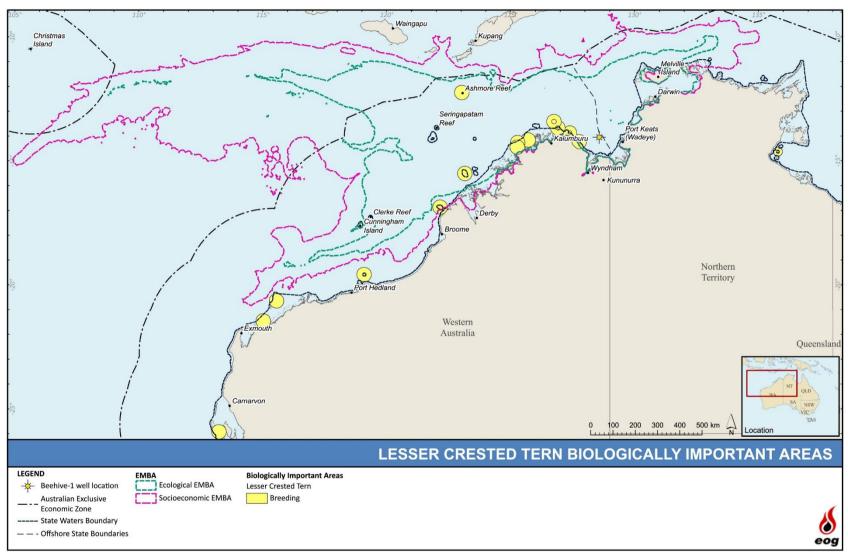


Figure 5.48. Lesser crested tern BIA intersected by the spill EMBA

Crested tern (EPBC Act: Listed Migratory)

The crested tern (*Thalasseus bergii*) inhabits tropical and subtropical coastlines and forages in the shallow waters of lagoons, coral reefs, bay, harbours, inlets and estuaries; along sandy, rocky, coral or muddy shores; on rocky outcrops in open sea; in mangrove swamps; and in offshore and pelagic waters (Higgins and Davies, 1996). The crested tern usually feeds from the surface of the sea to less than 1 m water depth. Its diet consists predominantly of pelagic fish, although it will also feed on crustaceans, insects and hatchling turtles, opportunistically (Birdlife, 2020). The crested tern shows a preference for nesting on offshore islands, low-lying coral reefs, low-lying coral reefs, sandy or rocky coastal islets, coastal spits and lagoon mudflats (Birdlife, 2020). According to the NCVA, breeding is known to occur on Seagull Island, off NW of Cape Van Diemen on Melville Island and on the Coburg Peninsula (Table 5.10 and Figure 5.49).

Bridled tern (EPBC Act: Listed Migratory)

The bridled tern (*Onychoprion anaethetus*) is found throughout tropical and sub-tropical regions of Australia (DAWE, 2022a). The species is most common on offshore islands as opposed to coastal areas and forages singly or in small flocks, primarily on fish by swooping on schools and dipping only the head in the water (as opposed to plunge diving) (DAWE, 2022a). Breeding populations exist at Ashmore Reef and Cartier Island (DEWHA, 2008b). Birds return to breeding colonies at various island locations throughout northern WA between late September and mid-October and leave from early May to mid-September. The EMBA overlaps with a breeding BIA for this species (see Table 5.10 and Figure 5.50).

Australian lesser noddy (EPBC Act: Vulnerable)

The Australian lesser noddy (*Anous tenuirostris melanops*) is endemic to Australia and nests on the Abrolhos Islands, Ashmore Reef and various other islands throughout tropical and subtropical northwest Australia (DAWE, 2021b). They may forage out to sea or close inshore to breeding islands, including outside fringing reefs, feeding on small squid and fish (DoEH, 2005). They roost mainly in mangroves, and sometimes rest on the beaches (DoEH, 2005). The Australian lesser noddy may occur within the coastal areas of the EMBA.

Abbott's booby (EPBC Act: Endangered)

Abbott's booby (*Papasula abbotti*) spend much of their time at sea, but need to come ashore to breed (DAWE, 2021b). It is currently known to only breed on Christmas Island (outside the EMBA) during the months of March to October, with peak nesting May-July (DAWE, 2021b). The species nests in tall rainforest trees, laying a single egg clutch (DAWE, 2021b). Birds are known to travel up to 400 km from nesting locations to forage for fish and squid (DAWE, 2021b). The species may occur in the EMBA.

Brown booby (EPBC Act: Listed Migratory)

The brown booby (*Sula leucogaster*) is the smallest of the booby family. The species feeds either individually or in flocks, around inshore waters and use both marine and terrestrial habitats. They forage by either plunge diving or by snatching prey from the surface. The EMBA overlaps with the Kimberley and northern Pilbara coasts and islands also Ashmore Reef breeding BIAs for this species (see Table 5.10 and Figure 5.51).

Red-footed booby (EPBC Act: Listed Migratory)

The red-footed booby (*Sula sula*) is a slender bird with conspicuous red feet. Its distribution is confined to tropical waters between 30°N and 30°S in the Indian Ocean. In WA a small breeding population has been recorded on Ashmore Reef (DEWHA, 2008b). It mostly feeds on fish, especially flying fish, including cephalopods, by plunge diving in groups to shallow depths

(DAWE, 2020b). The EMBA overlaps with the northwest Kimberley and Ashmore Reef breeding BIAs for this species (see Table 5.10 and Figure 5.52).

White tailed tropicbird (EPBC Act: Listed Migratory)

The white-tailed tropicbird (*Phaethon lepturus*) is a pelagic species that rarely comes ashore, except to breed. The species breeds on islands throughout the tropics of the northern Indian Ocean, including Ashmore Reef and Rowley Shoals off the northern coast of WA (Johnstone and Storr, 1998; Marchant and Higgins, 1993).

The white-tailed tropicbird is a rather scarce breeding species at Ashmore Reef, and it is estimated that up to two pairs nest within the reserve each year (Clarke, 2010). Breeding has been recorded from May through to October, with birds dispersing away from the breeding colonies outside the breeding season.

The species forages in warm waters and over long distances, moving up to 1,500 km from breeding sites when not breeding (DSEWPC, 2012) and up to 89 km from the nest site when breeding. It feeds on fish and cephalopods by plunge-diving (Marchant and Higgins 1993).

The closest breeding BIA for the white-tailed tropicbird within the EMBA is at Ashmore Reef (Table 5.10 and Figure 5.53).

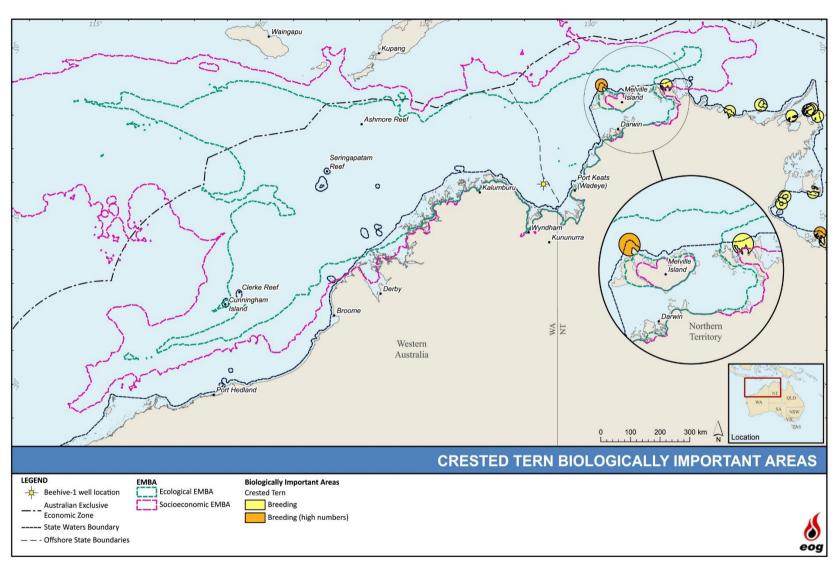


Figure 5.49. Crested tern BIA intercepted by the spill EMBA

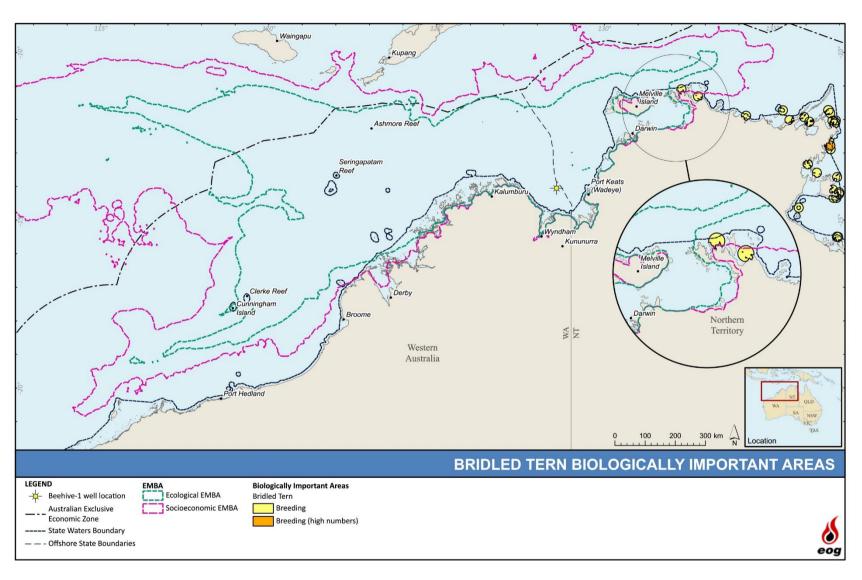


Figure 5.50. Bridled tern BIA intercepted by the spill EMBA

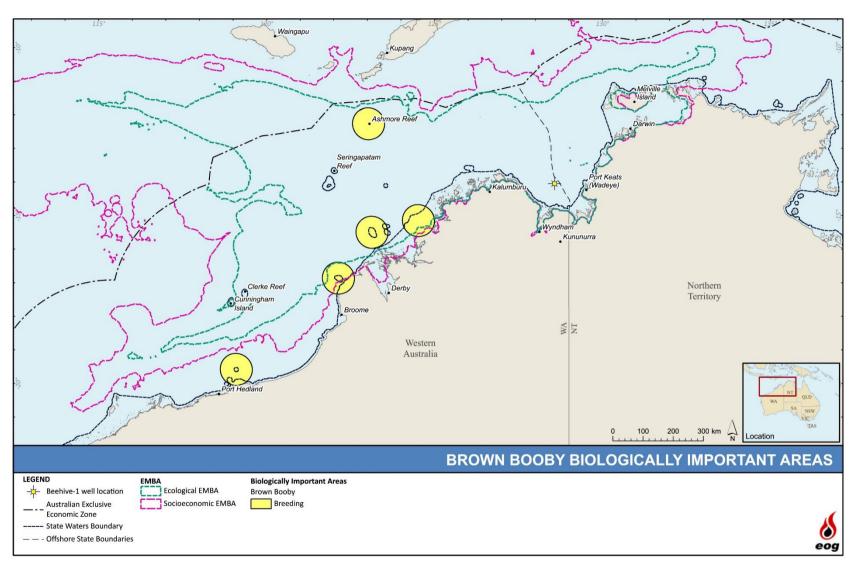


Figure 5.51. Brown booby BIA intercepted by the spill EMBA

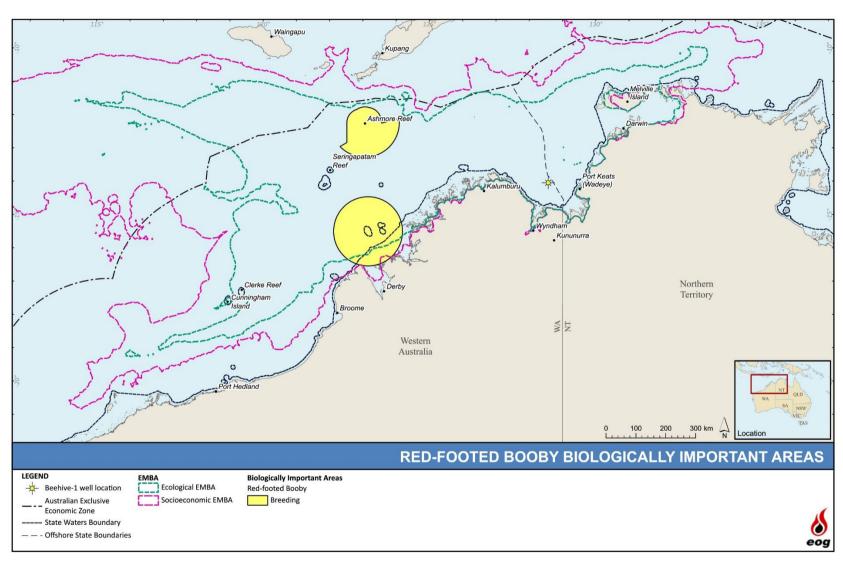


Figure 5.52. Red-footed booby BIA intercepted by the spill EMBA

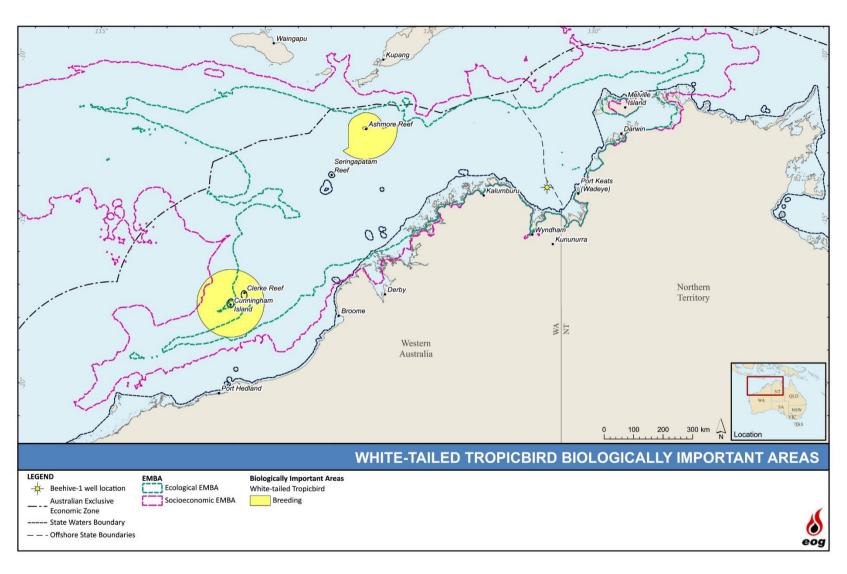


Figure 5.53. White tailed tropicbird BIA intercepted by the spill EMBA

Christmas Island white-tailed tropicbird (EPBC Act: Listed Endangered)

The Christmas Island white-tailed tropicbird (*Phaethon lepturus fulvus*) is endemic to Christmas Island, which is its only known breeding site (DoE, 2014d). It leaves the island to forage in the warm waters of the Indian Ocean (DoE, 2014d) mainly feeding on fish and cephlapods. The white-tailed tropicbird roosts at sea; only incubating or brooding adults remain on nests on the island at night (Stokes, 1988).

The National Conservation Values Atlas (DAWE, 2021c) does not identify any BIAs for this species within the activity area nor ecological EMBA.

Indian yellow-nosed albatross (EPBC Act: Listed vulnerable)

The Indian yellow-nosed albatross (*Thalassarche carteri*) is a is a marine bird, located in subtropical and warmer subantarctic waters (Marchant and Higgins, 1993). Foraging BIAs are located throughout the offshore waters of the south-west marine region, north to Shark Bay and extending east into Bass Strait. Although the PMST report identifies this species or its habitat may be present within the EMBA, the closest likely habitat is just south of Barrow Island (outside of the EMBA). There are no BIAs intersected by the spill EMBA; however, it is likely that individuals may transit through the EMBA.

Fairy tern (EPBC Act: Listed marine species)

The Fairy tern (*Sterna nereis*) occurs on the coasts of New South Wales (DoE, 2011), Victoria, Tasmania, South Australia and on the Western Australia coast as far north as the Dampier Archipelago (Blakers *et al.*, 1984; Higgins & Davies 1996).

It breeds on the north-west coast, in Shark Bay, and also on the shores of Lake McLeod, north of Carnarvon, and at Low Point. The fairy tern mostly breeds from July to September and may be present during the non-breeding season. The species nest on sites where the substrate is sandy and the vegetation low and sparse (DSEWPC, 2012).

The fairy tern forages in inshore waters, around island archipelagos and on the mainland. It feeds almost entirely on fish (Higgins and Davies 1996).

Given there is a lack of emergent habitat and the closest breeding BIA is 12 km from the closest edge of the EMBA, fairy terns may be present in the EMBA however not expected in significant numbers.

Shorebirds

Curlew sandpiper (EPBC Act: Critically Endangered, Listed Migratory)

In Australia, the curlew sandpiper (*Calidris ferruginea*) occurs around the coasts and is also quite widespread inland, though in smaller numbers (DAWE, 2021b). They are rarely recorded in the northwest Kimberley, around Wyndham and Lake Argyle (DAWE, 2021b).

This species is unlikely to be present in the activity area due to its location offshore but given that the EMBA is adjacent to (without intersecting) critical habitat for this species (e.g., wetlands), it is possible that this species would be present in the coastal sections of the EMBA during the summer months.

Lesser sand plover (EPBC Act: Endangered, Listed Migratory)

The lesser sand plover (*Charadrius mongolus*) spends non-breeding periods in Australia. The species is widespread in coastal regions and has been recorded in all states within Australia but mainly occurs in northern and eastern Australia (DAWE, 2021b).

The species feeds mostly on extensive, freshly-exposed areas of intertidal sandflats and mudflats in estuaries or beaches, or in shallow ponds in saltworks (DAWE, 2021b). They also occasionally forage on coral reefs and on sandy or muddy river margins (DAWE, 2021b). The lesser sand plover roost near foraging areas, on beaches, banks and spits, banks of sand and shells, and occasionally on rocky spits, isles or reefs (DAWE, 2021b).

This species is not predicted to occur in the activity area due to its distance from shore but may occur within the coastal areas of the EMBA and in the Cambridge Gulf.

Eastern curlew (EPBC Act: Critically Endangered, Listed Migratory)

The eastern curlew (*Numenius madagascariensis*) has a primarily coastal distribution within Australia (DoE, 2015c). It does not breed in Australia and is found foraging on soft sheltered intertidal sandflats or mudflats, open and without vegetation or covered with seagrass, often near mangroves, on saltflats and in saltmarsh, rockpools and among rubble on coral reefs, and on ocean beaches near the tideline (DoE, 2015c).

This species is unlikely to be present in the activity area due to its location offshore but given that the EMBA is adjacent to (without overlapping) critical habitat for this species (e.g., wetlands), it is possible that this species occurs in the EMBA during the summer.

Nunivak bar-tailed godwit (EPBC Act: Vulnerable)

The Nunivak bar-tailed godwit (*Limosa lapponica baueri*) is a large wader recorded in coastal areas of all states and territories of Australia (DAWE, 2021b). The species is found in coastal habitats such as large intertidal sand and mudflats, banks, estuaries, harbours, bays and coastal lagoons where it forages when the tide is out (DAWE, 2021b). Their diet consists of worms, molluscs, crustaceans, insects and some plant material (DAWE, 2021b). This species breeds in the northern hemisphere and migrates south for the winter, arriving in northwest Australia from August and departs before the end of April (DAWE, 2021b).

This species is not predicted to occur in the activity area due to its offshore location but may be present in the coastal sections of the EMBA between August and April.

Northern Siberian bar-tailed godwit (EPBC Act: Critically Endangered)

The northern Siberian bar-tailed godwit (*Limosa lapponica menzbieri*) is a large migratory shorebird (TSSC, 2016b). The northern Siberian bar-tailed godwit spends non-breeding periods in Australia and is found in all Australian states and territories (TSSC, 2016b). Populations have been recorded in northern Australia, from Darwin east to the Gulf of Carpentaria. The species forages near the edge of water or in shallow water, mainly on muddy coastlines, estuaries, inlets and mangroves feeding on worms, molluscs, crustacean, insects and plant material (TSSC, 2016b).

It is unlikely that this species would be present in the activity area due to tis offshore location but this species may be present within the coastal sections of the EMBA.

Great knot (EPBC Act: Critically Endangered, Listed Migratory)

The great knot (*Calidris tenuirostris*) has been recorded around the entire Australian coast and spends non-breeding periods in Australia (DAWE, 2021b). The greatest numbers of this species are found in northern Australia, and most commonly on the coast of the Pilbara and Kimberley, from the Dampier Archipelago to the NT border, and in the NT from Darwin and Melville Island, through Arnhem Land to the southeast Gulf of Carpentaria (DAWE, 2021b). This species typically prefers sheltered coastal habitats with large intertidal mudflats or sandflats (DAWE, 2021b). The

great knot feeds on snails, worms and crustaceans, and forages on intertidal mudflats, estuaries, and in mangroves.

This species is not predicted to be encountered in the activity area due to its habitat preferences, although it is expected in parts of the coastal areas of the EMBA where its preferred habitat is available.

Red knot (EPBC Act: Endangered, Listed Migratory)

The red knot (*Calidris canutus*) is common in all the main suitable habitats around the coast of Australia (DAWE, 2021b), and very large numbers are regularly recorded in northwest Australia, with Eighty Mile Beach and Roebuck Bay being particular strongholds (both outside the EMBA). In WA, it is widespread on the coast from Ningaloo Reef and Barrow Island to the southwest Kimberley coastline. In the NT it is mainly recorded in Darwin.

The red knot is not predicted to occur within the activity area due to its habitat preferences but is likely to be present in parts of the coastal areas of the EMBA.

Alligator Rivers yellow chat (EPBC Act: Endangered)

The alligator rivers yellow chat (*Epthianura crocea tunneyi*) is a small bird that has been recorded from a several sites in the NT on the floodplains of the Adelaide, Mary, Wildman, South Alligator and East Alligator rivers (Garnett *et al.*, 2011). Most records are from within Kakadu National Park. however the relative importance of the different floodplains is unknown (Garnett et al., 2011). Occasional records elsewhere, mostly from between Darwin to Oenpelli, are probably dispersive individuals. The subspecies is presumed to be a single a contiguous population (Garnett et al., 2011).

The species is restricted to alluvial coastal and subcoastal grassy floodplains, primarily near floodplain depressions and channels, typically sparsely vegetated and feed mainly on insects (Armstrong, 2004). Given the habitat preference of the alligator rivers yellow chat, the species may be present in the coastal section of the NT. There are no known BIAs intersected by the EMBA.

Australian painted snipe (EPBC Act: Endangered)

The Australian painted snipe (*Rostratula australis*) is a wader and is found in wetlands throughout all Australian states and territories (DAWE, 2021b). The species generally inhabits freshwater wetlands, although can inhabit brackish water, saltmarshes and claypans (DAWE, 2021b). It feeds on vegetation, seeds, insects, worms, molluscs, crustaceans and other invertebrates (DAWE, 2021b). The Australian painted-snipe is not predicted to occur within the activity area, but is likely to be present in the EMBA.

Red goshawk (EPBC Act: Vulnerable)

The red goshawk is a large, swift and powerful rufous-brown hawk found in patchy, but widespread areas across coastal and sub-coastal regions of northern and eastern Australia. Historically it occurred from the north-east tip of New South Wales, across Queensland and the Northern Territory, to the north of WA (Marchant and Higgins, 1993). The species is thought to consist of two subpopulations, one on the Tiwi Islands containing approximately 200 adults, and a mainland population containing approximately 1200 adults (Garnett *et al.*, 2011). The red goshawk may transient through the coastal areas of northern WA and the NT within the EMBA. However, there are no BIAs for this species that overlap the EMBA.

Gouldian finch (EPBC Act: Endangered)

The gouldian finch (*Erythrura gouldiae*) is found in northern Australia from Cape York Peninsula through northwest Qld and the north of the NT to the Kimberley Region of WA (O'Malley, 2006). They feed almost exclusively on grass seed and depend on a relatively small number of grass species at different times throughout the year (O'Malley, 2006). In the Northern Territory there are recent breeding records at well-known sites in the Yinberrie Hills and Newry, as well as at Wollogorang (Garnett et al., 2011). In the Kimberley, small breeding populations of up to 120 adults each are known from the east (Garnett et al., 2011), in the centre of the Kimberley at Mornington Sanctuary (Legge *et al.*, 2015), and west to Dampierland (O'Malley, 2006). Given the habitat and feeding preferences for this terrestrial species it is unlikely that Gouldian finches would occur in the EMBA. In addition, there are no BIAs for this species that overlap the EMBA.

Grey falcon (EPBC Act: Vulnerable)

The grey falcon (*Falco hypoleucos*) is an elusive species endemic to mainland Australia. The species occurs in arid and semi-arid Australia, including the Murray-Darling Basin, Eyre Basin, central Australia and Western Australia (Marchant and Higgins, 1993). The species is mainly found where annual rainfall is less than 500 mm, although it is essentially confined to the arid and semi-arid zones at all times (Schoenjahn, 2018). Given the grey falcon's preferred habitat, the species is unlikely to occur in the EMBA.

Partridge pigeon (western) and (eastern) (EPBC Act: Vulnerable)

The partridge pigeon (western) (*Geophaps smithii smithii*) occurs in remote locations of the Kimberley region. The subspecies has been recorded from Yampi Peninsula north to Napier Broome Bay and inland to the lower Isdell River, middle Charnley River, Wulumara Creek, Mitchell Plateau and lower Drysdale River. The subspecies is consisting of short, open grasses (Johnstone and Storr, 1998). Given the habitat and distribution of this species, it is unlikely the patridge pigeon (western) would occur in the EMBA.

The partridge pigeon (eastern) is a terrestrial species recorded only in sub-coastal Northern Territory, from Yinberrie Hills (about 50 km north of Katherine) in the south and Litchfield National Park in the west to western Arnhem Land in the east, with a separate subpopulation on Melville and Bathurst Islands in the Tiwi Island group (Garnett *et al.*, 2011). Although there are no BIAs for this species, given they have been recorded in the Tiwi Island group the pigeon may be present within the EMBA but restricted to the mainland.

Tiwi Islands hooded robin (EPBC Act: Critically Endangered)

The Tiwi Islands hooded robin (*Melanodryas cucullata melvillensis*) is a small woodland bird endemic to the Tiwi Islands. It inhabits more open forests and woodlands and forages on ground-dwelling invertebrates in areas of thinner ground cover (TSSC, 2018b). There is a lack of recent recordings of these species. In 2014 a targeted threatened species survey at 40 sites on Bathurst Island did not detect hooded robins, and none were encountered in a major wildlife survey of the Tiwi Islands from 2000 to 2003 (Woinarski *et al.*, 2003). Therefore, given the preferred habitat and potentially low numbers of this species, it is unlikely that hooded robins would occur in the EMBA.

Greater sand plover (EPBC Act: Vulnerable, Listed Migratory)

The greater sand plover (*Charadrius leschenaultia*) occurs in coastal areas throughout Australia with the greatest populations between the NW Cape and Roebuck Bay (DAWE, 2021b) (both outside the EMBA). The plover spends almost all its time in coastal habitats. Their diet consists mainly of molluscs, worms, crustaceans and insects (DAWE, 2021b). The species breeds in the northern hemisphere and migrates south for the boreal winter (DAWE, 2021b). The greater sand

plover is one of the first migratory waders to return to northwest Australia, usually arriving in late July and departing in mid to late April (DAWE, 2021b).

The species is not predicted to occur in the activity area due to its habitat preferences, but may occur within the coastal areas of the EMBA from July to April.

5.3.8. Marine Pests

It is widely recognised that marine pests can become invasive and cause significant impacts on economic, ecological, social and cultural values of marine environments. Impacts can include the introduction of new diseases, altering ecosystem processes and reducing biodiversity, causing major economic loss and disrupting human activities (Brusati and Grosholz, 2007).

The Marine Pests Interactive Map (DAFF, 2021) indicates that the major port likely to be used to support the activity (e.g., Darwin) is not known to harbour any marine pests. However, DAFF (2021) notes that the following species are listed to keep watch for in the Port of Darwin due to their high potential for accidental introduction:

- Asian green mussel (*Perna viridis*) typically inhabits soft sediment bottoms from the low tide mark to shallow waters up to 42 m deep. Juveniles are bright green than turn brown in adults.
- American slipper limpet (*Crepidula fornicate*) competes with native species for food and space and may alter sediment characteristics by removing suspended sediments from the water column. Its likely habitat includes mud, rocks and sand within shores and shall waters.
- Black striped false mussel (*Mytilopsis sallei*) affects the productivity of commercial fisheries and aquaculture by competing with native species for food and space. The species usually inhabits shallow waters up to a few metres deep.
- Charru mussel (*Mytella charruana*) successful invasive species globally due to its great dispersal ability and tolerance for a wide variety of habitats. Typically found on rocky or hard substrates in shallow waters.

5.4. Conservation Values and Sensitivities

The conservation values and sensitivities within the EMBA are described in this section, with Table 5.11 providing an outline of the conservation categories described.

Table 5.11. Conservation values in the EMBA

Category	Conservation classification	Section		
MNES under the	Australian Marine Parks (AMP)	Section 5.4.1		
EPBC Act	World Heritage-listed properties	Section 5.4.2		
	National Heritage-listed places	Section 5.4.3		
	Wetlands of international importance	Section 5.4.4		
	Nationally threatened species and threatened ecological communities	Throughout Section 5.3 and Section 5.4.5		
	Migratory species	Throughout Section 5.3		
	Great Barrier Reef Marine Park	Not applicable.		
	Nuclear actions	Not applicable.		
	A water resource, in relation to coal seam gas development and large coal mining development	Not applicable.		

Category	Conservation classification	Section
Other areas of	Commonwealth heritage-listed places	Section 5.4.6
national importance	Key Ecological Features (KEF)	Section 5.4.7
	Nationally important wetlands (NIW)	Section 5.4.8
State protected areas	State/territory protected areas	Section 5.4.9

5.4.1. Australian Marine Parks

Australian Marine Parks as proclaimed under the EPBC Act (in 2007 and 2013) are located in Commonwealth waters that start at the outer edge of state and territory waters, generally 3 nm (approximately 5.5 km) from the shore, and extend to the outer boundary of Australia's EEZ, 200 nautical miles (approximately 370 km) from the shore (DNP, 2018).

The AMP Network includes six marine regions being the Coral Sea, South-west, Temperate East, South-east, North and Northwest. The marine park networks applicable to the activity area and spill EMBA are the Northwest Marine Parks Network aligned with the NWMR; and North Parks Marine Network aligned to the NMR. Management plans have been developed and approved for each of these regions including zoning and related rules for managing activities in the marine park to ensure protection of marine habitats and species:

- North Marine Parks Network Management Plan 2018 (DNP. 2018a).
- Northwest Marine Parks Network Management Plan 2018 (DNP. 2018b).

A definition of zones in the AMP is provided in Table 5.12.

The nearest AMPs to the Beehive-1 exploration well location is the JBG AMP (located 35 km east of the drill site) and the Kimberley AMP (located 235 km west of the drill site), described herein. AMPs in the EMBA and their zoning (IUCN classification) (as per Table 5.12) are provided in Table 5.13 and illustrated in Figure 5.54.

Table 5.12. Definition of Zones in AMPs

Special Purpose Zone (IUCN category VI)—managed to allow specific activities though special purpose management arrangements while conserving ecosystems, habitats and native species. The zone allows orprohibits specific activities.

Multiple Use Zone (IUCN category VI)—managed to allow ecologically sustainable use while conserving ecosystems, habitats and native species. The zone allows for a range of sustainable uses, including commercial fishing and mining where they are consistent with park values.

Habitat Protection Zone (IUCN category IV)—managed to allow activities that do not harm or cause destruction to seafloor habitats, while conserving ecosystems, habitats and native species in as natural astate as possible.

Recreational Use Zone (IUCN category IV)—managed to allow recreational use, while conserving ecosystems, habitats and native species in as natural a state as possible. The zone allows for recreational fishing, but not commercial fishing.

National Park Zone (IUCN category II)—managed to protect and conserve ecosystems, habitats and native species in as natural a state as possible. The zone only allows non-extractive activities unless authorised for research and monitoring.

Sanctuary Zone (IUCN category la)—managed to conserve ecosystems, habitats and native species in as natural and undisturbed a state as possible. The zone allows only authorised scientific research and monitoring.

Table 5.13. Australian Marine Parks within the EMBA

	Distance and		Presence					
АМР	direction to Beehive-1	Zone or IUCN Classification	Ecological EMBA	Socio-economic EMBA				
North Marine Region	on (NMR)							
Oceanic Shoals	152 km north	Multiple Use Zone (IUCN VI)	Yes	Yes				
Arafura	548 km north	Multiple Use Zone (IUCN VI)	Yes	Yes				
	northeast	Special Purpose Zone (Trawl) (IUCN VI)	-	Yes				
Arnhem	585 km northeast	Special Purpose Zone (Trawl) (IUCN VI)	-	Yes				
Northwest Marine	Northwest Marine Region (NWMR)							
Argo-Rowley	890 km west	National Park Zone (IUCN II)	Yes	Yes				
Terrace		Multiple Use Zone (IUCN VI)	Yes	Yes				
		Special Purpose Zone (Trawl) (IUCN VI)	Yes	Yes				
Ashmore Reef	601 km northwest	Recreational Use Zone (IUCN IV)	Yes	Yes				
		Sanctuary Zone (IUCN 1a)	Yes	Yes				
Cartier Island	553 km west	Sanctuary Zone (IUCN 1a)	Yes	Yes				
Joseph Bonaparte	35 km east	st Multiple Use Zone (IUCN VI)		Yes				
Gulf		Special Purpose Zone (IUCN VI)	Yes	Yes				
Kimberley	235 km west	Multiple Use Zone (IUCN VI)	Yes	Yes				
		National Park Zone (IUCN II)	Yes	Yes				
		Habitat Protection Zone (ICUN IV)	Yes	Yes				
Mermaid Reef	1052 km south southwest	National Park Zone (IUCN II)	Yes	Yes				
Montebello	1025 km south southwest	Multiple Use Zone (IUCN VI)	-	Yes				

Note: Although Oceanic Shoals AMP is part of the North Marine Region, it also overlaps the NWMR, where the EMBA extends.

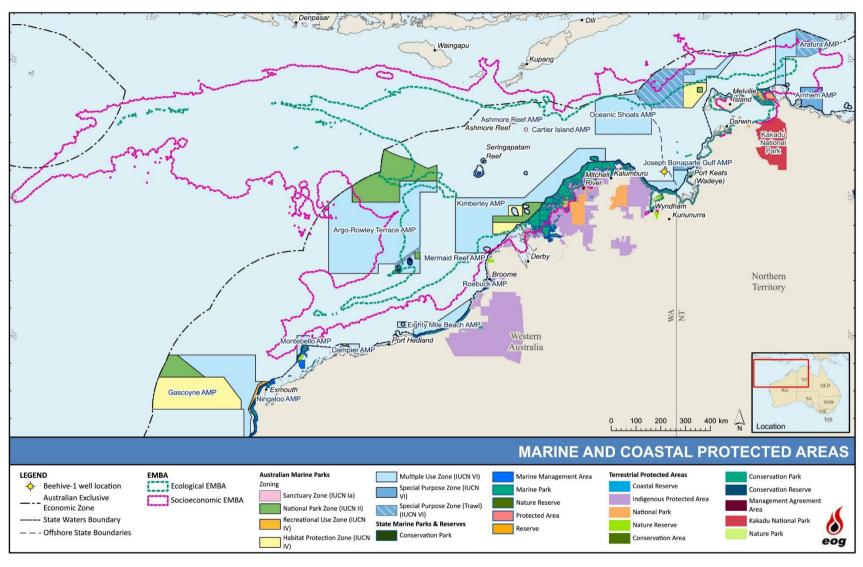


Figure 5.54. Protected areas intersected by the spill EMBA

996161-2022-Beehive#1-Drilling-EP-Rev2 126

Oceanic Shoals AMP

The Oceanic Shoals AMP is located west of the Tiwi Islands, approximately 155 km north-west of Darwin, Northern Territory and 305 km north of Wyndham, Western Australia. It extends to the limit of Australia's Exclusive Economic Zone (EEZ). The Oceanic Shoals AMP covers an area of 71,743 km² and water depths from less than 15 m to 500 m and is the largest marine park in the North Marine Parks Network.

The Oceanic Shoals AMP is characterised by:

- Examples of ecosystems representative of the Northwest Shelf Transition. The pinnacles, carbonate banks and shoals within the AMP are sites of enhanced biological productivity.
- Four KEFs (refer to Section 5.4.7), namely:
 - Carbonate bank and terrace systems of the Van Diemen Rise;
 - o Carbonate bank and terrace system of the Sahul Shelf;
 - o Pinnacles of the Bonaparte Basin; and
 - Shelf break and slope of the Arafura Shelf.
- Foraging and internesting BIA for marine turtles (Section 5.3.6).
- Sea country within the marine park is valued for Indigenous cultural identity, health and wellbeing.
- Commercial fishing and mining are important activities in the AMP.

Arafura AMP

The Arafura AMP covers an area of 22,924 km² with depths from less than 15 m to 500 m. It is located approximately 256 km northeast of Darwin. The marine park extends from NT waters to the limit of Australia's EEZ. The Arafura Marine Park is significant because it contains habitats, species and ecological communities associated with the Northern Shelf Province and Timor Transition. It contains one KEF known as the tributary canyons of the Arafura Depression, an area that contains canyons that are approximately 80 to 100 km long and 20 km wide with sediments including sand, mud and rock. The canyons channel deep ocean waters, enhancing productivity and supporting large predatory fish, whale sharks, sawfish and marine turtles, deep sea sponges, and barnacles (DNP, 2018a).

In addition, it is in close proximity to important wetland systems including the Cobourg Peninsula Ramsar site, and provides important foraging habitat for seabirds (DNP, 2018a). Biologically important areas within the marine park include inter-nesting habitat for marine turtles and important foraging and breeding habitat for seabirds. According to the North Marine Parks Network Management Plan 2018, there are no international, Commonwealth or national heritage listings apply to the marine park No international, Commonwealth or national heritage listings apply to the marine park Commercial fishing, tourism, and recreation, including fishing occur in the marine park (DNP, 2018a).

Arnhem AMP

The Arnhem AMP located 60 km southeast of the Arafura Marine Park, is extends from NT waters surrounding the Goulburn Islands, to the waters north of Maningrida. The marine park covers an area of 7,125 km² and water depth ranges from less than 15 m to 70 m. The marine park is significant because it contains habitats, species and ecological communities associated with the Northern Shelf Province. It includes dynamic habitats due to gently sloping shelf topped

with a number of pinnacles, at depths ranging from 5 m to 30 m. It is nearby important wetland systems including the Blyth-Cadell Floodplain and Boucaut Bay Nationally Important Wetland (outside of the EMBA, 670 km from the drill site) and provides important foraging habitat for seabirds (DNP, 2018a).

Internal currents in the region drive a net clockwise movement of nutrient-rich coastal water contributing to high biological diversity. Tidal eddies induce localised upwellings and hotspots of productivity that correspond with aggregations of marine life within the marine park. No international, Commonwealth or national heritage listings apply to the marine park. Commercial fishing, tourism, and recreation, including fishing also occur in the marine park (DNP, 2018a).

Argo-Rowley Terrace AMP

The Argo-Rowley AMP covers an area of 146,003 km² and water depths between 220 m and 600 m. It is the largest in the Northwest Network, and is adjacent to the Mermaid Reef Marine Park and the WA Rowley Shoals Marine Park. It includes the deeper waters of the region and a range of seafloor features such as canyons on the slope between the Argo Abyssal Plain, Rowley Terrace and Scott Plateau. These are believed to be up to 50 million years old and are associated with small, periodic upwellings that results in localised higher levels of biological productivity (DNP, 2018b).

The Argo–Rowley Marine Park is significant because it contains habitats, species and ecological communities associated with the Northwest Transition and Timor Province. It includes two KEFs:

- Canyons linking the Argo Abyssal Plain with the Scott Plateau and Mermaid Reef; and
- Commonwealth waters surrounding Rowley Shoals.

This AMP supports a range of species including species listed as threatened, migratory, marine or cetacean under the EPBC Act. BIAs within the Marine Park include resting and breeding habitat for seabirds and a migratory pathway for the pygmy blue whale (DNP, 2018b). Commercial fishing and mining are important activities in the marine park (DNP, 2018b).

Ashmore Reef AMP

The Ashmore Reef AMP is in the Australian External Territory (AET) of Ashmore and Cartier Islands, approximately 630 km north of Broome, WA. It covers 583 km², with depths less than 15 m to 500 m. The Ashmore Reef AMP is comprised of three small islands, lagoons, sand flats, reef flats with a high diversity of hard and soft corals and sponges, and large seagrass meadows. The AMP is a Sanctuary Zone with a small Recreational Use Zone allowing access to the most westerly island.

The Ashmore Reef AMP is characterised by:

- The presence of around 100,000 seabirds than come to breed each year, including greater crested terns, white-tailed tropicbirds and greater frigatebirds, and 10,000's of migratory shorebirds that forage in the surrounding waters, such as curlew sandpipers, bar-tailed godwits and great knots. It is also a breeding site for green turtles.
- Sea country within the AMP is valued for Indigenous cultural identity, health and wellbeing.
- Tourism, recreation and scientific research are important activities in the Marine Park.
- Two KEFs, namely:
 - o The continental slope demersal fish communities KEF; and
 - o The Ashmore Reef and Cartier Island and surrounding Commonwealth waters KEF.

• The presence of the Ashmore Reef National Nature Reserve Ramsar site.

Further information on KEFs and Ramsar sites is provided in Section 5.4.7 and Section 5.4.4 respectively.

Cartier Island AMP

The Cartier Island AMP lies in the Timor Sea within the AET of Ashmore and Cartier Islands, approximately 600 km north of Broome, WA. It covers 172 km², with water depths from less than 15 m to 500 m. The south-flowing Leeuwin Current originates in this region, and transports marine life southwards.

The entire Carter Island AMP is characterised by:

- Important habitat for seasnakes, turtles, whale sharks, corals, sea fans and sponges. This marine park and the nearby Ashmore Reef AMP are marine biodiversity hotspots, supporting a rich diversity of species and high numbers of individuals.
- Sea country within the marine park is valued for Indigenous cultural identity, health and wellbeing.
- Scientific research is an important activity in the AMP.
- Two KEFs, namely:
 - The continental slope demersal fish communities KEF, characterised by high levels of endemic fish; and
 - The Ashmore Reef and Cartier Island and surrounding Commonwealth waters KEF, characterised by enhanced primarily productivity and aggregations of marine life.

Joseph Bonaparte Gulf AMP

The JBG AMP covers an area of 8,597 km² and water depths within the AMP range from less than 15 m to 75 m (Galaiduk *et al.*, 2018). The JBG AMP is significant because it contains habitats, species and ecological communities associated with the Northwest Shelf Transition provincial bioregion and the Oceanic Shoals meso-scale bioregion (Galaiduk *et al.*, 2018). The AMP contains a number of prominent shallow seafloor features including an emergent reef system, shoals and sand banks (Galaiduk *et al.*, 2018). It also includes one key ecological feature, the Carbonate Bank and Terrace System of the Sahul Shelf, which is valued as a unique seafloor feature with ecological properties of regional significance (Galaiduk, *et al.*, 2018). The Miriuwung, Gajerrong, Doolboong, Wardenybeng and Gija and Balangarra people have responsibilities for sea country in this AMP (DNP, 2018a).

Kimberley AMP

The Kimberley AMP is located approximately 100 km north of Broome, WA and the central part of the Kimberley AMP is adjacent to the WA Camden Sound State Marine Park. It covers 74,469 km², with depths from less than 15 m to 800 m.

The Kimberley AMP is characterised by:

 High numbers of marine mammals such as dolphins, whales and dugong. The humpback whale breeds and calves in the Kimberley AMP annually after undertaking an extensive migration from Antarctica. Three dolphin species (Australian snubfin dolphin, Australian

humpback dolphin and spotted bottlenose dolphin) use the Kimberley AMP to forage within and travel to coastal waters to calve and raise their young in inshore, protected waters.

- Important foraging rounds for seabirds and shorebirds known to breed on Adele Island (outside of the EMBA), including critically endangered eastern curlews and curlew sandpipers.
- Sea country within the AMP is valued for Indigenous cultural identity, health and wellbeing.
- Tourism, commercial fishing, mining, recreation (including fishing) and traditional use are important activities in the AMP.

There are no KEFs within the Kimberley AMP.

Mermaid Reef AMP

The Mermaid Reef AMP adjacent to the Argo–Rowley Terrace Marine Park, is located 280 km northwest of Broome and approximately 13 km from the Rowley Shoals Marine Park which falls under WA state jurisdiction. The Mermaid Reef Marine Park covers an area of 540 km² and water depths from less than 15 m to 500 m (DNP, 2018b).

It is significant because it contains habitats, species and ecological communities associated with the Northwest Transition. It includes one KEF; the Mermaid Reef and Commonwealth waters surrounding Rowley Shoals, and is one of three reefs forming the Rowley Shoals. The other two are Clerke Reef and Imperieuse Reef, to the south-west of the marine park, which are included in the WA Rowley Shoals Marine Park (DNP, 2018b).

Ecosystems of the Marine Park are associated with emergent reef flat, deep reef flat, lagoon, and submerged sand habitats. The marine park supports a range of species, including species listed as threatened, migratory, marine or cetacean under the EPBC Act. Biologically important areas within the marine park include breeding habitat for seabirds and a migratory pathway for the pygmy blue whale. Important activities in the marine park include marine tourism, recreation, and scientific research (DNP, 2018b).

Montebello AMP

The Montebello AMP covers an area of 3,413 km² and water depths from less than 15 m to 150 m. It is significant because it contains habitats, species and ecological communities associated with the Northwest Shelf Province. It includes one KEF: the ancient coastline at the 125-m depth contour. When tides are low, two coral reefs called Tryal Rocks emerge above the water (DNP, 2018b)

The marine park supports a range of species including species listed as threatened, migratory, marine or cetacean under the EPBC Act. BIAs within the marine park include breeding habitat for seabirds, internesting, foraging, mating, and nesting habitat for four species of marine turtles, a migratory pathway for humpback whales and foraging habitat for whale sharks (DNP, 2018b). Tourism, commercial fishing, mining and recreation are important activities in this AMP (DNP, 2018b).

AMP Pressures

Section 2.4 of the North Marine Parks Network Management Plan 2018 (DNP, 2018a) and Section 2.4 of the North-west Marine Parks Network Management Plan 2018 (DNP, 2018b) identify pressures relevant to the marine park networks. Pressures are defined as human-driven processes, events and activities that may detrimentally affect the values of the reserves network. Table 5.14 summarises the pressures and sources of pressure on the conservation values of the of the NMR and NWMR Reserves Network.

Table 5.14. Summary of environmental pressures in the NWMR and NMR

Pressure	Description
Climate change	Climate change impacts on marine environments are complex and interrelated and may include changes in sea temperature, sea level, ocean acidification, sea currents, increased storm frequency and intensity and species range extension or local extinction. Examples of features and species vulnerable to climate change impacts include submerged coral reefs, sawfish, sharks, dolphins, seabirds and marine turtles.
Changes in hydrology	Coastal developments and agriculture have the potential to discharge increased sediment loads and pollutants to rivers, estuaries and nearshore coastal environments. This can result in increased turbidity and siltation, which in turn impacts species that spawn or inhabit coastal, nearshore or offshore waters. Habitats and species vulnerable to changes in hydrology include seagrass meadows, reefs, sawfish, shark and dugong.
Extraction of living resources	Sustainable fishing as well as illegal or unregulated fishing can modify natural populations and disproportionately target select valuable species. Species vulnerable to extraction include shark, sawfish, turtles, sea snakes, fish and dugong.
Habitat modification	Offshore infrastructure developments can impact habitat within marine parks through physical disturbance and indirectly through the physical presence of infrastructure. Benthic habitats may be impacted by direct discharges to the seabed resulting in smothering or a reduction in the quantity of light reaching the seabed. Habitats and species vulnerable to habitat modification include reefs, shoals and pinnacle habitats, turtles, fish, sea snakes, dolphins and dugong.
Human presence	Wildlife watching, camping, boating, diving and snorkelling are drawcard activities for people to the region and have the potential to impact natural wildlife behaviour or result in damage to fragile marine environments. Habitats and species vulnerable to these impacts include reefs, turtles and seabirds.
Invasive species	Accidental introduction and establishment of invasive species can have potentially debilitating impacts on island, reef or shallow-water marine ecosystems. Direct impacts from predation or damage to important habitat and indirect impacts from competition for food resources can affect native populations. Habitats and species vulnerable to invasive species include reefs, turtles, seabirds and saltwater crocodiles.
Marine pollution	Land-based and marine activities that result in pollution have the potential to impact marine park values. Discharges of emissions including light, marine debris, noise, oil and chemicals can be detrimental to marine life and cause contamination of ecosystems and entanglement of marine fauna. Habitats and species vulnerable to marine pollution include islands, reefs, shallow-water habitats, dolphins, whales, turtles, sawfish, sharks and seabirds.

5.4.2. World Heritage-Listed Properties

World Heritage Listed-properties are examples of sites that represent the best examples of the world's cultural and heritage values, of which Australia has 19 properties (DAWE, 2021d). In Australia, these properties are protected under Chapter 5, Part 15 of the EPBC Act.

There are no World Heritage Properties within or adjacent to the EMBA. The closest World Heritage Property is Kakadu National Park (onshore), which is located over 400 km northeast of the activity area.

5.4.3. National Heritage-Listed Properties

The National Heritage List is Australia's list of natural, historic and Indigenous places of outstanding significance to the nation (DAWE, 2021e). These places are protected under Chapter 5, Part 15 of the EPBC Act.

The socio-economic EMBA intersects the West Kimberley National Heritage Place. This National Heritage-listed place is described below and presented in Figure 5.55.

West Kimberley National Heritage Place

The West Kimberley was included on the National Heritage List in 2011 and has numerous values which contribute to the significance of the property, including indigenous, historic, aesthetic, cultural and natural heritage values (DAWE, 2021e). The West Kimberley National Heritage place covers a vast area that is characterised by a diversity of landscapes and biological richness found in its cliffs, headlands, sandy beaches, rivers, waterfalls and islands.

The values most relevant to the marine environment is Roebuck Bay as a migratory hub for shorebirds (Roebuck Bay does not fall within the EMBA).

5.4.4. Wetlands of International Importance

Australia has 66 wetlands of international importance ('Ramsar wetlands') that cover more than 8.3 million hectares (as of September 2021) (DAWE, 2021f). Ramsar wetlands are those that are representative, rare or unique wetlands, or are important for conserving biological diversity, and are included on the List of Wetlands of International Importance developed under the Ramsar Convention. These wetlands are protected under Chapter 5, Part 15 of the EPBC Act.

There are four Ramsar-listed wetlands intersected by the EMBA (Figure 5.56), described here.

Ord River Floodplain

The Ord River Floodplain Ramsar site is a floodplain and estuarine wetland system located 88 km south of Beehive-1. North of the lagoons, the site includes the Ord River Estuary leading into the Cambridge Gulf while the northeast end of the site heads around the coast to include a series of extensive intertidal creeks and flats known as the False Mouths of the Ord. The upstream portion of the floodplain and river tends to be freshwater and becomes more saline as the river approaches the Cambridge Gulf and falls under tidal influence (DAWE, 2021b).

Mangroves are the most common vegetation in the site, extending from the False Mouths of the Ord to the upstream sections of the estuary. The mangroves form narrow fringes along the intertidal areas, with saltmarsh on higher ground. The intertidal mangroves support many species of birds and bats and are a breeding area for banana prawns (DAWE, 2021b).

Over 200 species of birds have been recorded within the site including waterfowl, migratory shorebirds, mangrove birds and terrestrial species. The site supports the nationally threatened Australian painted snipe. The wetlands are habitat for many fish species that require migration between marine and more freshwater environments during their life, including the nationally threatened species largetooth sawfish, green sawfish and northern river shark. Reptiles that use the site include the freshwater crocodile and saltwater crocodile (DAWE, 2021b).

The Ord River Floodplain Ramsar site lies within the boundaries of six Indigenous language groups: Miriuwung, Gajerrong, Dulbung, Guluwaring, Djangade and Biambarr. The site contains Indigenous burial sites, artefact scatters, quarries, paintings and ceremonial sites (DAWE, 2021b). The Ord River Nature Reserve is gazetted for the conservation of flora and fauna. The Lower Ord

River and the False Mouths of the Ord are popular destinations for locals and visitors for recreational fishing, crabbing and boating (DAWE, 2021b).

The *Ord River and Parry Lagoons nature reserves management plan 77 2012* (DEC 2012) is the approved management plan for the Ord River Floodplain Ramsar Site.

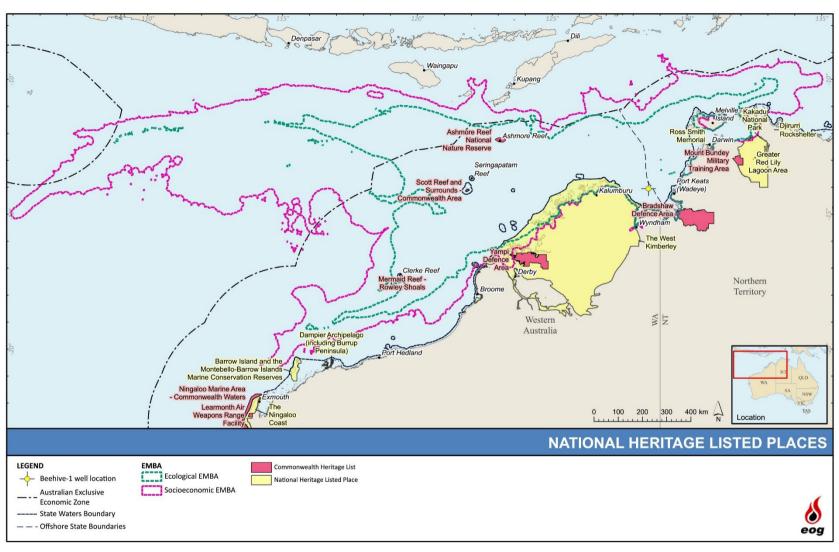


Figure 5.55. National Heritage and Commonwealth Heritage-listed Places intersected by the EMBA

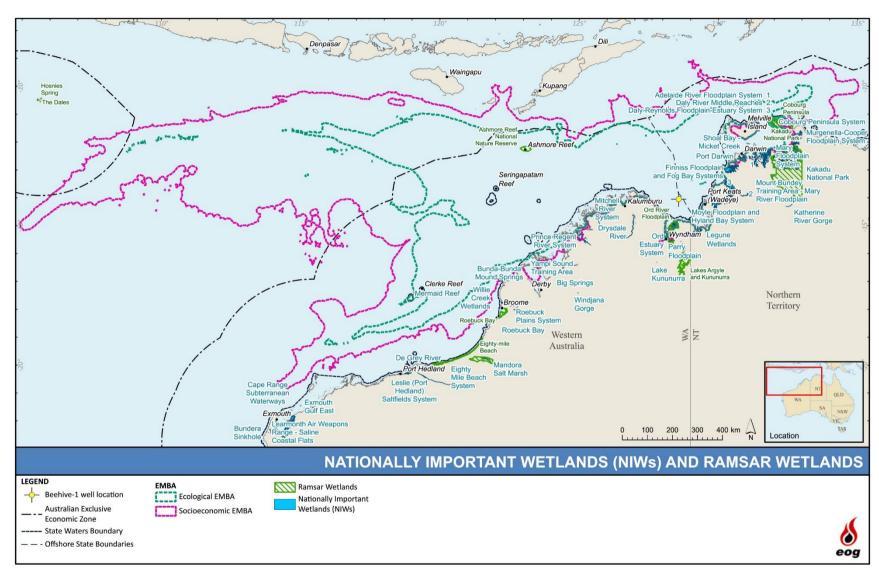


Figure 5.56. Wetlands of international importance and NIWs intersected by the EMBA

Ashmore Reef National Nature Reserve

The Ashmore Reef National Nature Ramsar site (Ashmore Reef Ramsar site) is located in the Indian Ocean approximately 840 km west of Darwin, 610 km north of Broome and 608 km northwest of Beehive-1.

There are a number of other coral atolls and reefs within the Timor Province including Cartier Island, Seringapatam Reef and Scott Reef. These contain some of the same types of wetlands and habitats as Ashmore Reef Ramsar site, notably coral reefs, intertidal sand flats and sub-tidal beds (Hale and Butcher, 2013). However, Ashmore is the largest of the atolls in the region and has been managed for the purposes of conservation for three decades. Each of the wetland types present at Ashmore Reef Ramsar site is in near natural condition, with low densities of coral predators and disease (Hale and Butcher, 2013). The Ashmore Reef Ramsar site also has the highest seagrass cover in the bioregion (Hale and Butcher, 2013). In addition, the three islands at Ashmore Reef Ramsar site (West, Middle and East) represent the only vegetated islands within the Timor Province bioregion (DEWHA 2008a). Thus, by definition the site contains bioregionally unique examples of wetland type E (sand, shingle or pebble shores) (Hale and Butcher, 2013).

Cobourg Peninsula

The Cobourg Peninsula Ramsar site is located approximately 163 km northeast of Darwin and 460 km northeast of Beehive-1.

This Ramsar site occupies the entire peninsula and several nearby islands including the Sir George Hope Islands group, Sandy Island, Allaru Island, High Black Rock and Burford Island (BMT WBM, 2011) with the offshore islands (Figure 5.22). consisting of sandy shores, and the latter consisting of rocky shores; and tidal flats (sand, mud, sediment) and mangroves respectively. The Cobourg Peninsula Ramsar site is composed of a diversity of coastal and inland wetland types. Wetland types present include intertidal forested wetlands and saltflats, seasonal freshwater marshes and permanent freshwater pools. Using the Ramsar typology, there are ten coastal types and ten inland types within the site.

Coburn Peninsula supports populations of threatened species including support for key life-cycle functions such as marine turtle breeding, waterbird breeding fish nursery and spawning habitats. The critical component of the site is the diversity and connectivity of a wide range of wetland habitat types, and is supported by populations of waterbirds, terrestrial ecosystems and freshwater fish and invertebrates (BMT WBM, 2011) <ecological character description>. Recent or continuing threats that are notable in the context of the site that may affect future ecological character include invasive species, climate change, tourism, marine debris and resource extraction.

Kakadu National Park

The Kakadu National Park Ramsar site is located approximately 200 km east of Darwin and 424 km northeast of Beehive-1. This Ramsar site is mainly an inland wetland ranging from intertidal forested wetlands and mudflats, to seasonal freshwater marshes and permanent freshwater pools (BMT WBM, 2010). The socio-economic EMBA only intersects the coastal section of the Kakadu Park Ramsar site. The shoreline in this area consists of tidal flats (sand, mud and sediment) and mangrove habitat.

5.4.5. Threatened Ecological Communities

The Australian Government is responsible for identifying and protecting MNES through the EPBC Act. Threatened Ecological Communities (TECs) are a MNES under the EPBC Act. TECs provide

wildlife corridors and/or habitat refuges for many plant and animal species, and listing a TEC provides a form of landscape or systems-level conservation (including threatened species).

One TEC is identified in the EMBA, which is described below.

Monsoon vine thickets on the coastal sand dunes of Dampier Peninsula

The vine thickets of the Dampier Peninsula are a very distinctive type of rainforest in the Kimberley region. This TEC is located about 1,430 km southwest of Beehive-1.

This type of vine thicket is confined to the Peninsula between Broome and Derby, along with the coastal dune formations on which it occurs. Vine thickets occur as discrete areas of dense vegetation and can occur as a stand of a few trees or as larger patches. The 90 known occurrences vary in size from about 0.3 ha up to 507 ha, with a mean size of about 33 ha. They can occur as clumps or narrow linear stands (Black *et al.*, 2010). The vine thicket community contains many plants with fleshy fruits that provide important food sources for fauna such as agile wallabies, bats, bower-birds and fruit-doves. They are also an important traditional resource for Indigenous people.

5.4.6. Commonwealth Heritage-listed Places

Commonwealth Heritage-listed places are natural, indigenous and historic heritage places owned or controlled by the Commonwealth (DAWE, 2021g). In Australia, these properties are protected under Chapter 5, Part 15 of the EPBC Act.

One property on the Commonwealth Heritage List occurs within the EMBA, this being the Bradshaw Defence Area, which is described below. The Ashmore Reef National Nature Reserve Commonwealth Place is also within the EMBA, which is described in Section 5.4.4.

Bradshaw Defence Area

The Bradshaw Defence Area is bounded by the Fitzmaurice and Victoria Rivers on the south eastern shores of the JBG. The Bradshaw Defence Field Training Area comprises a vast and rugged habitat endowed with a diverse array of plants and animals. The place demonstrates to a high degree the interplay of erosional terrains associated with coastal and fluvial environments. Coastal mudflats, associated tidal creek networks and mangal stands are prominent along the coastal margins. In places, the mudflats are 'interrupted' by bedrock outcrop, while in other locations, bedrock forms small islands rimmed by mudflats and associated mangrove belts. There is a substantial rainfall gradient within the place, so that species characteristic of both the wetter coastal forests and drier inland woodlands of northwest Australia are represented (DAWE, 2021b).

5.4.7. Key Ecological Features

KEFs are components of the marine ecosystem that are considered to be important for biodiversity or ecosystem function and integrity of the Commonwealth Marine Area.

The EMBA overlaps several KEFs, illustrated in Figure 5.57 and described here.

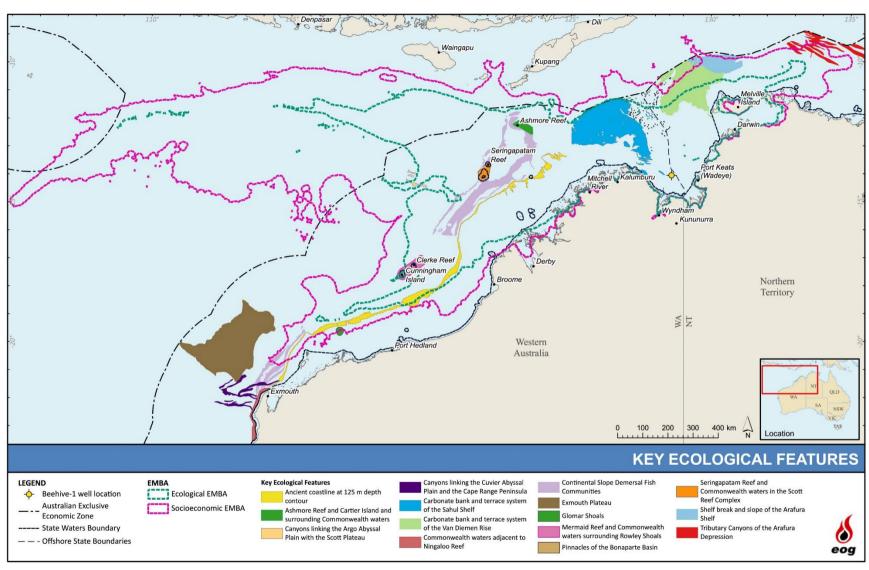


Figure 5.57. KEFs intersected by the spill EMBA

996161-2022-Beehive#1-Drilling-EP-Rev2 138

Carbonate bank and terrace system of the Sahul Shelf

The carbonate bank and terrace system of the Sahul Shelf KEF is located in the western JBG and to the north of Cape Bougainville and Cape Londonderry. It is located 26 km west of Beehive-1 at its closest point.

The carbonate banks and terrace system of the Sahul Shelf is defined as a KEF for its role in enhancing biodiversity and local productivity relative to its surrounds as it is a unique seafloor feature supporting relatively high species diversity, making it regionally significant.

The KEF provides areas of hard substrate in an otherwise soft sediment environment, which is important for sessile species. Banks rise from depths of approximately 80 m to within 30 m of the surface. Banks that rise to within 45 m water depth support more biodiversity, such as communities of sessile benthic invertebrates including hard and soft corals, sponges, whips, fans and bryozoans (Brewer *et al.*, 2007; Nichol *et al.*, 2013). Brewer et al (2007) also noted that banks within the KEF support aggregations of demersal fish species such as snappers, emperors and groupers.

The banks are recognised as a biodiversity hotspot for sponges with more species and different communities than the surrounding seafloor (DAWE, 2021b). The KEF is also known as a foraging area for flatback, olive ridley and loggerhead turtles (DSEWPC, 2012).

Threats to the KEF include changes in sea temperature and ocean acidification, both resulting from climate change, as well as extraction of living sources from illegal, unreported and unregulated fishing (Brewer *et al.*, 2007; Nichol *et al.*, 2013).

Pinnacles of the Bonaparte Basin

The limestone pinnacles of the Bonaparte Basin lie on the mid-outer shelf in the western JBG. It is located 123 km northwest of Beehive-1 at its closest point. The pinnacles are defined as a KEF because they are a unique seafloor feature with ecological properties of regional significance.

The pinnacles provide areas of hard substrate in an otherwise soft sediment environment and are therefore important for sessile species. Pinnacles typically rise steeply from depths of about 80 m and emerge to within 30 m of the water surface, allowing light dependent organisms to thrive. Pinnacles that rise to within at least 45 m of the water surface support more biodiversity. Communities include sessile benthic invertebrates including hard and soft corals, sponges, whips, fans, bryozoans and aggregations of demersal fish species such as snappers, emperors and groupers (Brewer *et al.*, 2007; Nichol *et al.*, 2013). The pinnacles are also recognised as a biodiversity hotspot for sponges as they are home to more sponge species and different communities than the surrounding seafloor.

Carbonate bank and terrace system of Van Diemen Rise

The carbonate bank and terrace system of the Van Diemen Rise KEF is located on the north-eastern side of the JBG and partially overlaps with the north-east of the EMBA. It is located 234 km north of Beehive-1 at its closest point.

The KEF is considered important for its role in enhancing biodiversity and local productivity relative to its surrounds and for supporting relatively high species diversity. The KEF covers an area of 31,278 km².

The KEF is characterised by banks, ridges and terraces with relatively high proportions of hard substrate (DAWE, 2021b). Channel systems between the banks range from approximately 60–150 m to 10–40 m in depth (Anderson et al. 2011) and supports sponge and octooral gardens by

providing epifauna habitat in an otherwise flat environment (Przeslawski *et al.*, 2011). Whilst reef-forming corals are rare throughout the JBG, some locally dense hard corals were found on the banks of the Van Diemen rise during marine surveys in 2009 and 2010 (Przeslawski *et al.*, 2011).

A study of the sponge diversity and ecology of the Van Diemen Rise identified the region as a sponge biodiversity hotspot (Przeslawski *et al.*, 2014). Sponges were collected with a benthic sled from five geomorphic features (banks, terrace, ridge, plain and valley), resulting in the identification of 283 species. The study found that sponge diversity was generally highest further offshore and on raised geomorphic features, particularly banks. Pelagic fish such as mackerel, red snapper and a distinct gene pool of goldband snapper are found in the Van Diemen Rise (Blaber *et al.*, 2005; Salini *et al.*, 2006). Olive ridley turtles, seasnakes and sharks have also been reported to occur in the area (DAWE, 2021b).

Ancient Coastline at 125 m depth contour

The ancient coastline at 125 m depth contour KEF comprises a series of several steps and terraces that form an escarpment along north-west WA centred around the 125 m isobath, although this feature is not continuous. It is located 412 km west of Beehive-1 at its closest point.

The KEF is an important divide between carbonate, cemented sands and the fine, less cemented slope materials found offshore. It is valued as a unique seabed feature with ecological properties of regional significance. Hard substrate areas of the ancient coastline are thought to provide biologically important habitat in an area predominantly made up of soft sediment (DAWE, 2021b).

Continental slope demersal fish communities

The continental slope demersal fish communities KEF is considered important due to its high levels of endemism (DEWHA 2008b). It is located 530 km west of Beehive-1 at its closest point.

The diversity of demersal fish assemblages on the continental slope in the Timor Province, the Northwest Transition and the Northwest Province is high compared to elsewhere along the continental slope (DEWHA 2008b). The KEF supports two distinct demersal community types (biomes) associated with the upper slope (water depth of 225–500 m) and the mid-slope (750–1,000 m) (DAWE, 2021b). Although poorly known, demersal-slope communities are thought to rely on bacteria and detritus-based systems comprised of infauna and epifauna, which in turn become prey for a range of teleost fish, molluscs and crustaceans (Brewer *et al.*, 2007). Higher-order consumers may include carnivorous fish, deep water sharks, large squid and toothed whales (Brewer *et al.*, 2007).

Glomar Shoals

The Glomar Shoals are a submerged littoral feature located approximately 150 km north of Dampier on the Rowley shelf at water depths of 33 m to 77 m (Falkner *et al.*, 2009). The shoals are defined as a KEF primarily due to their high productivity and aggregations of marine life.

The shoals consist of a high percentage of marine-derived sediments with high carbonate content and gravels of weathered coralline algae and shells (McLoughlin and Young, 1985). The area's higher concentrations of coarse material in comparison to surrounding areas are indicative of a high-energy environment subject to strong sea-floor currents (Falkner *et al.*, 2009).

While the biodiversity associated with the Glomar Shoals has not been studied, the shoals are known to be an important area for a number of commercial and recreational fish species such as

rankin cod, brown striped snapper, red emperor, crimson snapper, bream and yellow-spotted triggerfish (Falkner *et al.*, 2009; Fletcher and Santoro, 2009). These species have recorded high catch rates associated with the Glomar Shoals, indicating that the shoals are likely to be an area of high productivity.

Mermaid Reef and Commonwealth waters including Rowley Shoals

The Mermaid Reef and Commonwealth waters surrounding Rowley Shoals is defined as a KEF for its enhanced productivity and high species richness and benthic and pelagic habitats within the feature. The Rowley Shoals are a collection of three atoll reefs, Clerke, Imperieuse and Mermaid, which are located about 300 km northwest of Broome. This KEF encompasses Mermaid Reef Commonwealth Marine Reserve as well as waters from 3 nm out to 6 nm surrounding Clerke and Imperieuse reefs (DAWE, 2021a). Mermaid Reef lies 29 km north of Clerke and Imperieuse reefs and is totally submerged at high tide. Mermaid Reef falls under Commonwealth jurisdiction. Clerke and Imperieuse reefs constitute the Rowley Shoals Marine Park, which falls under WA Government jurisdiction (DAWE, 2021a).

Mermaid Reef and Commonwealth waters surrounding Rowley Shoals are regionally important in supporting high species richness, higher productivity and aggregations of marine life associated with the adjoining reefs themselves (Done *et al.*, 1994). The reefs provide a distinctive biophysical environment in the region as there are few offshore reefs in the northwest. They have steep and distinct reef slopes and associated fish communities. In evolutionary terms, the reefs may play a role in supplying coral and fish larvae to reefs further south via the southward flowing Indonesian Throughflow. Both coral communities and fish assemblages differ from similar habitats in eastern Australia (Done *et al.*, 1994).

Ashmore Reef and Cartier Island and surrounding Commonwealth waters

The Ashmore Reef and Cartier Island and surrounding Commonwealth waters KEF is regarded as a biodiversity hotspot which supports a diverse array of pelagic and benthic marine species. It is located 560 km northwest of Beehive-1. The KEF is considered important due to its aggregations of marine life and enhanced primarily productivity in an otherwise low-nutrient environment.

Ashmore Reef and Cartier Island are situated on the shallow upper slope of the Sahul Shelf, north of Scott and Seringapatam reefs. They form part of a series of submerged reef platforms along the outer edge of the continental slope of the NWMR. Localised upwelling and turbulent mixing in the surrounding Commonwealth waters provide nutrients to support the reef structure and ecology (DEWHA 2008b).

Ashmore Reef and Cartier Island and the surrounding Commonwealth waters are regionally important for feeding and breeding aggregations of birds and other marine life, including an unusually high diversity of sea snakes, a genetically distinct breeding population of green turtles and foraging grounds for green, loggerhead and hawksbill turtles (Limpus, 2008). The reef system is an important staging post for seabirds and migratory shorebirds and the area is home to some of the most important seabird colonies in the NWMR (Milton, 2005). Ashmore Reef supports the highest number of coral species of any reef off the WA coast.

Canyons linking the Argo Abyssal Plain with the Scott Plateau

The canyons linking the Argo Abyssal Plain with the Scott Plateau is defined as a KEF for their high productivity and aggregations of marine life (DAWE, 2021a). These values apply to both the benthic and pelagic habitats within the feature.

The spatial boundary of this KEF includes three canyons, adjacent to the south-west corner of Scott Plateau. The canyons cut deeply into the south-west margin of the Scott Plateau at an approximate depth of 2,000 m to 3,000 m, and act as conduits for transport of sediments to depths of more than 5,500 m on the Argo Abyssal Plain. The water masses at these depths are deep Indian Ocean water on the Scott Plateau and Antarctic bottom water on the Argo Abyssal Plain. Both water masses are cold, dense and nutrient-rich (DAWE, 2021a).

Seringapatam Reef and Commonwealth waters in the Scott Reef complex

The Seringapatam reef and Commonwealth waters in the Scott reef complex are defined as a KEF as they support diverse aggregations of marine life, have high primary productivity relative to other parts of the region, are relatively pristine and have high species richness, which apply to both the benthic and pelagic habitats within the feature (DAWE, 2021a).

Scott and Seringapatam reefs are part of a series of submerged reef platforms that rise steeply from the sea floor between the 300–700 m contours on the northwest continental slope and lie in the Timor Province (Falkner *et al.*, 2009). Scott and Seringapatam reefs provide an important biophysical environment in the region as one of few offshore reefs in the northwest. The spatial boundary of this KEF includes both reefs plus the adjacent apron/fan features, and the canyon approximately 10 km to the west of Scott Reef. The southern edge of the KEF is defined by the state water boundary around Scott Reef (DAWE, 2021a).

As two of the few offshore reefs in the north-west, they provide an important biophysical environment in the region (DAWE, 2021a). The coral communities at Scott and Seringapatam reefs play a key role in maintaining the species richness and subsequent aggregations of marine life. Scott and Seringapatam reefs and the waters surrounding them attract aggregations of marine life including humpback whales and other cetacean species, whale sharks and several species of sea snake. Two species of marine turtle nest and forage during the summer months, and this KEF also provides foraging areas for various seabird species (DAWE, 2021a).

Shelf break and slope of the Arafura Shelf

The shelf break and slope of the Arafura Shelf is located north of the Tiwi Islands, near the edge of the Australian EEZ. It is defined as a KEF for its ecological significance associated with productivity emanating from the slope and forms part of a unique biogeographic province (Last et al., 2005). The spatial boundary of this KEF includes the area of slope north of the Van Diemen Rise, an adjacent area of shelf, extending south to the terrace edge of the Van Diemen Rise in the western part and bounded by the 100 m depth contour in the east. At the eastern end, the area of shelf included extends to approximately the eastern extent of the slope. The slope and shelf areas contain pinnacles and reefs (DAWE, 2021a).

Phytoplankton and invertebrates have been sampled in the area (Hallegraeff and Jeffrey 1984; Wilson, 2005), and primary production of phytoplankton is thought to form the basis for offshore food webs (DEWHA, 2007). Fish communities that occur in this key ecological feature represent the break between the Timor Province provincial bioregion and the Timor Transition provincial bioregion (Last *et al.*, 2005). Records show at least 284 demersal fish species are found in the area (Last *et al.*, 2005), including commercially fished red snapper species. The area is also likely to support whale sharks, sharks and marine turtles (DEWHA, 2007).

Tributary canyons of the Arafura Depression

The Tributary canyons of the Arafura Depression are defined as a KEF for their high productivity and high levels of biodiversity and endemism, in both the benthic and pelagic habitats within this feature (DAWE, 2021a).

Nearly all the canyons in the NMR are located within this KEF in which endemic benthic species are thought to occur (Wilson, 2005). Primary productivity in this feature is likely to be associated with movements of water through the canyons and surface water circulation driven by seasonal north-west monsoon winds.

Biological diversity and ecosystem processes in the area are influenced by the state of the canyon habitats. The steep topography of the canyons, their diverse current regimes, nutrient enrichment and entrapment, detritus funnelling and diverse substrate types form widely divergent ecosystems (McClain and Barry 2010; Vetter, 1994; Vinogradova, 1959), coupled with the regional setting and geological origins of the area, strongly influence species biodiversity (Kloser *et al.*, 2010).

At least 245 macroscopic species, including a diverse variety of invertebrates (e.g. sponges, corals, sea anemones, tunicates, worms, crustaceans, brittle stars, feather stars) and six small fish species have previously been sampled (Wilson, 2005). It is estimated that a further 500 species could be identified from post-survey analysis of grab and dredge samples (Wilson, 2005). Marine turtles, likely to be olive ridleys, have been reported to feed in the vicinity of the canyons (Whiting *et al.*, 2007).

5.4.8. Nationally Important Wetlands

NIWs are considered significant for a variety of reasons, including their importance for maintaining ecological and hydrological roles in wetland systems, providing important habitat for animals at a vulnerable or particular stage in their life cycle, supporting 1% or more of the national population of any native plant or animal taxa or for its outstanding historical or cultural significance (DAWE, 2021f).

There are 17 NIWs that are intersected by the EMBA, as illustrated in Figure 5.56 and described in Table 5.15. Information provided in Table 5.15 is sourced from DAWE's online Directory of Important Wetlands (DAWE, 2022b). Noting there are NIWs shown in Figure 5.56 that are in close proximity and/or outside of the EMBA, these are not discussed further in this section.

Table 5.15. Nationally important wetlands in the spill EMBA

Name	Distance from Beehive-1	Description
WA		
Ord River Floodplain	91 km south	The Ord River system is a floodplain and estuarine wetland system consisting of broad floodplains known to periodically flood and dry out; and permanent waterholes (known as the Parry Lagoons) (DAWE, 2022b). The wetlands are a habitat for many diadromous fish species (that migrate between salt water and freshwater environments), including nationally threatened species such as freshwater sawfish, green sawfish and the northern river shark. Freshwater and saltwater crocodiles are also known to use the wetland (DAWE, 2022b).
Mitchell River System	323 km southwest	The Mitchell River system consists of a relatively small river system and estuary, with an of escarpment of vertical multi-stage waterfalls (e.g., Mitchell Falls). Tributaries of the system are Camp Creek (off Mitchell Plateau), Youngs Creek and Leichardt Creek. The creeks and upper reaches of Mitchell River are seasonal; the entrenched lower reaches are permanent or near-permanent; twice-daily tides occur in the estuary. At least 10 species of freshwater fish are known to

Name	Distance from Beehive-1	Description		
		inhabit the waters of the Mitchell River. Seven waterbird species have been recorded in the system (DAWE, 2022b).		
Parry Floodplain	168 km south	The Parry floodplain is a good example of a tropical floodplain with permanent billabongs, seasonal marshes and wooded swamp (one of the few such floodplains of substantial area in WA). The site comprises the lower reaches and floodplain of Parry Creek including Parry Lagoons and numerous other lagoons, billabongs including claypans. The floodplain is 5 km southwest of the Ord River and adjoins tidal wetlands of the Ord estuary system in the north. Surface water flows in the floodplain from upper Parry Creek, originating 25 km south of the site in disturbed (fire and grazing) catchment, and from several short creeks; and occasionally from the Ord River. Seventy-seven waterbird species (including 24 shorebirds and four terns) are recorded in this system (one of the highest totals in the Kimberley); with 22 listed under treaties. Both freshwater crocodile and saltwater crocodile occur in the permanent billabongs (DAWE, 2022b).		
Prince Regent River System	411 km southwest	The Prince Regent River System is a tropical estuary and river systemicised in a plateau. There are nine major tributaries to this river, originating 11 km to 32 km from their junctions with the river (e.g. Youwanjela Creek from north-east, Cascade Creek from south southwest). The water catchments are relatively undisturbed and only known habitat of two freshwater fishes; habitat to 15 waterb species and an important breeding and non-breeding area for saltwater crocodile (DAWE, 2022b).		
Yampi Sound Training Area	578 km southwest	The Yampi Sound Training Area contains large areas of coastline. The central and southwestern region is flat, consisting of the low lying flood plains of the Robinson River and its tributaries. The average annual rainfall in the training area is approximately 1,000 mm, which falls almost entirely during the summer wet season from November to April. During this time numerous permanent and semi-permanent pools along both major and minor watercourses are maintained. The Robinson River is tidal, with extensive tidal flats bordering King Sound. Tides are up to 11 m (DAWE, 2022b). Threatened species such as the Little Tern, Gouldian Finch and Western Partridge Pigeon have been recorded in the area (DAWE, 2022b).		
Mermaid Reef	1,021 km southwest	Mermaid is the most north-easterly atoll of the Rowley Shoals, which comprises three distinct reef systems arising from depths of between 300 and 700 m along the edge of the continental shelf. The reef experiences a semi-diurnal tidal cycle with a spring range of about 4.5m (DAWE, 2022b). Fauna surveys indicate the reef has a rich and diverse fauna which is regionally important, which includes some endemics and species not occurring elsewhere in Western Australia (Berry ,1986; Done et. al., 1994). In addition to the diverse range of coral species, other benthic groups include sponges, bryozoans, ascidians (sea squirts) polychaetes, molluscs, echinoderms, crustaceans and cnidarians (jellyfish) (DAWE, 2022b).		

Name	Distance from Beehive-1	Description			
NT					
Legune Wetlands	131 km southeast	The Legune wetlands are floodplain including meso and microscale pools and channels. The Legune Homestead Swamps are regionally significant Eleocharis-dominated wetland supporting significant waterbird numbers in the dry season, and breeding magpie geese in the wet season. The Osmans Lake System is the main area of open shallow wetland in the Keep River drainage. In combination the swamps and lake systems provide a good diversity of wetland habitat in a relatively small area. Forty-seven species of waterbirds have been recorded in the wetlands, 14 of them listed under treaties (JAMBA/CAMBA) (DAWE, 2022b).			
Moyle Floodplain and Hyland Bay System	123 km east	Located in the Bonaparte Gulf Basin, the Moyle Floodplain and Hyland Bay System is classed as a megascale irregular floodplain with mesoscale sinuous channel and several mesoscale sumplands. Water supply to the floodplain is from surface inflow from creeks originating 10 km to 22 km southwest and southeast, with surface inflow to the east and north from the Moyle River. Forty-seven bird species known to occur on floodplain and adjacent coast, with 26 listed under treaties (JAMBA, CAMBA, BONN). The floodplain is a significant breeding area for magpie geese, with especially large breeding populations in drier years. The mudflats of Hyland Bay support relatively high numbers of migrant shorebirds. There are at least two significant waterbird breeding rookeries in the area which include darter and cormorant species (BirdLife, 2022; Whitehead <i>et al.</i> , 1992). The tidal estuary and creeks support a particularly high density of Saltwater Crocodiles, that also breed on the floodplain channel (DAWE, 2022b).			
Daly-Reynolds Floodplain Estuary System	193 km northeast	One of the largest floodplains in the NT with the largest catchment of any major freshwater floodplain system. Water supply to the floodplain esturary is primarily from the Daly River, originating 275-300 km east north-east to south-south-east (catchment area of 49 000 km²), and the Reynolds River, originating 60 km south-east (catchment area of 10 000 km²); with substantial inflow from from Hermit-Door Creek system, Kilfoyle, Lookout, Woomeroo and unnamed Creeks. More than 80 fauna species, with at least 30 species listed under treaties (JAMBA/CAMBA), are known to occur within the site. The system supports a large number of magpie geese. Reptiles (frogs, freshwater turtles) are known to occur in areas of the system, which also acts as an important breeding area for saltwater crocodile (in swamps and billabongs) and habitat for freshwater crocodiles (further upstream) (DAWE, 2022b).			
Finniss Floodplain and Fog Bay Systems	209 km northeast	A megascale irregular floodplain, with a network of microscale irregular creeks and a series of mesoscale (almost closed loop) irregular channels, also several microscale irregular estuaries and a macroscale embayment (mudflats part, up to 1.5 km wide). Surface water inflow is mainly from the Finniss river originating 50 km southeast (catchment area exceeds 110 000 ha), and several creeks. This system supports a major breeding area for magpie geese, at times a significant dry season refuge area for waterbirds (whistling-ducks); a major migration stop-over area for shorebirds; and a major breeding area for saltwater crocodile (DAWE, 2022b).			

Name	Distance from Beehive-1	Description			
Port Darwin	294 km northeast	A shallow branching embayment supporting one of the largest discrete areas of mangrove swamp in the NT. The wetland acts as a major nursery area for estuarine and offshore fish and crustaceans in the Beagle Gulf area. At least 48 bird species occur, 25 listed under treaties (JAMBA, CAMBA, BONN); including four cormorants, nine herons and allies, three rails, 23 shorebirds and six gulls and terns. Dolphins and turtles are commonly observed (DAWE, 2022b).			
Adelaide River Floodplain System	352 km northeast	A major floodplain-tidal wetland system typical of the Top End region consisting of the largest blocks of mangrove associated with a floodplain, a tightly meandering major tidal river, and several marginal lakes and swamps including the largest floodplain lake (Lake Finniss), and near-permanent marsh (Fogg Dam, Melacca Swamp), considered a rare wetland type in NT. Records indicate there are 88 waterbird species, 43 of them listed under treaties (JAMBA/CAMBA). Saltwater crocodiles, freshwater crocodiles, freshwater turtles, water python, snakes, frogs and numerous fish species are associated with the floodplain, fringing billabongs and swamps. Dolphins and dugongs occur in the lower part of the estuary (DAWE, 2022b).			
Shoal Bay - Micket Creek	313 km northeast	The Shoal Bay – Micket creek is a spring fed coastal freshwater floodplain consisting of wetland marshes, mangrove woodlands, beaches, mudflats, creeks and estuaries. The wetland area stretches from Lee Point, which is outside Defence property, around the coast to Gunn Point. Micket Creek is a tidal estuary flowing into Shoal Bay. King creek, other smaller creeks, and water from Noogoo Swamp flow into Shoal Bay.			
		The Micket Creek area is a significant bird habitat with over 200 species of birds recorded. It is also a dry season refuge for waterfowl and birds of prey. High numbers of migratory shorebirds regularly use the areas' mudflats with counts of more than 15,000 waders. The estuary creeks provide a significant nursery for Barramundi. Twenty-five migratory birds listed on international agreements with Japan and China (JAMBA/CAMBA) have been recorded from intertidal feeding sites, saline flats and local sewage ponds. The most common of these birds are the greenshank, sharp-tailed sandpiper, bar-tailed godwit, black-tailed godwit, great knot, large sand plover and red-necked stint. The area is also notable for the nationally endangered little tern (DAWE, 2022b).			
Mary Floodplain System	374 km northeast	A major floodplain-tidal wetland system typical of the Top End region, however unusual due to a lack of coherent river channel or major river estuary. The Mary Floodplain adjoins the Adelaide River Floodplain System located in the northwest. The site includes some of the largest areas of wooded swamp (apart from Arafura Swamp) in the NT and featuring a complex network of channels and billabongs. At least 75 bird species have been recorded, 33 listed under treaties (JAMBA, CAMBA, BONN. The site is one of the two to three most important breeding areas for magpie goose in part due to an abundance of nesting sites and feeding habitat (DAWE, 2022b).			
Kakadu National Park	420 km northeast	Kakadu National Park is a Ramsar site of contiguous wetlands comprising the catchments of two large river systems, the East and South Alligator rivers, seasonal creeks and the lower reaches of the			

Name	Distance from Beehive-1	Description
		East Alligator River. It also includes the Magela Creek floodplain, the lower South Alligator floodplain, the entire West Alligator River system and nearly all the Wildman River system.
		During the dry season water contracts into lagoons and billabongs and up to two million waterbirds frequent the floodplains. At least 53 species of waterbirds use the Ramsar site including large concentrations of magpie geese and wandering whistling-duck. These and many other species breed in the wetlands but most species are dry season migrants (DAWE, 2022b).
		Both freshwater and saltwater crocodiles are known to breed within the Ramsar site. Fifty-nine fish species are known from the wetland, including eight with narrowly restricted ranges (DAWE, 2022b).
Murgenella- Cooper Floodplain System	498 km northeast	A good example of a floodplain-tidal wetland system of the Top End region, with relatively low volume of freshwater inflow. Surface water flows into the system mainly from Cooper Creek, originating 70 km east south-east (catchment area of 165 000 ha), and several unnamed creeks including minor creeks. At least 71 bird species have been recorded in the area, 26 on treaties (JAMBA, CAMBA, BONN). Magpie geese breed extensively on both Murgenella and Cooper Floodplains. Although, the Murgenella floodplain is not known as a breeding area for saltwater crocodile, Cooper creek swamps are thought to have high numbers (DAWE, 2022b).
Cobourg Peninsula System	460 km northeast	The Coburg Peninsula system is a good example of mangrove swamp occurring around tidal channels and islands not associated with substantial riverine inflow. It is has one of the largest discrete blocks of mangroves in the NT. Most of the site's wetlands are tidal, with numerous creeks flowing into the tidal areas. 58 species of bird species have been recorded, at least 21 listed under treaties (JAMBA/CAMBA); includes four darters and cormorants, 12 herons and allies (e.g., eastern reef egret), 23 shorebirds (e.g., eastern curlew) and six gulls and terns. Saltwater crocodile are present in the tidal areas (e.g., south ends of Port Bremer and Raffles Bay) but densities are relatively low. At least 13 frog species occur on the peninsula. Marine turtles (green and hawksbill turtles) occur at most of the islands and headlands, with all species known to breed in the NT. Dugong occur in the Minimini channels and widely in adjacent shallow seas, with high densities in some northern embayments (DAWE, 2022b).

5.4.9. State/Territory Protected Areas

There is several WA- and NT-managed marine protected areas intersected by the EMBA, previously shown in Figure 5.54 and described in Table 5.16.

Table 5.16. Marine protected areas in the spill EMBA

Name	Distance from Beehive-1	Description
WA		
North Kimberley Marine Park	68 km south	The North Kimberley Marine Park is the largest state marine park in WA, covering an area of approximately 18,450 km². The park is located in state waters and extends from York Sound to Cape Londonderry, to the JBG and up to the WA/NT border (DPW, 2016). The park is managed under a joint management plan between the Department of Parks and Wildlife (DPW) and the Uunguu, Balangarra, Miriuwung Gajerrong and Wilinggin traditional owners (DPW, 2016).
		The North Kimberley Marine Park covers a large variety of marine habitats including coral reefs, seagrass, mangroves and macroalgal communities. More than 1,000 islands and associated intertidal and subtidal habitats are contained within its boundaries. Seagrass beds found around Cape Londonderry (164 km west of the activity area) provide foraging areas for dugong and marine turtles (DPW, 2016).
		The marine park surrounds thousands of islands with diverse and rich habitats. Marine turtle nesting sites and breeding sites for seabirds and migratory shorebirds have been identified within the marine park, and fringing reefs line the shores of almost all of the islands (DPAW, 2016). The productive deep waters that surround the islands and open sea reefs provide foraging habitat for marine mammals and pelagic fish, such as mackerel (DPW, 2016). The complex coastline of the mainland also creates a variety of habitats and communities, including important areas for dugongs, Australian snubfin dolphins and Australian humpback dolphins (DPW, 2016). The marine park also contains many places of cultural and spiritual importance to traditional owners (DPW, 2016).
		Environmentally significant areas with the marine park include:
		King Shoals Sanctuary Zone – supports a wide diversity of organisms including corals and other reef dwelling species. The area is likely to be foraging grounds for flatback turtles and sawfish.
		Cape Domett Special Purpose Zone – is a globally significant nesting area for flatback turtles, and the surrounding waters provide habitat for sawfish, Australian snubfin dolphins and include mangroves.
North Lalang- garram Marine Park	423 km southwest	The North Lalang-garram Marine Park lies within Dambimangari country between Lalang-garram / Camden Sound Marine Park and the North Kimberley Marine Park and covers about 110,000 hectares.
Lalang- garram/ Camden	423 km southwest	The Lalang-garram/Camden Sound Marine Park is a state marine park located 150 km north of Derby. It contains a range of species listed as having special conservation status including marine turtles, snubfin

Name	Distance from Beehive-1	Description
Sound Marine Park		and Indo-Pacific humpback dolphins, dugong, saltwater crocodiles, and several species of sawfish. The park also includes a wide range of marine habitats and associated marine life, such as coral reef communities, rocky shoals, and the extensive mangrove forests and marine life of the St George Basin and Prince Regent River. T
		The marine park is one is the most important humpback whale nursery in the southern hemisphere. A special purpose zone (whale conservation) with specific management arrangements has been established to enhance protection of humpback cows and calves in the humpback whale calving area of Camden Sound. This zone covers about 168,000 hectares (approximately 24%) of the marine park ((DPaW, 2013).
Rowley Shoals Marine Park	1,044 km southwest	The Rowley Shoals Marine Park is a WA managed marine park adjacent to Mermaid Reef, Commonwealth managed Marine Park. The Rowley Shoals Marine Park protect a chain of three coral atolls at the edge of Australia's continental shelf. The atolls have shallow lagoons inhabited by diverse corals and abundant marine life. Each cover around 80km-90km, rising with near-vertical sides from very deep water. At low tide the water becomes ponded within the reef walls, and gushes over the edge like waterfalls. At high tide, the reefs disappear beneath the sea, with only the sandy islands of Clerke and Imperieuse visible (DBCA, 2017).
		Corals form a spectacular chain of reef systems, each covering about 80km2. Shallow lagoons within the reefs provide sheltered waters that are inhabited by diverse and abundant tropical marine life. Further offshore, the seafloor slopes away to the abyssal plain, some 6000m below. Undersea canyons slice the slope: these features are commonly associated with diverse communities of deep-water corals and sponges and create localised upwellings that aggregate pelagic species like tunas and billfish (DBCA, 2017).
Montebello Islands Marine Park	1,544 km southwest	Refer to previous information provided in Section 5.4.1.
NT		
Garig Gunak Barlu National Park	460 km northeast	Garig Gunak Barlu National Park is a protected area on the Cobourg Peninsula and some adjoining waters approximately 216 km northeast of Darwin. It covers an area of 4,500 km² and is one of only two areas in the NT which contains adjoining land and marine parks. The national park includes the entire Cobourg Peninsula, the surrounding waters of the Arafura Sea and Van Diemen Gulf, including some of the neighbouring islands (e.g., Burford Island) (NT Government, 2020b).
		The protected area was established by joining the former Gurig National Park and the Cobourg Marine Park. Garig Gunak Barlu is Aboriginal owned land, jointly managed by a Board consisting of Iwaidja speaking peoples of the Cobourg Peninsula and NT Government representatives (NT Government, 2020b).
		The Park consists of sandy beaches, dunes and associated coastal grasslands, mangroves, rainforest patches, swamps, lagoons, coral

Name	Distance from Beehive-1	Description
		reefs, sea grass meadows and rich marine life. The park supports rare species such as dugong and marine turtles as listed under the EPBC Act (Table 5.5). In addition, the park is home to the largest wild herd of Banteng (Indonesian cattle) which are an endangered species in their native habitat park (NT Government, 2020b).

5.5. Heritage Values

Cultural heritage can be broadly defined as the legacy of physical science artefacts and intangible attributes of a group or society that are inherited from past generations, maintained in the present and bestowed for the benefit of future generations. Cultural heritage includes tangible culture (such as buildings, monuments, landscapes, books, works of art, and artefacts), intangible culture (such as folklore, traditions, language, and knowledge) and natural heritage (including culturally significant landscapes).

This section describes the cultural heritage values of the EMBA (which includes the coastline up to the high-water mark), which are broadly categorised as Indigenous and non-Indigenous (maritime archaeology).

5.5.1. Aboriginal Heritage Sites

Indigenous Australian people have a strong continuing connection with the area that extends back some 50,000 years. The existence of any unknown Aboriginal sites or artefacts of significance within the offshore waters of northern Australia is considered highly unlikely.

A search of the WA Department of Aboriginal Affairs' Aboriginal Heritage Inquiry System (AHIS) online was undertaken within the spill EMBA. There are 280 registered Aboriginal sites that within the fall spill EMBA. The majority of the registered sites are located along the coastline between the Derby-West Kimberley, Mitchell River and Wyndham-East Kimberley shoreline sectors which are considered to be remote unpopulated areas in northern WA (see Figure 5.9).

5.5.2. Maritime Archaeological Heritage

Historic shipwrecks are recognised and protected under the *Underwater Cultural Heritage Act* 2018, which aims to protect historic wrecks and associated relics. Under the Act, all wrecks more than 75 years old are protected, together with their associated relics regardless of whether their actual locations are known.

There are 178 shipwrecks identified within the EMBA; 106 located in off the WA coast and 72 located off the NT coast. The locations of these shipwrecks are illustrated in Figure 5.58.

5.5.3. Native Title

A search of the National Native Title Tribunal (NNTT) Register identifies the following Native Title registered areas within the spill EMBA:

 Miriuwung Gajerrong (#4 and Western Australia) - represented by the Miriuwung and Gajerrong Aboriginal Corporation (MG Corporation). The determination area extends to intertidal areas and sea country intersected by the EMBA in the Cambridge Gulf and eastern Kimberley region (Figure 5.59).

- Balanggarra (#3) represented by the Balanggarra Aboriginal Corporation RNTBC. The northern boundary of the area is situated south of Adolphus Island and continues south along the Ord River (within the spill EMBA) (Figure 5.60).
- Balanggarra (#4) represented by the Balanggarra Aboriginal Corporation RNTBC. The
 native title covers all land comprising Adolphus Island, above the high water mark
 (Figure 5.60).
- Balanggarra (Combined) represented by the Balanggarra Aboriginal Corporation RNTBC.
 The determination area includes waters at the 3 nautical mile coastal water limit
 including Lacrosse Island (above the low water mark) and Adolphus Island (above the
 high water mark) (Figure 5.60).
- Bardi and Jawi Native Title Determination represented by the Bardi and Jawi Niimidiman Aboriginal Corporation RNTBC. The determination area includes the waters from Pender Bay, Thomas Bay, Curlew Bay, Cygnet Bay and Goodenough Bay.
- Bindunbur represented by the Gogolanyngor Aboriginal Corporation, Nimanburr Aboriginal Corporation and Nyul Nyul PBC Aboriginal Corporation. Parts of the native title determination area within the spill EMBA include Lacepede Islands and its surrounding waters offshore and Goodenough Bay on the Dampier Peninsula.
- Dambimangari represented by Wanjina-Wunggurr (Native Title) Aboriginal Corporation RNTBC. The determination area covers the Shire of Derby, West Kimberley and Shire of Wyndham-East Kimberley.
- Mayala #2 represented by the Mayala Inninalang Aboriginal Corporation. The native title exists in parts of the determination area on two islands (Area 1 and Area 2) east of Arbidej Island and one island (Area 3) northeast of Umida island.
- Mayala People represented by the Mayala Inninalang Aboriginal Corporation. The
 native title exists in the determination area that includes parts of King Sound, Cone Bay,
 Strickland Bay, Yampi Sound and numerous offshore islands off the Derby-West
 Kimberley sector including Bathurst Island and Sir Frederick Island.
- Uunguu Part A represented by Wanjina-Wunggurr (Native Title) Aboriginal Corporation RNTBC. The determination area includes the offshore islands and waters of York Sound, Montague Sound, and Admiralty Gulf.
- Uunguu Area B represented by Wanjina-Wunggurr (Native Title) Aboriginal Corporation RNTBC. The determination area includes the nearshore waters of Port Warrendah and the adjacent Kimberley mainland.
- Spirit Hills Pastoral Lease No.2 represented by Top End (Default PBC/CLA) Aboriginal Corporation RNTBC. The western boundary of the determination area is on the WA/NT border and includes the land and waters associated with six estates or pastoral leases on the NT mainland.
- Legune Pastoral Lease represented by Top End (Default PBC/CLA) Aboriginal Corporation RNTBC. The determination area is located in the NT near the Keep River National Park Extension and is held by the Gajerrong-Wadanybang, Gajerrong-Gurrbjim and Gajerrong-Djarrajarrany groups.

- Larrakia (Part A consolidated proceeding) represented by the Northern Territory A/TSI body area. The determination area includes waters near and surrounding Darwin Port including the Darwin waterfront and Darwin municipality.
- Croker Island represented by the Top End (Default PBC/CLA) Aboriginal Corporation RNTBC. The determination area includes Croker Island, Templer Island, Valencia Island, Darch Island, Grant Island, Lawson Island, Oxley Island and Mc Cluer Island.

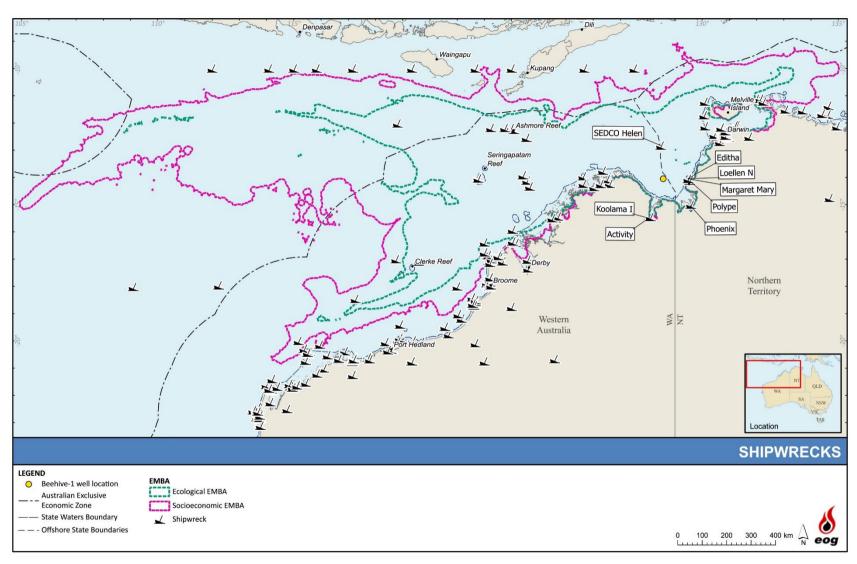


Figure 5.58. Shipwrecks intersected by the EMBA

996161-2022-Beehive#1-Drilling-EP-Rev2

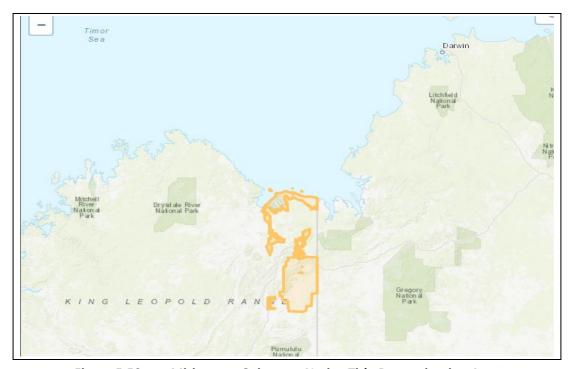


Figure 5.59. Miriuwung Gajerrong Native Title Determination Area

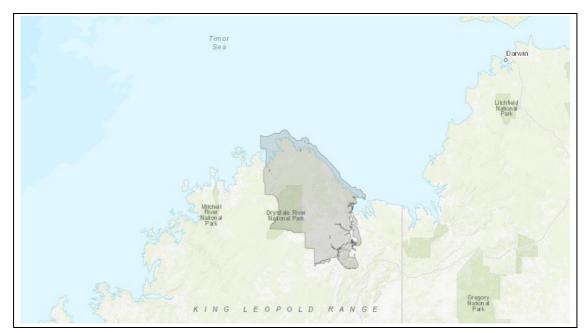


Figure 5.60. Balanggarra Native Title Determination Area

5.6. Socio-economic environment

This section describes the social and economic environment of the EMBA.

5.6.1. Commercial Fishing

Several Commonwealth, WA and NT commercial fisheries are licensed to operate in the EMBA. These are described in the following sections.

Commonwealth-managed Fisheries

Commonwealth fisheries are managed by AFMA under the *Fisheries Management Act 1991* (Cth). Their jurisdiction covers the area of ocean from 3 nm from the coast out to the 200 nm limit (the extent of the Australian Fishing Zone [AFZ]). Commonwealth commercial fisheries with jurisdictions to fish the EMBA are the:

- Northern Prawn Fishery (NPF).
- North West Slope Trawl Fishery;
- Southern Bluefin Tuna (SBT) Fishery;
- Western Tuna and Billfish Fishery;
- Western Deepwater Trawl Fishery; and
- Western Skipjack Fishery.

Of these fisheries, only the NPF and the North West Slope Trawl Fishery have evidence of recent (within the last three years) fishing activity in the EMBA. The NPF is discussed in detail in Section 5.71 of Chapter 5 of the EP.

Although there is no current fishing effort nor previous active fishing for the Southern Bluefin Tuna Fishery off WA, the EMBA does overlap a known spawning ground for this species (see Table 5.17). Table 5.17 summarises the key facts and figures of the relevant fisheries.

Table 5.17. Commonwealth-managed commercial fisheries with jurisdictions to fish in the EMBA

Fishery	Target species	Fishing activity in the EMBA?	Fishing season	Fishing methods, vessels and licences	Catch data and other information
NPF (Figure 5.61)	Redleg banana prawn (Fenneropenaeus indicus), white banana prawn (F. merguiensis), brown tiger prawn (Penaeus esculentus), grooved tiger prawn (P. semisulcatus), blue endeavour prawn (Metapenaeus endeavouri) and red endeavour prawn (M. ensis)	Areas include JBG (low fishing intensity), southwest of Darwin (low to medium intensity), north of Melville Island (low to high intensity) extending to Cobourg Peninsula (low to medium intensity).	The NPF operates in two seasons; • First - beginning in April for a duration of 6-12 weeks during which time banana prawns are mainly caught. • Second (August - November), when tiger prawns are predominately caught.	Otter trawl is the primary fishing method. In 2019, there were 52 active permits and 52 active vessels.	Catch data and economic value available for the last five years: • 2020 – 4,767 tonnes valued at 84.9 million. • 2019 – 8,581 tonnes valued at \$117.1 million. • 2018 – 6,778 tonnes valued at \$98.2 million. • 2017 – 6,602 tonnes valued at \$118.1 million. • 2016 – 5,794 tonnes valued at \$126.1 million.
North West Slope Trawl Fishery (Figure 5.62)	Australian scampi (Metanephrops australiensis) smaller quantities of velvet scampi (M. velutinus) and Boschma's scampi (M. boschmai) are also harvested. Mixed deep-water snappers are also a component of the catch.	Low to high intensity fishing area northeast of Clerke Reef; including a small area southwest of Cunningham Island.	All year round.	Deepwater demersal trawling. Fishing occurs on the continental slope in water depths greater than 200 m. The number of vessels involved in the fishery has been one or two vessels each year since 2008/2009.	Catch data available for the following years (economic value confidential): • 2020-21 – not yet available. • 2019-20 – 111.5 tonnes. • 2018-19 – 67.4 tonnes. • 2017-18 – 79.8 tonnes. • 2016-17 – 57.7 tonnes.

Fishery	Target species	Fishing activity in the EMBA?	Fishing season	Fishing methods, vessels and licences	Catch data and other information
Southern Bluefin Tuna Fishery (Figure 5.63)	Southern bluefin tuna (Thunnus maccoyii).	There has been no active fishing in WA in recent years as fishing efforts are concentrated off New South Wales and SA (Patterson et al., 2019). However, the EMBA extends to the potential spawning grounds of the target species in the northwest of WA between September and March, and larvae are seasonally abundant in surface waters during these months.	12-month season begins 1 st December.	Purse seine catch in the GAB for transfer to aquaculture farms off Port Lincoln in South Australia (five to eight vessels consistently fish this area). Port Lincoln is the primary landing port. On the east coast, pelagic longline fishing is the key fishing method. 27 active vessels in the last year (2018-2019).	There is no recent fishing effort in the EMBA. Catch data and economic value available for the following years: • 2020-21 – not yet available. • 2019-20 – 5,429 tonnes worth \$41.27 million. • 2018-19 – 6,074 tonnes worth \$43.41 million. • 2017-18 – 6,159 tonnes worth \$39.73 million. • 2016-17 – 5,334 tonnes worth \$38.57 million.

Sources: Patterson et al (2021; 2020; 2019; 2018; 2017; 2016).

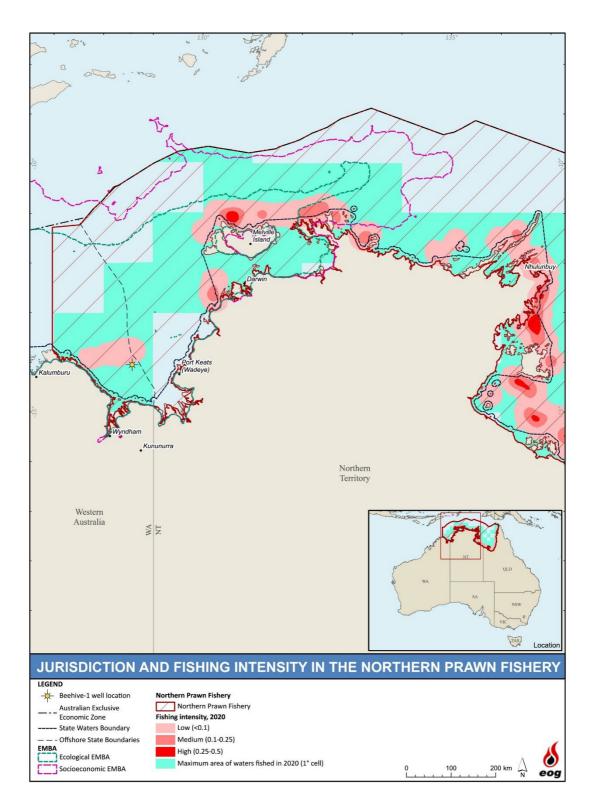


Figure 5.61. Northern Prawn Fishery intersected by the EMBA

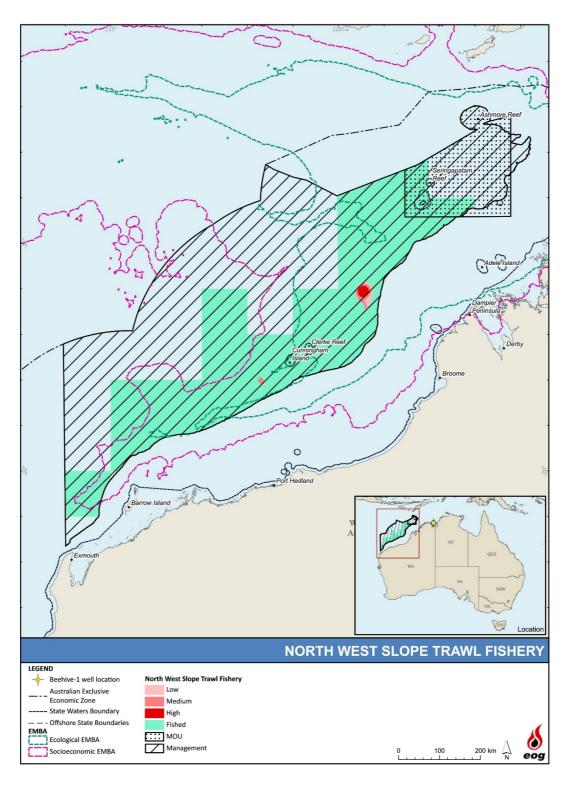


Figure 5.62. North West Slope Trawl Fishery intersected by the EMBA

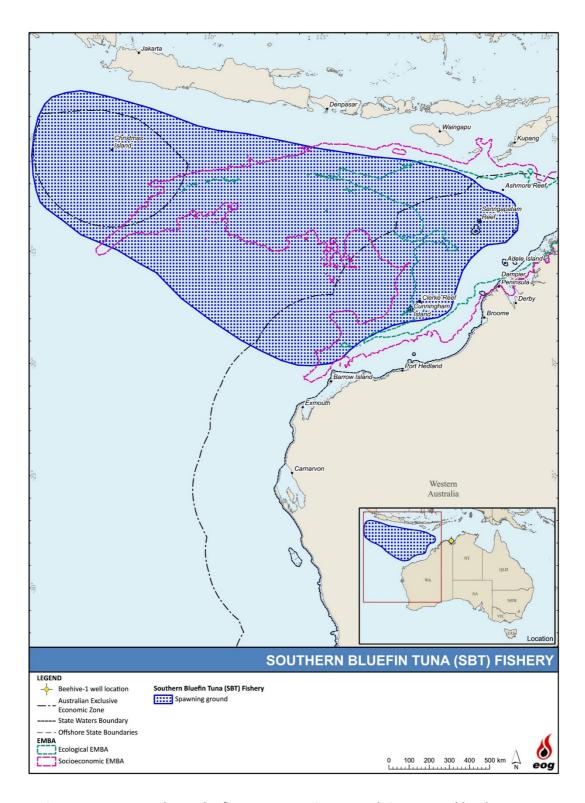


Figure 5.63. Southern Bluefin Tuna spawning grounds intersected by the EMBA

Western Australia-managed Fisheries

Western Australian-managed commercial fisheries that are authorised to harvest in the waters of the activity area and EMBA include the following (noting that not all actively fish):

- Mackerel Managed Fisheries (MMF);
- Northern Demersal Scalefish Managed Fishery;
- Pearl Oyster Managed Fishery;
- Abalone Managed Fishery;
- Kimberley Crab Managed Fishery (North Coast Crab Fishery);
- Kimberly Prawn Managed Fishery;
- Kimberley Gillnet and Barramundi Managed Fishery;
- Broome Prawn Managed Fishery;
- Nickol Bay Prawn Managed Fishery;
- Onslow Prawn Managed Fishery;
- Specimen Shell Fishery;
- Marine Aquarium Fish Managed Fishery (MAFMF);
- Pilbara Demersal Scalefish Fishery;
- Pilbara Crab Managed Fishery (PCMF); and
- West Coast Deep Sea Crustacean Managed Fishery.

Through its consultation process with the WA DPIRD, EOG identified the MMF, the Northern Demersal Scalefish Managed Fishery, Kimberley Crab Managed Fishery, Kimberley Prawn Managed Fishery and the Kimberley Gillnet and Barramundi Fishery as the key fisheries that actively fish in the EMBA. Table 5.18 presents information for these fisheries (noting that catch data for 2020, 2021 or 2020/21 is not yet publicly available).

Table 5.18. WA-managed commercial fisheries with jurisdictions to fish within the EMBA

Fishery	Target species	Fishing activity in the EMBA?	Fishing season	Fishing methods, vessels and licences	Catch data and other information
Northern Demersal Scalefish Managed Fishery (Figure 5.64)	Targets predominately goldband snapper (<i>Pristipomoides multidens</i>), crimson snapper, red emperor (<i>Lutjanus sebae</i>) bluespotted emperor (<i>Lethrinus punctulatus</i>), saddletail snapper (<i>L. malabaricus</i>), rankin cod (<i>Epinephelus multinotatus</i>), brownstripe snapper (<i>L. vitta</i>), rosy threadfin bream (<i>Nemipterus furcosus</i>) and spangled emperor (<i>Lethrinus nebulosus</i>).	The EMBA intersects fishing Area 1 and Area 2; including the Pilbara offshore closed waters (trawl) and Pilbara trap fishing only (Figure 5.64).	Assumed to be year-round.	Although permitted to use handlines, droplines and traplines, since 2002 the fishery has been essentially trap based. Six vessels actively fished in 2019, which is down from seven vessels operating in 2016.	Catch data available for the last five years: • 2019 – 1,507 t. • 2018 – 1,297 t. • 2017 – 1,317 t. • 2016 – 1,173 t. • 2015 – 1,046 t. Majority of catch (87%) was landed in Zone B in the 2019 season.
Mackerel Managed Fishery (Area 1 and 2) (Figure 5.65)	Spanish mackerel (Scomberomorus commerson).	The EMBA intersects fishing Area 1 (Kimberley) and Area 2 (Pilbara) (Figure 5.65)	Fishing is primarily from May – November in 2019. In the Pilbara sector, approximately 65% of effort has historically occurred from July to August.	A total of 15 vessels operated during 2019 across the fishery. In 2014, only three vessels operated in the Kimberley region. Trolling and handline are the only allowable fishing methods.	Catch data available for the last five years: • 2019 – 291 t. • 2018 – 213 t. • 2017 – 283 t. • 2016 – 276 t. • 2015 – 302 t.

Fishery	Target species	Fishing activity in the EMBA?	Fishing season	Fishing methods, vessels and licences	Catch data and other information
Kimberley Crab Managed Fishery (KCMF) (Figure 5.66)	Green mud crabs (<i>Scylla serrata</i>) and brown mud crabs (<i>Scylla olivacea</i>).	The EMBA intersects fishing Area 1 (permitted areas of fishing) (Figure 5. 66)	Generally March to November, with June to September being the most productive months.	Crab traps are the primary fishing method. In 2019, six people were employed as skippers and crew on vessels fishing for mud crab in the KCMF.	Catch data available for the last five years: • 2019 – 7.4 t. • 2018 – 3.2 t. • 2017 – 9.0 t. • 2016 – 2.5 t. • 2015 – 15.3 t
Kimberley Prawn Managed Fishery (Figure 5.67)	Banana prawns (Fenneropenaeus indicus and F. merguiensis) are the primary target species though brown tiger prawns (Penaeus esculentus) and blue endeavour prawns (Metapenaeus endeavouri) are taken as bycatch.	The EMBA intersects the trawled areas and trawl closure areas nearshore and inshore as shown in Figure 5.67. Only the socioeconomic EMBA intersects the size management fish ground (Figure 5.67).	There are two fishing periods for the season (April to mid-June, then from August to the end of November) with around 90% of the total landings taken in the first fishing period.	Otter board trawl system is the primary fishing method.	Catch data available for the last five years: • 2019 – 100 t. • 2018 – 333 t. • 2017 – 269 t. • 2016 – 155 t. • 2015 – 175 t.
Kimberley Gillnet and Barramundi Fishery (Figure 5.68)	Barramundi (Lates calcarifer), king threadfin (Polydactylus macrochir) and blue threadfin (Eleutheronema tetradactylum) are the primary target species.	The EMBA primarily intersects the fishery in areas where the fishery is closed from 1 st November to 31 st January and 1 st December to 31 st January inclusive (Figure 5.68).	Year round, though predominantly occurs from April to September.	Fishing is restricted to state waters. There are currently four licences to the fishery.	Catch data available for the last five years: • 2019 – 73.4 t. • 2018 – 91.8 t. • 2017 – 79.9 t. • 2016 – 74.6 t. • 2015 – 82.1 t.

Fishery	Target species	Fishing activity in the EMBA?	Fishing season	Fishing methods, vessels and licences	Catch data and other information
Pearl Oyster Managed Fishery (Figure 5.69)	Silver lipped pearl oyster (<i>Pinctada maxima</i>).	The EMBA intersects Zone 1, Zone 2 and Zone 3 including the Kimberley development zone of the fishery (Figure 5.69).	Most vessels operate between March and June each year.	Quota-based diver fishery operating in shallow coastal waters.	Catch data available for the last five years: • 2019 – 611,816 shells. • 2018 – 614,002 shells. • 2017 - 468,573 shells. • 2016 - 541,260 shells. • 2015 - 560,005 shells.
Abalone Managed Fishery (Figure 5.70)	Greenlip abalone (<i>Haliotis laevigata</i>) and brownlip abalone (<i>H. conicopora</i>).	Yes	Between 1 October to 15 May the following year.	Abalone diving generally occurs close to the shoreline (generally no greater than 30 m depth) using hookah gear (breathing air supplied via hose connected to an air compressor on the vessel). Commercial divers do not use SCUBA gear.	Catch data available for the last five year: • 2019 – 47 t. • 2018 – 48 t. • 2017 – 48 t. • 2016 – 49 t. • 2015 – 51 t.
Marine Aquarium Fish Managed Fishery (Figure 5.71)	Multispecies including Syngnathids, invertebrates, hard coral, soft coral, living rock and sand, sponges and seagrasses.	Likely	Assumed year-round.	10 out of 12 licences were active during the 2019 season.	Catch data available for the last five years: • 2019 – 11,925 individuals • 2018 – 27,327 individuals • 2017 – 26,113 individuals • 2016 – 15,424 individuals • 2015 – 20,993 individuals

Fishery	Target species	Fishing activity in the EMBA?	Fishing season	Fishing methods, vessels and licences	Catch data and other information
Broome Prawn Managed Fishery (Figure 5.72)	Western king prawn (Melicertus latisulcatus)	The socio-economic EMBA intersects a known fishing area off Broome.	Assumed to follow that of the Kimberley Prawn Managed Fishery	Demersal trawl.	Between 2015-2019, there was trial fishing only with landings <1 tonne each year.
Nickol Bay Managed Prawn Fishery (Figure 5.73)	Banana prawns (Fenneropenaeus indicus and F. merguiensis) are the primary target species though brown tiger prawns (Penaeus esculentus) and blue endeavour prawns (Metapenaeus endeavouri) are taken as bycatch.	Yes –within the fishery extent, however it does not intersect the fishery trawled area nor the size management fish ground (Figure 5.73).	Assumed to follow that of the Kimberley Prawn Managed Fishery.	Demersal trawl.	Catch data available for the last five years: • 2019 – 254 t. • 2018 – 81 t. • 2017 – 227 t. • 2016 – 17 t. • 2015 – 87 t.
Onslow Managed Prawn Fishery (Figure 5.74)	Banana prawns (Fenneropenaeus indicus and F. merguiensis) are the primary target species though brown tiger prawns (Penaeus esculentus) and blue endeavour prawns (Metapenaeus endeavouri) are taken as bycatch.	Yes – within the fishery extent, however it does not intersect the fishery trawled area nor the size management fish ground (Figure 5.74).	Assumed to follow that of the Kimberley Prawn Managed Fishery.	Demersal trawl.	Catch data available for the last five years: • 2019 – 50 t. • 2018 – 60 t. • 2017 – Undisclosed (negligible). • 2016 – 3 t. • 2015 – 10 t.
Specimen Shell Fishery (Figure 5.75)	Specimen shells collected across 241 species in 2019.	Low fishing intensity.	Year-round.	Hand collection.	Catch data available for the last five years: • 2019 – 7,232 shells. • 2018 – 7,628 shells. • 2017 – 7,806 shells. • 2016 – 8,531 shells. • 2015 – 18,391 shells.

Fishery	Target species	Fishing activity in the EMBA?	Fishing season	Fishing methods, vessels and licences	Catch data and other information
Pilbara Demersal Scalefish Managed Fishery (Figure 5.76)	Goldband snapper (<i>Pristipomoides multidens</i>), blue spotted emperor (<i>Lethrinus punctulatus</i>), red emperor (<i>Lutjanus s</i> ebae), saddletail snapper (<i>L. malabaricus</i>), crimson snapper (<i>L. erythropterus</i>) and rosy threadfin bream (<i>Nemipterus furcosus</i>). Blue swimmer crabs (<i>Portunus</i>	Yes – the southwestern extent of the EMBA intersects the Pilbara offshore closed waters (trawl) (Zone 1 and Area 6) and Pilbara trawl (Zone 1 and Zone 2) and trap fishing (Figure 5.76). Yes - the southwestern	Year-round. Fishers generally	Hand line, drop line and fish traps are permitted. Crab trap and drop nets	Catch data available for the last five years: • 2019 – 2,980 t. • 2018 – 2,651 t. • 2017 – 2,529 t. • 2016 – 2,150 t. • 2015 – 1,779 t. Catch data available for the
Managed Fishery (PCMF) (Figure 5.77)	pelagicus)	extent of the EMBA intersects the permitted area of the fishery (Figure 5.77).	operate from March to November with May to September being the most productive months.	are used to harvest crabs.	last five years: • 2019 – 19 t. • 2018 – 35 t. • 2017 – 51 t. • 2016 – 37 t. • 2015 – 64 t.
West Coast Deep Sea Crustacean Managed Fishery (Figure 5.78)	Snow crab (<i>Chaceon albus</i>), spiny crab (<i>Hypothalassia acerba</i>) and giant crab (<i>Pseudocarcinus gigas</i>).	Yes –within the fishery extent and closed waters of the fishery, however fishing effort is concentrated in areas south of Exmouth (outside of EMBA) (Figure 5.78)	Typically from January to June, with greater intensity in January/February.	Baited pots or traps in a long line formation in the shelf edge waters (>150 m).	Catch data available for the last five years: • 2019 – 153 t. • 2018 – 154 t. • 2017 – 164 t. • 2016 – 153 t. • 2015 – 154 t.

Gaughan and Santoro (2021; 2020; 2018); Gaughan et al (2019); Fletcher et al (2017); Fletcher and Santoro (2015), How et al (2015).

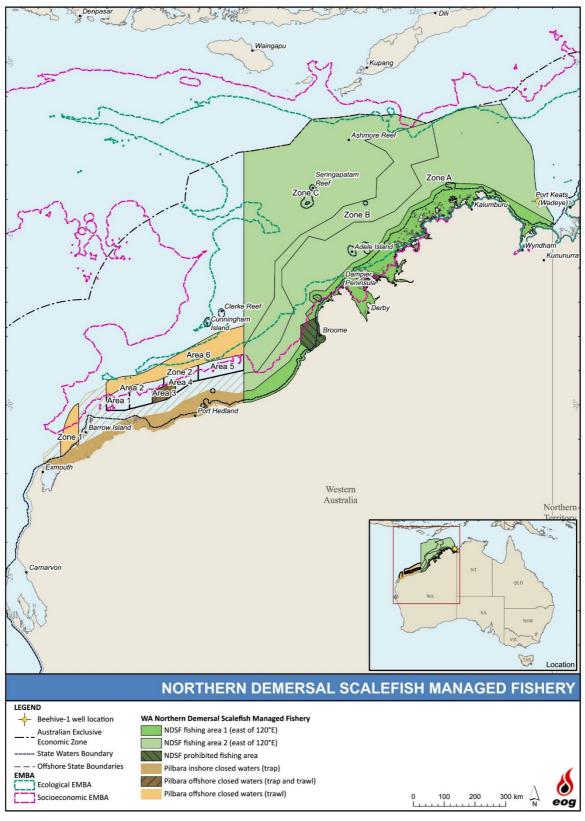


Figure 5.64. WA Northern Demersal Scalefish Fishery intersected by the EMBA



Figure 5.65. WA Mackerel Managed Fishery intersected by the EMBA

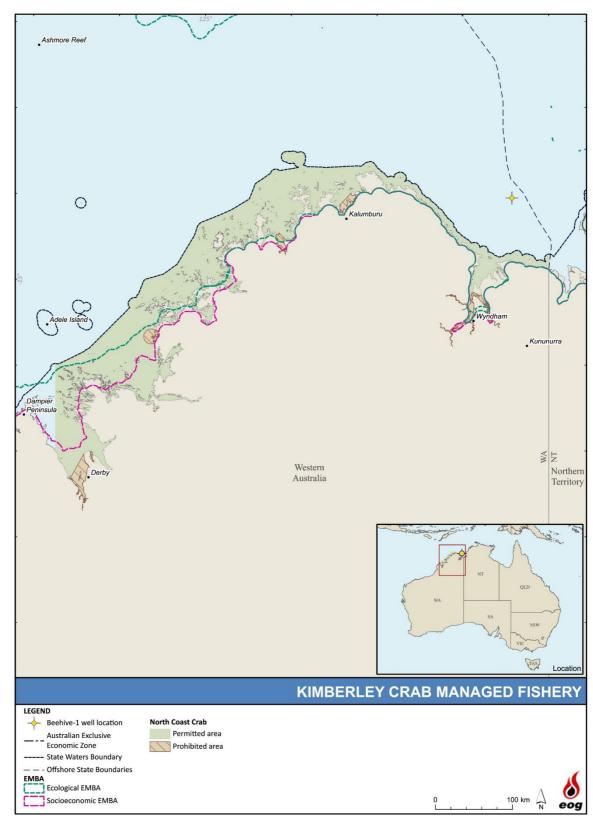


Figure 5.66. WA Kimberley Crab Managed Fishery (North Coast Crab Fishery) intersected by the EMBA

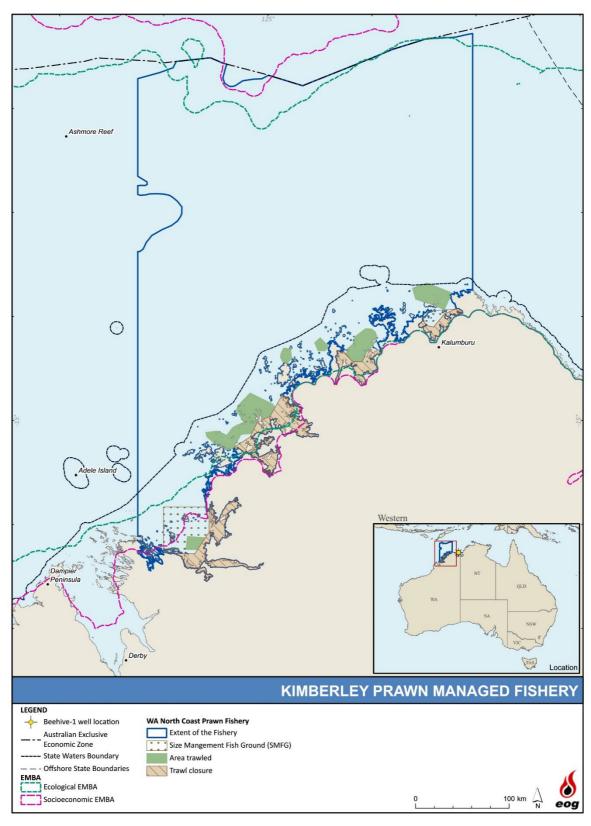


Figure 5.67. WA Kimberley Prawn Managed Fishery intersected by the EMBA

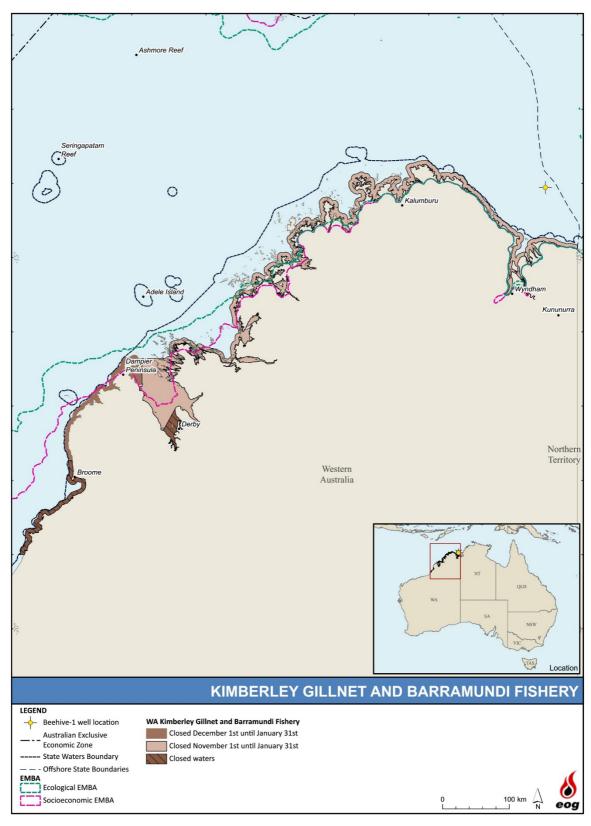


Figure 5.68. WA Kimberley Gillnet and Barramundi Fishery intersected by the EMBA

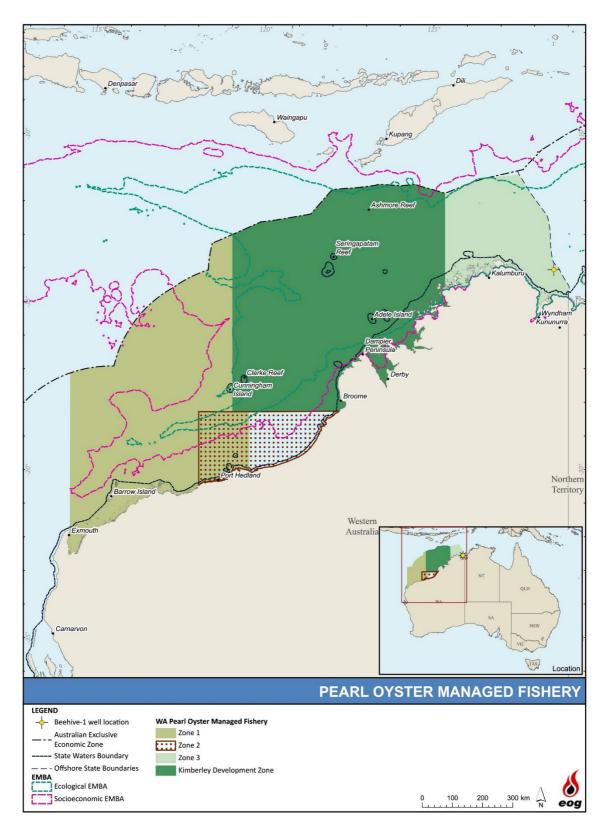


Figure 5.69. WA Pearl Oyster Managed Fishery intersected by the EMBA

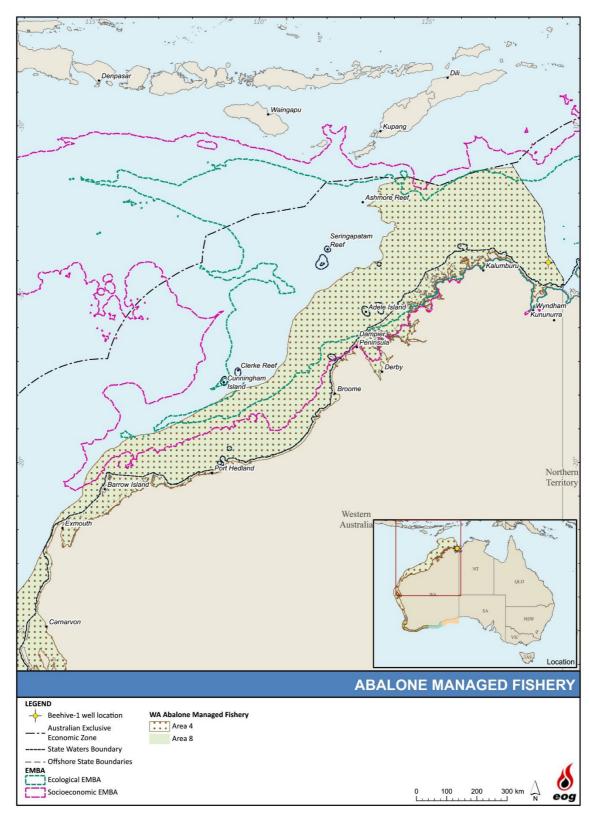


Figure 5.70. WA Abalone Managed Fishery intersected by the EMBA

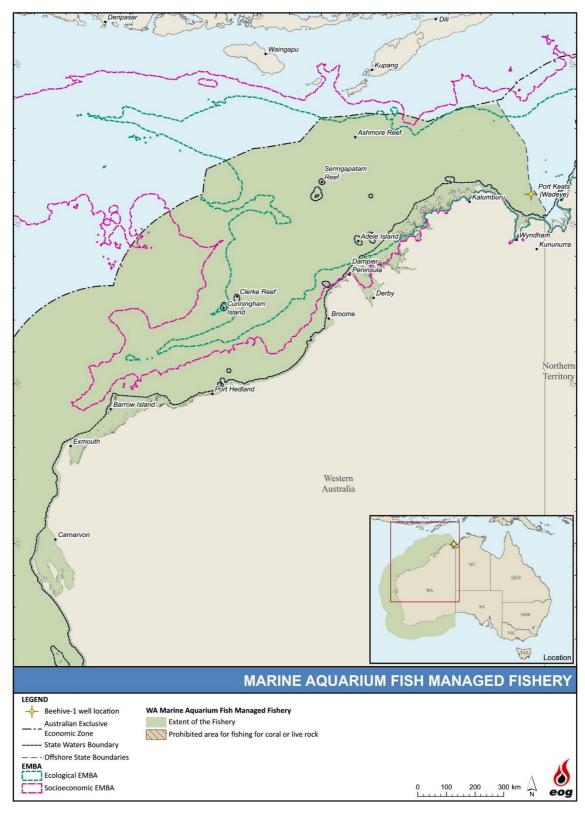


Figure 5.71. WA Marine Aquarium Managed Fishery intersected by the EMBA

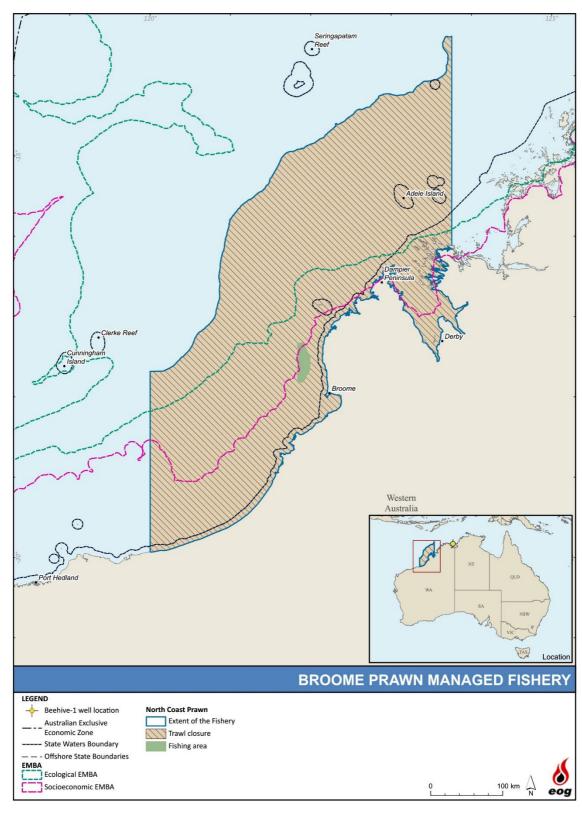


Figure 5.72. WA Broome Prawn Managed Fishery intersected by the EMBA

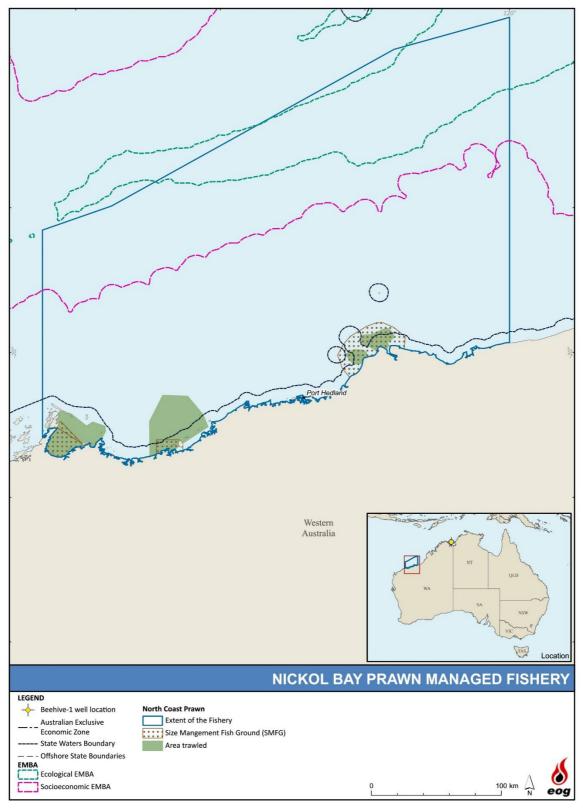


Figure 5.73. WA Nickol Bay Prawn Managed Fishery intersected by the EMBA

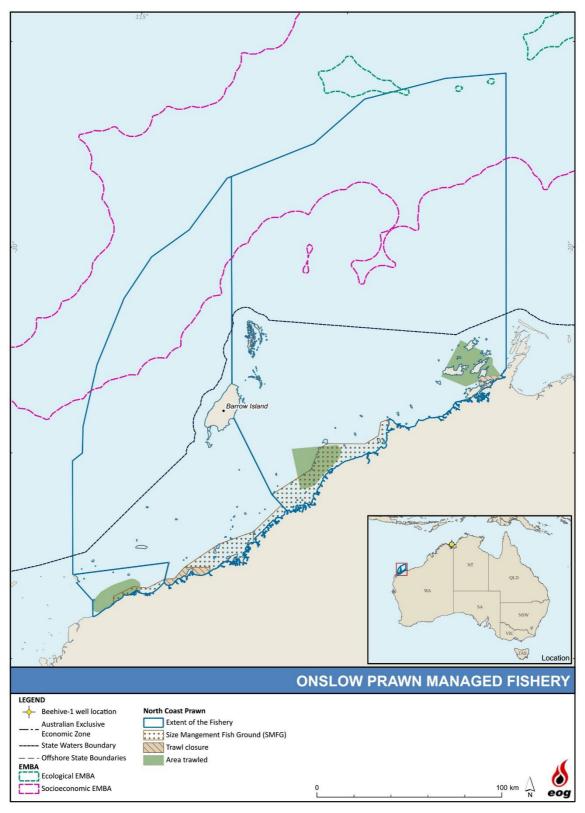


Figure 5.74. WA Onslow Prawn Managed Fishery intersected by the EMBA

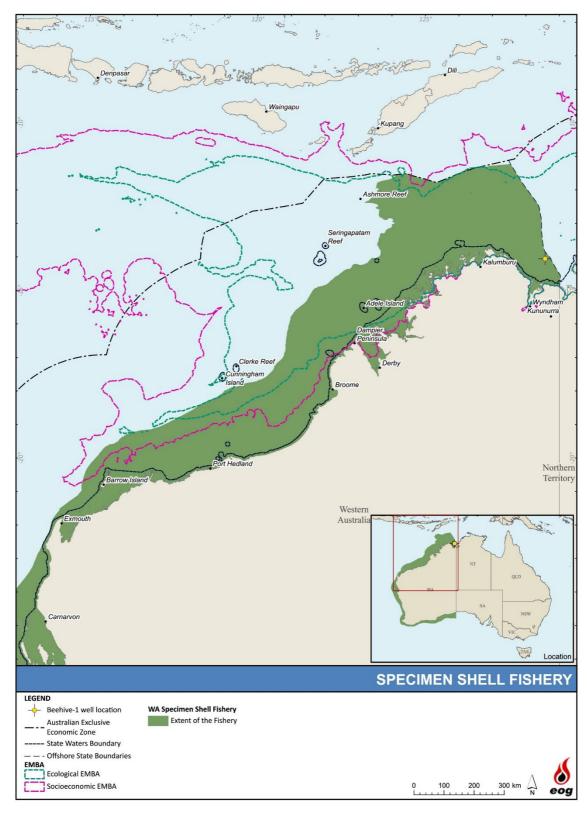


Figure 5.75. WA Specimen Shell Managed Fishery intersected by the EMBA

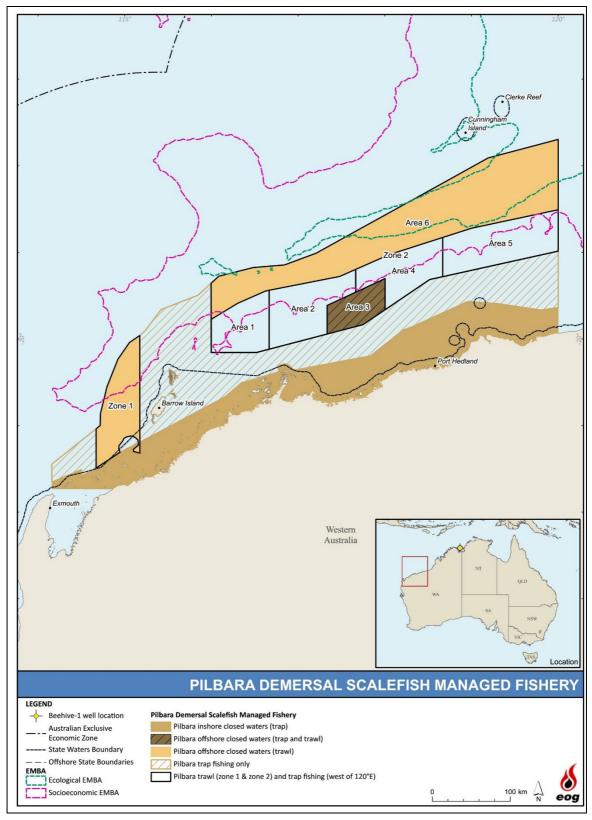


Figure 5.76. Pilbara Demersal Scalefish Fishery intersected by the EMBA

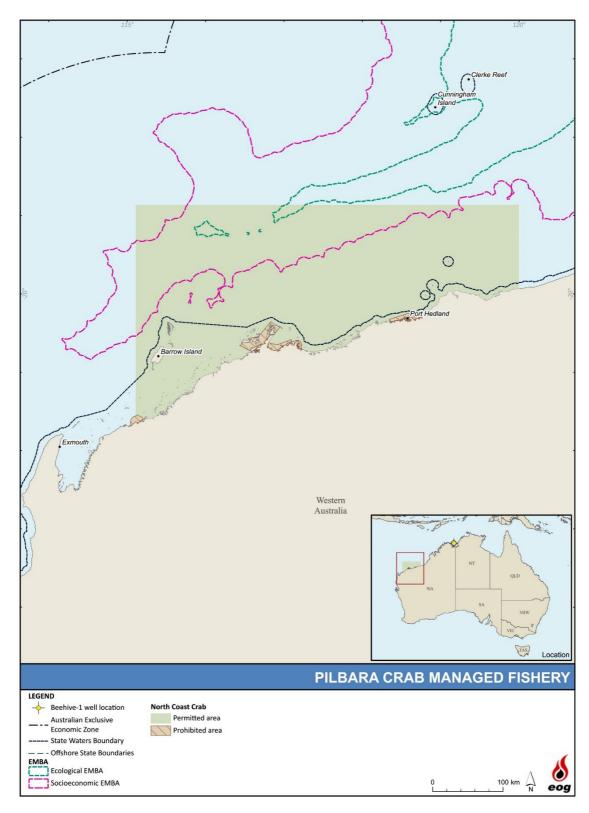


Figure 5.77. Pilbara Managed Crab Fishery intersected by the EMBA

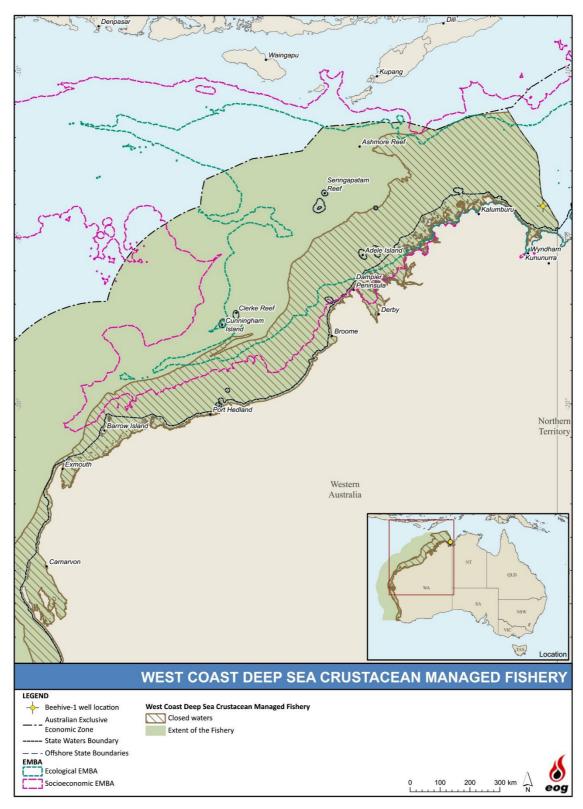


Figure 5.78. West Coast Deep Sea Crustacean Managed Fishery intersected by the EMBA

Northern Territory-managed Fisheries

NT-managed commercial fisheries (under the jurisdiction of the NT DITT) that are authorised to fish the waters of the EMBA include the following (noting that not all actively fish in the EMBA):

- Spanish Mackerel Fishery;
- Barramundi Fishery;
- Bait Net Fishery;
- Coastal Net Fishery;
- Coastal Line fishery;
- Trepang Fishery;
- Aquaculture (pearl oyster and barramundi farming);
- Aquarium Fishery;
- Mollusc Fishery;
- Mud Crab Fishery;
- Pearl Oyster Fishery;
- Small Pelagic Developmental Fishery;
- Fishing Tour Operator Fishery;
- Timor Reef Fishery;
- Offshore Net and Line Fishery; and
- · Demersal Fishery.

A review of data from the NT DITT website and consultation with DITT identifies the Demersal Fishery, Timor Reef Fishery, Spanish Mackerel Fishery and Offshore Net and Line Fishery as have recently fished in the EMBA. Table 5.19 presents the available information for these fisheries.

Table 5.19. NT-managed commercial fisheries with jurisdictions to fish within the EMBA

Fishery	Target species	Fishing activity in the EMBA?	Fishing season	Fishing methods, vessels and licences	Catch data and other information
Demersal Fishery (Figure 5.79)	Primarily targets red snapper (Lutjanus erythropterus), goldband snapper (Pristipomoides multidens) and saddletail snapper (L. malabaricus).	Yes – the EMBA intersects the the line and fish trap permitted areas and Zone A and Zone B (line and fish trap, finfish trawl gear permitted) (Figure 5.79).	Assumed year-round.	Fishing method is through the use of vertical lines, drop lines, finfish longlines, baited fish traps and semidemersal trawl nets in two multigear areas. Eight vessels operated in 2020. In 2021 there were 18 licences in the fishery.	In 2020, 3,492 t (including 2,522 t of red snapper and 218 t of goldband snapper) was caught. No data found for 2018 and 2019. In 2017, 3,387 t (including 505 t of red snapper and 341 t of goldband snapper) was caught, with an estimated value of \$17.9 million. In 2016, 3,463 t (including 2,510 t of red snapper and 318 t of goldband snapper) was caught. In 2015, 3,107 t (including 2,299 t of red snapper and 279 t of goldband snapper) was caught.
Spanish Mackerel Fishery (Figure 5.80)	Primarily targets Spanish mackerel (Scomberomorus commerson).	Yes – northeastern extent of EMBA intersects the fishery (Figure 5.80).	Assumed year-round.	The primary fishing method used by all sectors is trolling, where baited hooks or lures are towed behind a boat moving at 3–6 knots near reefs, headlands and shoals. In 2021 there were 15 licences in the fishery, all of which were allocated.	Catch data available for the last five years: • 2019/20 – 357 t. • 2018/19 – 408 t. • 2017/18 – 372 t. • 2016/17 – 411 t. • 2015/16 – 399 t.

Fishery	Target species	Fishing activity in the EMBA?	Fishing season	Fishing methods, vessels and licences	Catch data and other information
Offshore Net and Line Fishery (Figure 5.81)	Blacktip shark (Carcharhinus limbatus), spot tail shark (Carcharhinus sorrah) and grey mackerel (Scomberomorus semifasciatus).	Yes – northeastern extent of EMBA intersects the fishery (Figure 5.81).	Assumed year-round.	Demersal or pelagic longlines or pelagic net gear is permitted.	Catch data available (for combination of grey mackerel, combined black tip shark, spot tail shark only): • 2018/2019 – 553 t • 2017/2018 – 461 t • 2016/2017 – 486 t • 2015/2016 – 424 t • 2014/2015 – 532 t
Timor Reef Fishery (see Figure 5.79 (as per Demersal Fishery)	Goldband snapper (<i>Pristipomoides multidens</i>).	Yes.	There is no closed season for the Timor Reef Fishery, but normally, it is most productive between October and May.	Operates in remote offshore waters in the Timor Sea in a defined area approximately 370 km northwest of Darwin. Methods include vertical lines, drop line, long lines and fish baited traps	Catch data available for the last five years: • 2019 – 246 t • 2018 – 349 t • 2017 – 329 t • 2016 – 280 t • 2015 – 285 t
Bait Net Fishery	Bait fish.	Possibly.	Assumed year- round	Fishing allowed from the high-water mark to the 3 nm seaward of the low-water mark, excluding Darwin Harbour and Shoal Bay. Methods include bait net, cast net or scoop net. In 2021, the fishery was restricted to two licences, both were allocated.	No data available.

Fishery	Target species	Fishing activity in the EMBA?	Fishing season	Fishing methods, vessels and licences	Catch data and other information
Coastal Line Fishery	Black jewfish (Protonibea diacanthus).	Possibly.	Possibly all year-round.	Extends 15 nm from the low water mark and covers the entire NT coastline. The majority of fishing effort is focused around rocky reefs within 150 km of Darwin. Mainly hook and line gear is used.	Limited catch data available, however data is available for the last five years for the Darwin region: • 2019 – 141 t • 2018 – 120 t • 2017 – 173 t • 2016 – 155 t • 2015 – 124 t
Coastal Net Fishery	Mullet (<i>Mugil</i> spp)	Yes – fishery operates inshore, extending from the high-water mark out to 3 nm (as per the Coastal Line Fishery) (see Figure 5.82).	Assumed year-round.	Fishery is divided into 3 regions: Darwin – from Cape Hotham to Native Point and Cape Ford to Cape Dooley, between Cape Arnhem and Cape Wilberforce; and from Bing Bong Creek and Pelican Spit. Only netting is permitted. In 2021, fishery was restricted to five licences, all of which were allocated.	No data available.
Barramundi Fishery	Primarily barramundi (Lates calcarifer) and king threadfin (Polydactylus macrochir).	Possibly.	Annual commercial fishing runs from 1st February to 30 September.	Operate in tidal mud flats and inside a restricted number of rivers using gillnets. As of 2016, there were 14 licences and approximately 10 boats.	Catch data available for the last five years: • 2019 – 276 t • 2018 – 277 t • 2017 – 392 t • 2016 – 305 t • 2015 – 383 t

Fishery	Target species	Fishing activity in the EMBA?	Fishing season	Fishing methods, vessels and licences	Catch data and other information
Trepang Fishery	Sandfish (Holothuria scabra)	Yes - fishery area extends from the NT high-water mark out to 3 nm (see Figure 5.83).	All year-round, though harvesting occurs on neap tides during the dry season (May to October).	Method is by hand either on foot or by diving, usually on neap tides during the dry season when the water is clearer. In 2021, there were 6 licences in the fishery, with only one or two boats active over the past few years.	Estimated catch data available for last five years (source: NT Govt, 2021): 2019/2020 – 32 t 2018/2019 – 48 t 2017/2018 – 56 t 2016/2017 – 94 t 2015/2016 – 36 t

Fishery	Target species	Fishing activity in the EMBA?	Fishing season	Fishing methods, vessels and licences	Catch data and other information
Aquaculture	Pearl oyster (Pinctada maxima) culture and Barramundi farming (Lates calcarifer) including sea cucumber (trepang), giant clams and freshwater plants.	Possibly.	Assumed all year-round.	A large number of pearl oysters for seeding is obtained from wild stocks and supplemented by hatchery-produced oysters with major hatcheries operating at Broome and the Dampier Peninsular (Gaughan & Santoro, 2021). Wild shell collection occurs in shallow coastal waters. All the leases are within 35 m diving depth. Pearl farm sites are located mainly along the Kimberley coast, particularly in the Buccaneer Archipelago, in Roebuck Bay and at the Montebello Islands.	No data available.
				Developing marine aquaculture initiatives in the Kimberley region include farming barramundi in the Kimberley Aquaculture Development Zone located in Cone Bay, situated approximately 200 km north-east of Broome (Gaughan & Santoro, 2021). Another focus is the Broome Tropical Aquaculture Park where a commercial pearl oyster hatchery is located along with the Kimberley Training Institute aquaculture facility (Gaughan & Santoro, 2021).	

Fishery	Target species	Fishing activity in the EMBA?	Fishing season	Fishing methods, vessels and licences	Catch data and other information
Aquarium Fishery	Freshwater and marine species including fish, plants and invertebrates.	Yes - fishery extends from the NT inland estuarine and marine waters out to the outer boundary of the Australian Fishing Zone (excluding Aboriginal sacred sites and other closed areas) (see Figure 5.84).	All year-round.	Methods of collection are by hand or small scoop nets. In 2016, there were 11 licences with only 3 boats active.	No data available.
Mollusc Fishery	Molluscs and shellfish (excluding pearl oysters or cephalopods such as squid, octopus, cuttlefish and nautilus).	Possibly.	Assumed all year-round.	Operates in intertidal waters from the high-water mark out to the low water mark. Molluscs are collected by hand. There is only one commercial licence allocated.	No data available.
Mud Crab Fishery	Giant mud crab (Scylla serrata).	Yes – fishery extends mainly around coastal areas and tidal waters (excluding Aboriginal sacred sites and other closed areas or closed waters).	All year-round, except during the wet season (November to April).	Crab fishing is generally confined to coastal mudflats and estuaries. commercial crabbing is banned from Darwin, most creeks adjoining Shoal Bay and waterways of Kakadu National Park. Method of catch via dinghies using	No data available.
				rigid metal crab pots. Crabs are transported live to Darwin. In 2021, there were 49 licences for crab fishing, each licence is allowed 60 pots.	

Fishery	Target species	Fishing activity in the EMBA?	Fishing season	Fishing methods, vessels and licences	Catch data and other information
Pearl Oyster Fishery	Pearl Oyster (<i>Pinctada maxima</i>).	Most likely – fishing operates from the high-water mark to the outer boundary of the Australian fishing zone, 200 nautical miles offshore.	All year-round.	Pearl oysters are collected by hand. There are currently 5 licences in the fishery.	A total of 138,000 oysters can be collected by hand only each year.
Small Pelagic Developmental Fishery	Blacktip sharks (Carcharhinus tilstoni, C. limbatus and C. sorrah).	Possibly.	Assumed all year-round	Method is pelagic long lines or pelagic nets. There are currently three active licences.	In 2017, a commercial catch of 0.1 tonnes was reported.
Fishing Tour Operator Fishery	Target fish include barramundi, golden snapper, stripey snapper, saddletail snapper and grass emperor.	Possibly - fishery operates in non-tidal and tidal waters from the NT boundary to the outer limit of the Australian Fishing Zone generally in areas that are accessible to the general public.	Assumed all year-round	Primary method is hook and line. Commercial fishing tour operators (FTOs) are managed by the NT Government and operate under specific licence conditions including reporting of catch and effort statistics.	No data available.

Sources: NT Government (2022 a, 2022b, 2022c, 2022d, 2022e, 2022f, 2022g, 2022h, 2021a, 2020, 2019), NTSC (2022a, 2022b, 2022c, 2022d, 2022e, 2022f, 2022g), DPIR (2021, 2019, 2018). FRDC (2022), (Gaughan & Santoro, 2021).

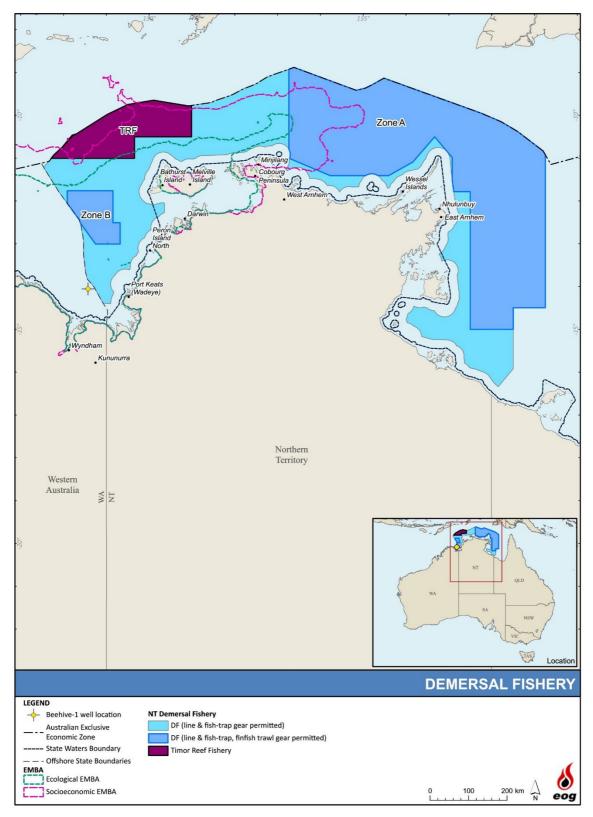


Figure 5.79. NT Demersal Fishery intersected by the EMBA

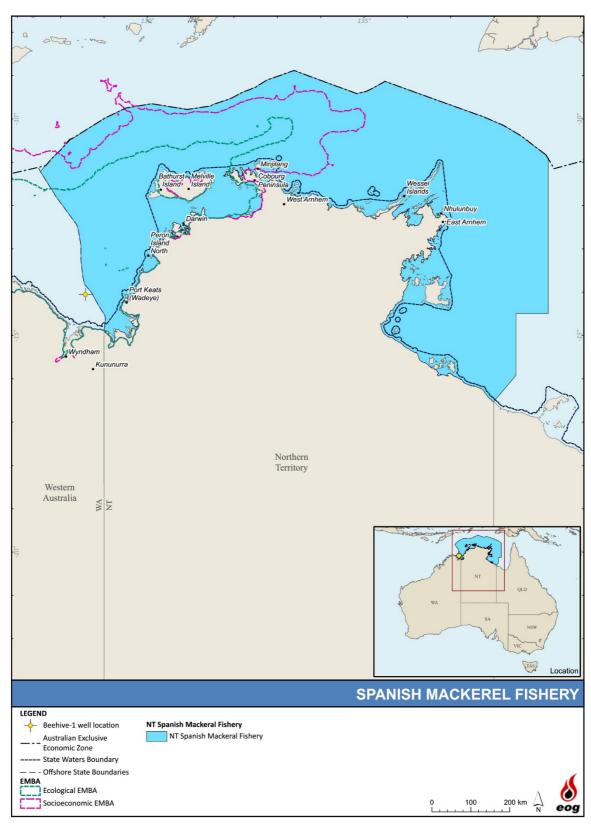


Figure 5.80. NT Spanish Mackerel Fishery intersected by the EMBA

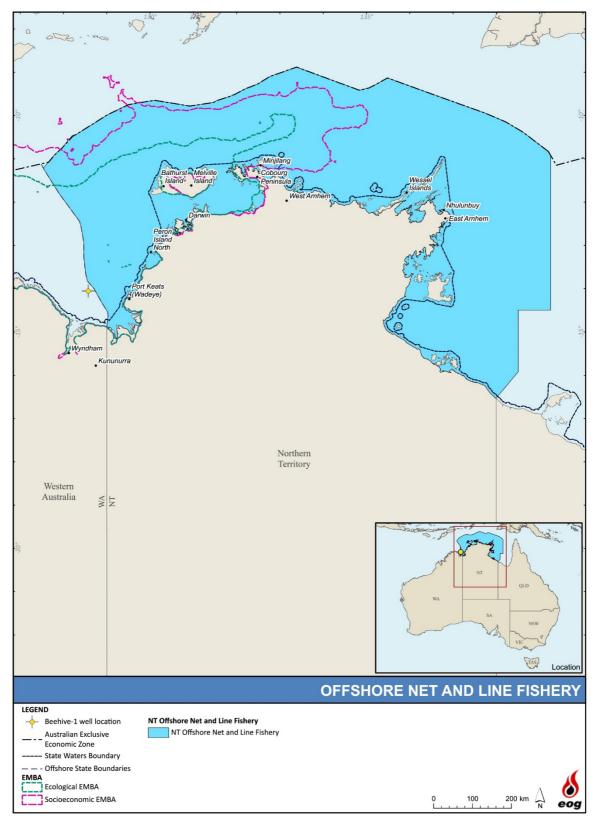


Figure 5.81. NT Offshore Net and Line Fishery intersected by the EMBA

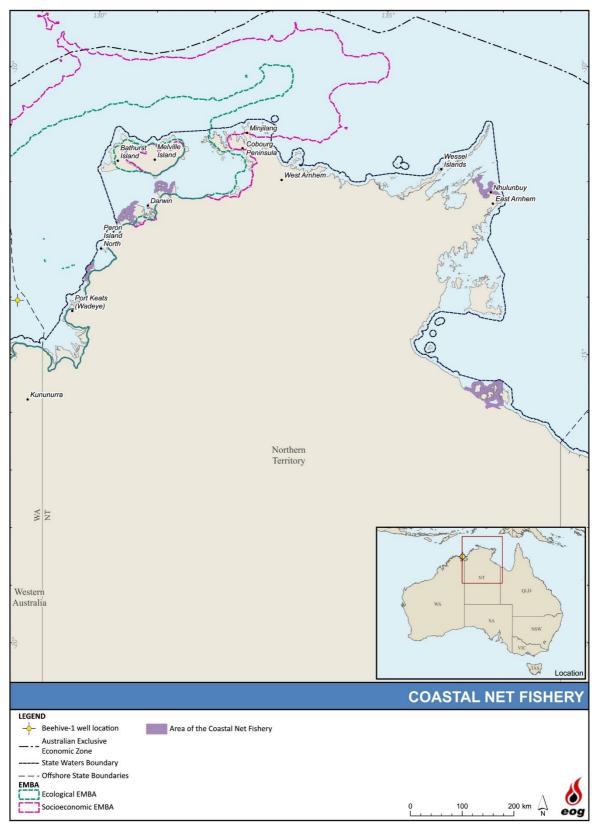


Figure 5.82. Coastal Net Fishery intersected by the EMBA

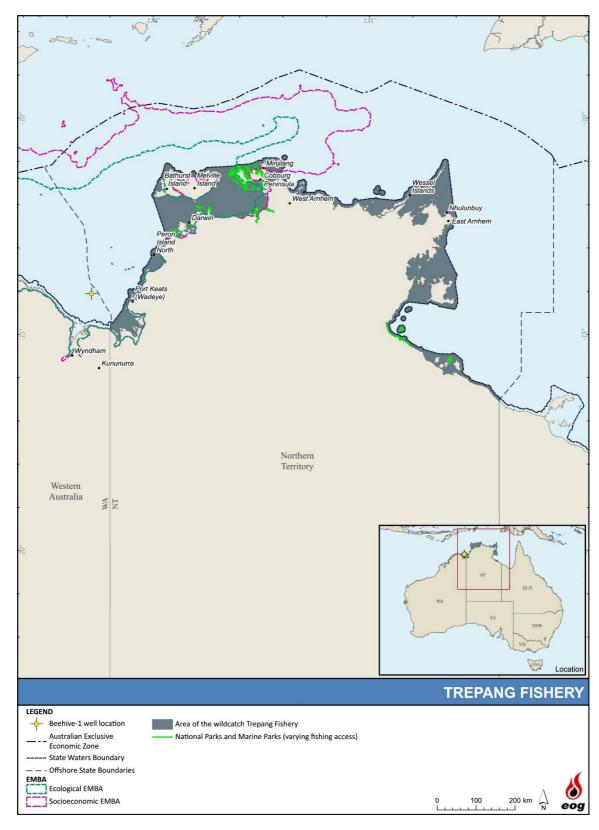


Figure 5.83. Trepang Fishery intersected by the EMBA

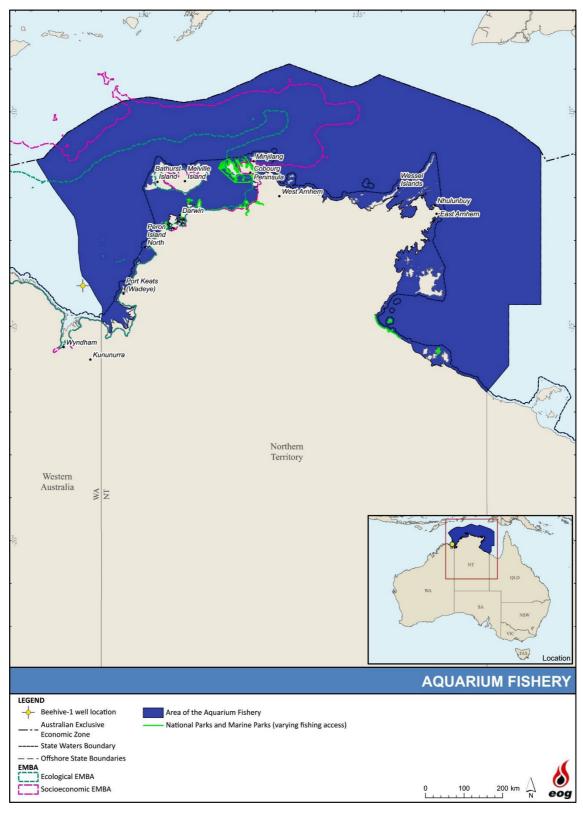


Figure 5.84. Aquarium Fishery intersected by the EMBA

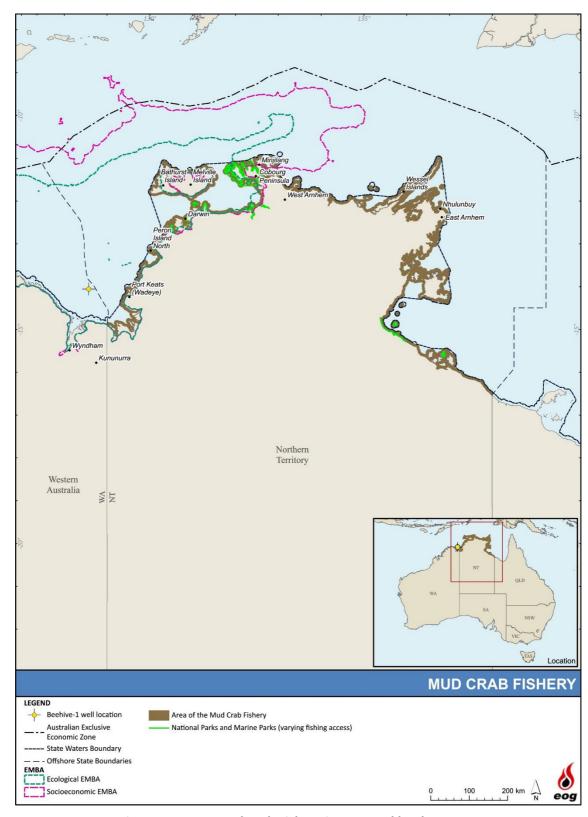
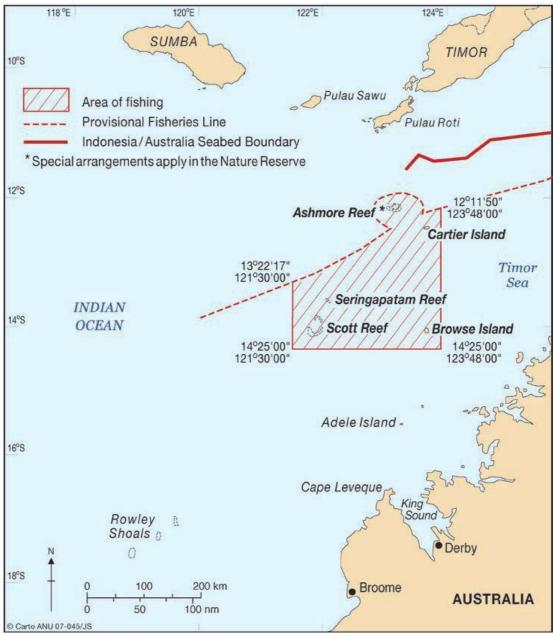


Figure 5.85. Mud Crab Fishery intersected by the EMBA

Indonesian Commercial and Subsistence Fishing

Indonesian fishers have sailed to and actively fished Australia's northern waters, particularly in and around the shallow lagoons of Scott Reef, primarily targeting trepang (sea cucumber), shark fin and other marine resources such as trochus shells. They also catch fish largely for subsistence purposes although the average fish catch per lete-lete (traditional Indonesian fishing vessel) in 2008 increased to commercial volumes. Although deeper waters are more plentiful in trepang, deep diving is generally not undertaken by the fishers due to the MoU stipulation on the exclusive use of traditional equipment only (Woodside, 2011).


Within the northwest extent of the EMBA, there is a defined area where a Memorandum of Understanding (MoU) between the Government of Australian and the Government of the Republic of Indonesia Relating to Cooperating in Fisheries (1992) exists to allow Indonesian fishers (using traditional fishing methods) to operate in the Australian waters of the Timor Sea (Figure 5.86). The MoU is officially known as the Australia-Indonesia Memorandum of Understanding regarding the Operations of Indonesian Traditional Fishermen in Areas of the Australian Fishing Zone and Continental Shelf – 1974 (DAWE, 2021a).

The MoU agreement provides the framework for fisheries and marine cooperation between Australia and Indonesia, and facilitates information exchange on research, management and technological developments, complementary management of shared stocks, training and technical exchanges, aquaculture development, trade promotion and cooperation to deter illegal fishing (DAWE, 2021a).

Cooperation under the MoU takes place under the auspices of the Working Group on Marine Affairs and Fisheries. Established in 2001, the Working Group on Marine Affairs and Fisheries is the primary bilateral forum to enhance collaboration across the spectrum of marine and fisheries issues relevant to the areas of the Arafura and Timor seas. The Working Group brings together the fisheries, environment and scientific research portfolios and agencies from both countries (DAWE, 2021a).

As part of negotiations to delineate seabed boundaries, Australia and Indonesia entered into the MoU which recognises the rights of access for traditional Indonesian fishers in shared waters to the north of Australia. This access was granted in recognition of the long history of traditional Indonesian fishing in the area. The MoU provides Australia with a tool to manage access to its waters while for Indonesia, it enables Indonesian traditional fishers to continue their customary practices and target species such as trepang, trochus, abalone and sponges. Guidelines under the MoU were agreed in 1989 in order to clarify access boundaries for traditional fishers and take into account the declaration of the 200 nm fishing zones (DAWE, 2021a).

Source: ResearchGate

Figure 5.86. Australia-Indonesia MoU Box

5.6.2. Recreational Fishing

Within the North Coast Bioregion, there is a distinct seasonal peak of recreational fishing during winter (Gaughan and Santoro, 2018). Offshore islands, coral reefs and the continental shelf provide species of major recreational interest, including tropical snapper, cods, coral and coronation trout, sharks, trevally, tuskfish, tunas, mackerels and billfish (Gaughan and Santoro, 2018).

Recreational fishing activities are primarily based out of Darwin. Given the long distance of the activity area from the mainland and key population areas, recreational fishing activities in much of the EMBA are not predicted. However, given the broad extent of the EMBA across northern Australia, it is likely that some recreational fishing does occur.

RecFish West and the AFANT have not raised any issues regarding recreational fishing for this project.

5.6.3. Traditional Aboriginal Fishing

Traditional Aboriginal fishing in NT waters predominately occurs within inshore tidal waters. Approximately 85% of the NT's intertidal zone is recognised as Aboriginal land under the *Aboriginal Land Rights (Northern Territory) Act*. In the NT, there are three generally recognised Aboriginal fishery zones, which extend to 3, 15, and 200 nm from the coast. Almost all Aboriginal fishing effort is concentrated within the 3 nm coastal waters boundary (93%), with fishing spanning the entire coastline (NT Government, 2017) and is mostly focused on the Tiwi Islands (in the northeast part of the EMBA). Aboriginal activities within the coastal area of the Tiwi Islands includes fishing, hunting (turtles and dugongs) and gathering (e.g., turtle eggs).

Hunting, subsistence fishing and shell collecting are recognised as occurring in the Kimberley region (DNP 2018a; DPaW 2016b, Smyth 2007). The land and sea country of the Balanggarra people extends from Napier-Broome Bay to Cambridge Gulf and Wyndham in the JBG, inshore from where the Beehive-1 exploration well drilling activity is proposed. In the past, the Balanggarra people speared fish along the rocky shoreline and in shallow waters. Saltwater fish, turtles, dugong, mud crabs and cockles continue to be important food sources for the Balanggarra people today (DPaW, 2016b). The Miriuwung Gajerrong land and sea country extends from the Cambridge Gulf to the NT. In the past, the Miriuwung Gajerrong people would hunt, fish and gather bush tucker in tidal areas such as mangroves, with fishing and hunting still practiced today (DPaW, 2016b).

5.6.4. Coastal Settlements

The coastline adjacent to the EMBA is sparsely populated, with the townships of Broome (WA) (820 km southwest), Derby (WA) (640 km southwest), Wyndham, WA (173 km south), Wadeye, NT (85 km east) and the city of Darwin (288 km northeast of Beehive-1) being the largest city within the EMBA.

Darwin is the capital of the Northern Territory and had a population of 136,828. Of the people employed in Darwin, 69% worked fulltime. The state government administration, defence and hospitals were the largest employment sectors, which accounted for 15.5% of the workforce.

The population of Wadeye was 2,260 people at the time of the 2016 census, with Aboriginal and/or Torres Strait Islander people making up 89.4% of the population (ABS, 2016). Of the employed people in Wadeye, the education and local government administration sectors were the largest employment sectors, which accounted for 21.7% of the workforce.

The population of Wyndham was 780 people at the time of the 2016 census, with Aboriginal and/or Torres Strait Islander people making up 53.7% of the population (ABS, 2016). Of the employed people in Wyndham, the social services, hospital and secondary education sectors were the largest employment sectors, which accounted for 30.5% of the workforce.

The population of Broome was 13,984 people at the time of the 2016 census, with Aboriginal and/or Torres Strait Islander people making up 21.4% of the population (ABS, 2016). Of the employed people in Broome, accommodation, hospitals and primary education, were the largest employment sectors, which accounted for 72.5% of the workforce.

At the time of the 2016 Census, the population of Derby was 3,511 people, with Aboriginal and/or Torres Strait Islander people making up 49.4% of the population (ABS, 2016). Of the employed people in Derby, hospitals, correctional and detention and secondary education sectors were the largest employment sectors, which accounted for 78.1% of the workforce.

Apart from Kalumbaru (210 km east of Beehive-1, inland of the coast) is located on the western side of Cape Londonberry (181 km northwest of Beehive-1) there are no coastal settlements on the western coast of the JBG until Cambridge Gulf where the Oombulgurri community is located, approximately 140 km south of the activity area. The towns of Wyndham (as described above) and Kununurra (192 km south from Beehive-1) are also located in the Cambridge Gulf.

At the time of the 2016 Census, the population of Kununurra was 4,341 people, with Aboriginal and/or Torres Strait Islander people making up 26.4% of the population (ABS, 2016). Of the employed people in Kununurra, hospitals, accommodation and other non-metallic mineral mining and quarrying were the largest employment sectors, which accounted for 68.1% of the workforce.

In the 2016 Census, the population of the Tiwi Islands were 2,453 people, with Aboriginal and/or Torres Strait Islander people made up 89.0% of the population (ABS, 2016). Of the employed people in the Tiwi Islands, local government administration, primary education followed by supermarket and grocery stores were the largest employment sectors, which accounted for 74.8% of the workforce.

5.6.5. Tourism

The JBG and adjacent lands are remote with very little infrastructure (such as roads, airports, accommodation) and therefore has not been developed for tourism. For up to five months of the year, access to the JBG region is restricted to boat or helicopter due to wet season rains, and road access to areas of Aboriginal freehold land requires prior permission from the Northern Land Council (NLC) (Woodside, 2004).

Expedition cruise boats operate in the North Kimberley Marine Park in the dry season (April to October), between Broome and Wyndham or Darwin, and offer multi-day tours (DPW, 2016b). Vessels range from small fishing and sightseeing tour boats to large luxury cruise ships carrying up to 100 passengers (DPW, 2016b). Access to the coast is possible although only by using a four-wheel drive. Scenic flights and fishing expeditions operate in connection with coastal accommodation or cruise boats as well as from Broome, Derby and Kununurra (DPW, 2016b).

Charter fishing and tourism activities operate from Darwin and the Kimberley and target areas of high scenic value and/or offshore coral reef areas (Woodside, 2004). These attributes are sparse in the JBG, and therefore, given the isolated nature of the area, the likelihood of charter fishing and tourism is also anticipated to be low (Woodside, 2004) though restricted to are located within a few kilometres from the coast, and mainly in estuarine waters. Charter boats operating out of Darwin and Broome/Derby may occasionally visit or pass through the JBG.

Tourism accommodation and operations in the Kimberley include Berkeley River Lodge, Faraway Bay Lodge, Honeymoon Bay and Kimberley Coastal Camp. All camps close during October and reopen during March following the wet season.

Swimming tends to be limited to guided excursions to freshwater pools and waterfalls on land, given the presence of saltwater crocodiles and other dangerous fauna in northern WA and NT. Known dive sites in the wider Kimberley region are near Broome, the Lacepede Islands and the Rowley Shoals.

5.6.6. Offshore Energy Exploration and Production

The Bonaparte Basin is an established hydrocarbon province with a number of commercial operations. The closest operation is the Blacktip Gas Field, located in adjacent permit WA-33-L and operated by ENI Australia (Figure 5.87). The Blacktip Gas Field consists of an unmanned wellhead platform, two producing wells, flowlines and a subsea gas export pipeline (GEP) that

runs from the platform to shore near Wadeye, NT. The Blacktip GEP is located 12 km northeast of Beehive-1. Vessels servicing the Blacktip platform pass through the EMBA (see Section 5.6.7).

The Bonaparte Basin contains several oil and natural gas fields amounting to 18% of Australia's known reserves of natural gas. The basin had produced 11 GL of oil to end-2000 but only 0.11 BCM of gas due mainly to market limitations. Remaining known reserves are 33.42 GL of oil and 668.55 BCM of gas (Geoscience Australia, 2022).

There are numerous petroleum exploration and production permits located within the spill EMBA, operated by companies including ENI Australia, Woodside Energy Limited, Melbana Energy, Neptune Energy Bonaparte Pty Ltd, Santos Ltd, BP Developments Australia Pty Ltd, Chevron Australia Pty Ltd and Kufpec. Petroleum activities include production from platforms, FPSOs, export pipelines and exploration (seismic surveys and drilling) with most concentrated in the southern most extent of the spill EMBA, as shown in Figure 5.87.

5.6.7. Commercial Shipping

Commercial shipping in the activity area is outlined in Section 5.7.7 of Chapter 5. Shipping traffic in the spill EMBA is relatively low given the large extent of the EMBA, with major shipping lanes concentrated in and out of Darwin Port and the NWS as illustrated in Figure 5.88.

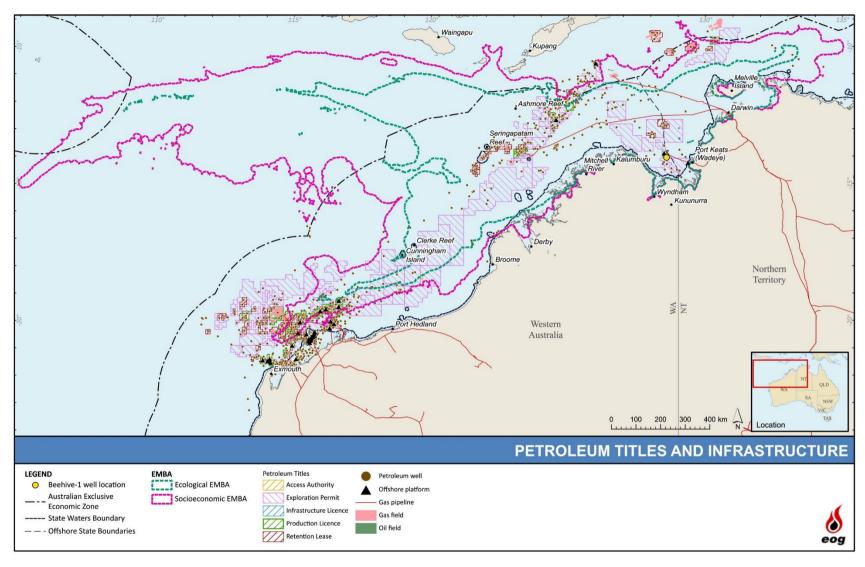


Figure 5.87. Petroleum titles and infrastructure in the EMBA

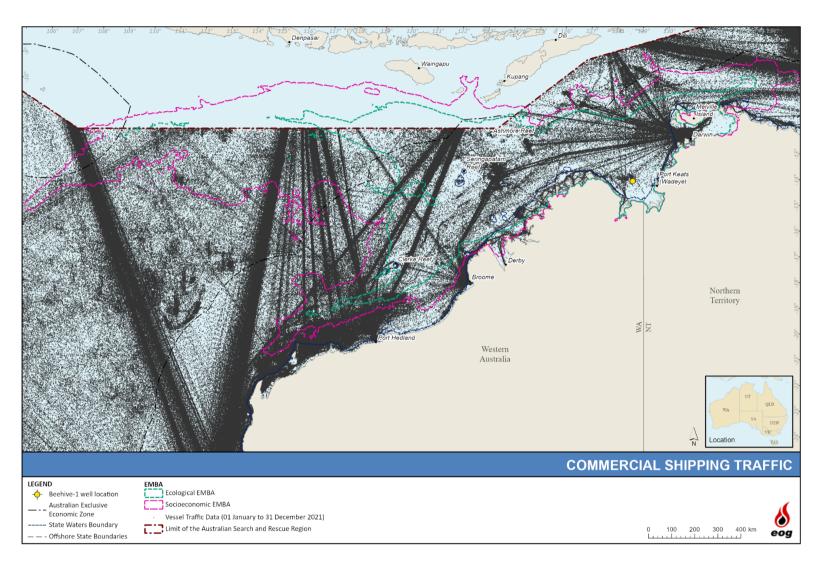


Figure 5.88. Commercial shipping in the EMBA

5.6.8. Defence Activities

The EMBA is overlapped by a defence training area, which is a maritime military zone administered by the Australian Defence Force (Figure 5.85). This is an area where exercises such as operational flying training or live weapon firing may occur. Training areas along the coastline of the EMBA include the Yampi Sound Training Area, Bradshaw Field Training Area and Kangaroo Flats Training Area (Figure 5.89).

Australian Border Force and Australian Defence Force vessels undertake civil and maritime surveillance within the region with the primary purpose of monitoring the passage of illegal entry vessels and illegal fishing activity within these areas. The area is a known area for travel between Indonesia and Australia for refugees seeking asylum in Australia.

The EMBA overlaps the exercise and training areas that comprise the North Australian Exercise Area (NAXA), a maritime military zone administered by the Australian Defence Force, as well as restricted airspace used for operations including live weapons and missile firings. The NAXA location of the KAKADU training exercise that operates biennially. The exercise involves numerous naval ships from various countries participating in the waters off Darwin and Northern Australia. Exercise KAKADU is Australia's premier international maritime exercise bringing together multiple navy and air forces from the Asian, Pacific and Indian Ocean regions to test integration and war fighting abilities.

During Exercise KAKADU, access may be restricted to all vessels and aircraft. Avoidance of the area during exercises is requested by Defence.

There is also an Air-to-Air Refuelling (AAR) and Airborne Early Warning and Control (AEW&C) airspaces that overlap the activity area and EMBA.

The EMBA (but not the activity area) overlaps an area with potential for unexploded ordnance (UXO), illustrated in Figure 5.90.

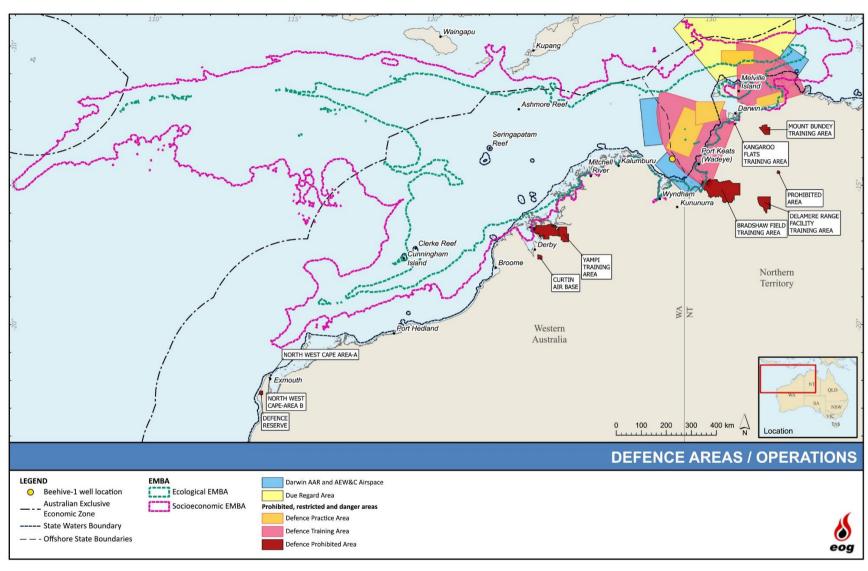
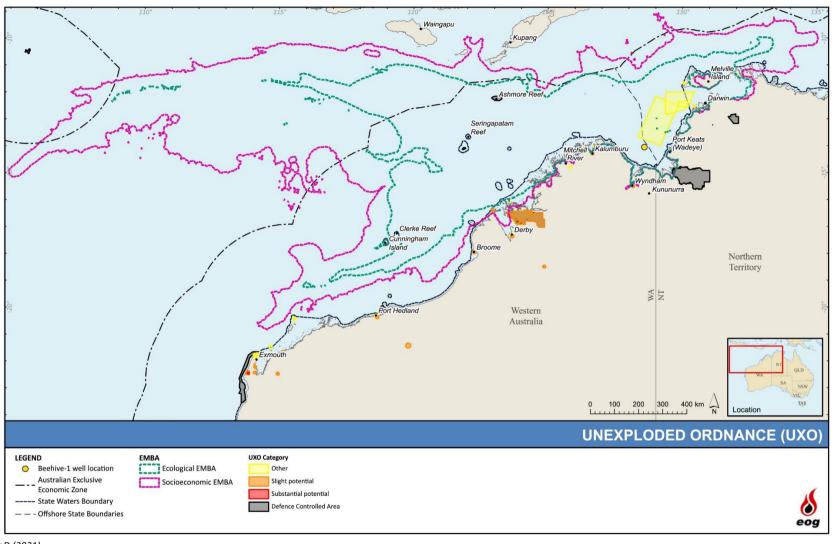



Figure 5.89. Defence exercise and training areas intersected by the spill EMBA

Source: DoD (2021).

Figure 5.90. Unexploded ordnance risks in the EMBA

996161-2022-Beehive#1-Drilling-EP-Rev2

Appendix 6:Oil Spill Trajectory Modelling

BEEHIVE-1 – EXPLORATION DRILLING

Crude Oil Spill Modelling with Surface Dispersant Application

REPORT

Document status					
Version	Purpose of document	Authored by	Reviewed by	Approved by	Review date
Rev A	Draft issued for internal review	Jeremie Bernard Dr. Ryan Dunn	Jeremie Bernard		07/07/2022
Rev 0	Draft issued for Client review		Jeremie Bernard	Jeremie Bernard	07/06/2022
Rev 1	Draft issued for Client review		Jeremie Bernard	Jeremie Bernard	08/06/2022

Approval for issue		
Dr. Sasha Zigic	S. Lyic	08/07/202

This report was prepared by RPS within the terms of RPS' engagement with its client and in direct response to a scope of services. This report is supplied for the sole and specific purpose for use by RPS' client. The report does not account for any changes relating the subject matter of the report, or any legislative or regulatory changes that have occurred since the report was produced and that may affect the report. RPS does not accept any responsibility or liability for loss whatsoever to any third party caused by, related to or arising out of any use or reliance on the report.

Prepared by:	Prepared for:
RPS	Aventus Consulting Pty Ltd
Jeremie Bernard Senior Coastal Engineer	Giulio Pinzone Principal Environmental Consultant
Lakeside Corporate Space, Suite 425 Level 2, 34-38 Glenferrie Drive Robina, QLD, 4226	Suite 307/75 Tulip Street Cheltenham VIC 3192
T +61 7 5574 1112 E jeremie.bernard@rpsgroup.com	T +61 409 772 170 E g.pinzone@aventusconsulting.com.au

Contents

Background	Terr	ns and	Abbreviations	xii
Methodology	EXE	CUTIVE	SUMMARY	xv
Oil Properties		Back	ground	xv
Results		Met	hodology	xv
Scenario: LOWC – 786,858 m³ Surface Release of Crude Oil over 77 Days		Oil P	roperties	xvi
1 INTRODUCTION 1.1 Background 1.2 What is Oil Spill Modelling? 1.2.1 Stochastic Modelling (Multiple Spill Simulations) 1.2.2 Deterministic Modelling (Single Spill Simulation) 2 2 SCOPE OF WORK 2 3 REGIONAL CURRENTS 3.1 Tidal currents 3.1.1 Grid Setup 3.1.2 Tidal Conditions 3.1.2 Tidal Conditions 3.1.3 Surface Elevation Validation 3.2 Ocean Currents 1 4 WIND DATA 1 5 WATER TEMPERATURE AND SALINITY 2 6.1 Stochastic Modelling 2 6.1 Floating, Shoreline and In-Water Thresholds 2 6.1.1 Floating Oil Exposure Thresholds 2 6.1.2 Shoreline Accumulation Thresholds 2 6.1.3 In-water Exposure Thresholds 2 6.2 Aerial Dispersant Operations 2 7 OIL PROPERTIES 3		Resu	ılts	xvi
1.1 Background 1.2 What is Oil Spill Modelling? 1.2.1 Stochastic Modelling (Multiple Spill Simulations) 1.2.2 Deterministic Modelling (Single Spill Simulation) 2 SCOPE OF WORK			Scenario: LOWC – 786,858 m³ Surface Release of Crude Oil over 77 Days	xvi
1.2 What is Oil Spill Modelling?	1	INTR	RODUCTION	1
1.2.1 Stochastic Modelling (Multiple Spill Simulations) 1.2.2 Deterministic Modelling (Single Spill Simulation) 2 SCOPE OF WORK		1.1	Background	1
1.2.2 Deterministic Modelling (Single Spill Simulation) 2 SCOPE OF WORK		1.2	What is Oil Spill Modelling?	3
2 SCOPE OF WORK 3 REGIONAL CURRENTS 3.1 Tidal currents 3.1.1 Grid Setup 3.1.2 Tidal Conditions 3.1.3 Surface Elevation Validation 3.2 Ocean Currents 1 4 WIND DATA 1 5 WATER TEMPERATURE AND SALINITY 2 6 OIL SPILL MODEL – SIMAP 2 6.1 Stochastic Modelling 2 6.1 Floating, Shoreline and In-Water Thresholds 2 6.1.1 Floating Oil Exposure Thresholds 2 6.1.2 Shoreline Accumulation Thresholds 2 6.1.3 In-water Exposure Thresholds 2 6.2 Aerial Dispersant Operations 2 7 OIL PROPERTIES 3			1.2.1 Stochastic Modelling (Multiple Spill Simulations)	3
3.1 Tidal currents			1.2.2 Deterministic Modelling (Single Spill Simulation)	4
3.1 Tidal currents	2	SCO	PE OF WORK	5
3.1.1 Grid Setup	3	REG	IONAL CURRENTS	6
3.1.2 Tidal Conditions 3.1.3 Surface Elevation Validation		3.1	Tidal currents	7
3.1.3 Surface Elevation Validation			3.1.1 Grid Setup	7
3.2 Ocean Currents 1 WIND DATA 1 WATER TEMPERATURE AND SALINITY 2 6 OIL SPILL MODEL – SIMAP 2 6.1 Stochastic Modelling 2 6.1 Floating, Shoreline and In-Water Thresholds 2 6.1.1 Floating Oil Exposure Thresholds 2 6.1.2 Shoreline Accumulation Thresholds 2 6.1.3 In-water Exposure Thresholds 2 6.2 Aerial Dispersant Operations 2 7 OIL PROPERTIES 3			3.1.2 Tidal Conditions	9
WIND DATA			3.1.3 Surface Elevation Validation	9
MATER TEMPERATURE AND SALINITY		3.2	Ocean Currents	13
6 OIL SPILL MODEL – SIMAP	4	WIN	D DATA	18
6.1 Stochastic Modelling	5	WAT	TER TEMPERATURE AND SALINITY	22
6.1 Floating, Shoreline and In-Water Thresholds	6	OILS	SPILL MODEL – SIMAP	24
6.1.1 Floating Oil Exposure Thresholds		6.1	Stochastic Modelling	24
6.1.2 Shoreline Accumulation Thresholds		6.1	Floating, Shoreline and In-Water Thresholds	25
6.1.3 In-water Exposure Thresholds			6.1.1 Floating Oil Exposure Thresholds	25
6.2 Aerial Dispersant Operations			6.1.2 Shoreline Accumulation Thresholds	26
7 OIL PROPERTIES3			6.1.3 In-water Exposure Thresholds	27
		6.2	Aerial Dispersant Operations	29
7.1 Oil Characteristics	7	OIL I	PROPERTIES	31
		7.1	Oil Characteristics	31

		7.1.1	Overview	31
		7.1.2	Crude Oil	32
	7.2	Weath	ering Characteristics	32
		7.2.1	Overview	32
		7.2.2	Crude Oil Mass Balance Forecasts	32
8	MOD	EL SETTI	NGS	35
9	PRES	ENTATIC	ON AND INTERPRETION OF MODEL RESULTS	36
	9.1	Annual	Analysis	36
		9.1.1	Statistics	36
	9.2	Determ	inistic Trajectories	36
		9.2.1	Receptors Assessed	37
10	RESU	LTS – SC	ENARIO – LOWC – 786,858 M³ SURFACE RELEASE OF CRUDE OIL OVER 77 DAYS	46
	10.1	Stochas	tic Analysis	46
		10.1.1	Floating Oil Exposure	46
		10.1.2	Shoreline Accumulation	66
		10.1.3	In-water exposure	89
	10.2	Determ	inistic Analysis	151
		10.2.1	Deterministic Case: Largest swept area of floating oil above 1 g/m ²	153
		10.2.2	Deterministic Case: Minimum time before shoreline accumulation above 10 g/m²	157
		10.2.3	Deterministic Case: Largest volume of oil ashore	160
		10.2.4	Deterministic Case: Longest length of shoreline accumulation above 10 g/m²	164
		10.2.5	Deterministic Case: Largest area of entrained hydrocarbons above 10 ppb	168
		10.2.6	Deterministic Case: Largest area of dissolved hydrocarbons above 10 ppb	172
11	RFFFI	RENCES		176

Tables Table 1.1 Table 3.1 Statistical comparison between the observed and HYDROMAP predicted surface Table 3.2 Predicted monthly average and maximum surface current speeds nearby the Beehive-1 release location. The data was derived by combining the HYCOM ocean data and HYDROMAP tidal data from 2010–2019 (inclusive)......14 Table 4.1 Predicted average and maximum winds for the nearest CFSR wind node to the Beehive-1 release location. Data derived from CFSR hindcast model from 2010-2019 (inclusive)......19 Table 5.1 Monthly average sea surface temperature and salinity in the study area......22 Table 6.1 Table 6.2 Floating oil exposure thresholds used in this report (in alignment with NOPSEMA Table 6.3 Table 6.4 Dissolved and entrained hydrocarbon exposure values assessed over a 1-hour time step, as per NOPSEMA (2019)......29 Table 6.5 Table 7.1 Physical properties of the oil types used in this study......31 Table 7.2 Table 7.3 Summary of the mass balance at day 7. Results are based on a 25 m³ surface release of crude oil over 1 hour, tracked for 7 days under calm and variable wind conditions.33 Table 8.1 Table 9.1 Summary of receptors used to assess floating oil, shoreline and in-water exposure to hydrocarbons.......37 Table 10.2 Summary of the potential floating oil exposure to individual receptors for both the unmitigated and mitigated cases. Results are based on a 786,858 m³ surface release of crude oil over 77 days, tracked for 98 days, during summer conditions. The results were calculated from 100 spill trajectories per season......51 Table 10.3 Summary of the potential floating oil exposure to individual receptors for both the unmitigated and mitigated cases. Results are based on a 786,858 m³ surface release of crude oil over 77 days, tracked for 98 days, during transitional conditions. The results were calculated from 100 spill trajectories per season......55 Table 10.4 Summary of the potential floating oil exposure to individual receptors for both the unmitigated and mitigated cases. Results are based on a 786,858 m³ surface release of crude oil over 77 days, tracked for 98 days, during winter conditions. The results were calculated from 100 spill trajectories per season......59

Table 10.5 Summary of oil accumulation across all shorelines for the unmitigated and mitigated

cases. Results are based on a 786,858 m³ surface release of crude oil over 77 days,

	tracked for 98 days, during seasonal conditions. The results were calculated from 100 spill trajectories per season.	66
Table 10.16	Summary of the mass balance at day 98 for the trajectory that resulted in the largest swept area of floating oil above 1 g/m^2 for the unmitigated and mitigated cases. Results are based on a 786,858 m³ surface release of crude oil over 77 days, tracked for 98 days 15 days, tracked for 98 days	53
Table 10.17	Summary of the mass balance at day 98 for the trajectory that resulted in the minimum time before shoreline accumulation above the low threshold ($10~g/m^2$) for the unmitigated and mitigated cases. Results are based on a 786,858 m³ surface release of crude oil over 77 days, tracked for 98 days.	57
Table 10.18	Summary of the mass balance at day 98 for the trajectory that resulted in the largest volume of oil ashore for the unmitigated and mitigated cases. Results are based on a 786,858 m³ surface release of crude oil over 77 days, tracked for 98 days	60
Table 10.19	Summary of the mass balance at day 98 for the trajectory that resulted in the longest length of shoreline accumulation above 10 g/m² for the unmitigated and mitigated cases. Results are based on a 786,858 m³ surface release of crude oil over 77 days, tracked for 98 days.	64
Table 10.20	Summary of the mass balance at day 98 for the trajectory that resulted in the largest area of entrained hydrocarbons above 10 ppb for the unmitigated and mitigated cases. Results are based on 786,858 m³ surface release of crude oil over 77 days, tracked for 98 days.	68
Table 10.21	Summary of the mass balance at day 98 for the trajectory that resulted in the largest area of dissolved hydrocarbons above 10 ppb for the unmitigated and mitigated cases. Results are based on a 786,858 m³ surface release of crude oil over 77 days, tracked for 98 days.	72

Figures

Figure 1.1	Map of the Beehive-1 exploration well.
Figure 1.2	Examples of four individual spill trajectories (four replicate simulations) predicted by SIMAP for a spill scenario. The frequency of contact with given locations is used to calculate the probability of impacts during a spill. Essentially, all model runs are overlain (shown as the stacked runs on the right) and the number of times that trajectories contact a given location at a concentration is used to calculate the probability
Figure 1.3	Example of an individual spill trajectory predicted by SIMAP for a spill scenario. Note, this image represents surface oil as spillets and do not take any thresholds into consideration.
Figure 3.1	Schematic of ocean currents along the Northwest Australian continental shelf. Image adapted from DEWHA (2008)
Figure 3.2	Sample of the model grid used to generate the tidal currents for the study region. Higher resolution areas are shown by the denser mesh
Figure 3.3	Bathymetry defined throughout the tidal model domain
Figure 3.4 L	ocation of the tide stations used in the surface elevation validation10
Figure 3.5	Comparison between HYDROMAP predicted (blue line) and observed (red line) surface elevation at tidal stations Calder Shoal (upper image), Evans Shoal (middle image) and Lacrosse Island (lower image)
Figure 3.6	Comparison between HYDROMAP predicted (blue line) and observed (red line) surface elevation at tidal stations Snake Bay (upper image) and The Boxers (lower image)13
Figure 3.7	Map illustrating the spatial resolution of HYCOM currents
Figure 3.8	Monthly surface current rose plots nearby the Beehive-1 release location (derived by combining the HYDROMAP tidal currents and HYCOM ocean currents for 2010–2019 (inclusive)
Figure 3.9	Modelled total surface current rose plot nearby the Beehive-1 release location (derived by combining the HYDROMAP tidal currents and HYCOM ocean currents for 2010–2019 (inclusive).
Figure 4.1	Spatial resolution of the CFSR modelled wind data used as input into the oil spill model18
Figure 4.2	Modelled monthly wind rose distributions from 2010–2019 (inclusive), for the closest wind node to the Beehive-1 release location.
Figure 4.3	Modelled total wind rose distributions from 2010–2019 (inclusive), for the closest wind node to the Beehive-1 release location
Figure 5.1	Temperature and salinity profiles nearby the Beehive-1 release location23
Figure 6.1	Photographs showing the difference between oil colour and thickness on the sea surface (source: adapted from Oil Spill Solutions, 2015)
Figure 6.2	Daily dispersant volume available for application30

Figure 7.1	Proportional mass balance plot representing the weathering of crude oil spilled onto the water surface over 1 hour and subject to a constant 5 knots (2.6 m/s) wind speed at 25°C water temperature and 29 °C air temperature	33
Figure 7.2	Proportional mass balance plot representing the weathering of crude oil spilled onto the water over 1 hour and subject to variable wind speeds (1-12 knots) at 25°C water temperature and 29 °C air temperature.	34
Figure 9.1	Receptor map for Australian Marine Parks, Marine Parks and National Nature Reserves	38
Figure 9.2	Receptor map of Key Ecological Features (KEF) (1 of 2).	39
Figure 9.3	Receptor map of Key Ecological Features (KEF) (2 of 2).	40
Figure 9.4	Receptor map for RAMSAR wetlands.	40
Figure 9.5	Receptor map for Reefs, Shoals and Banks.	41
Figure 9.6	Receptor map for the shoreline sectors – names and locations (1 of 2)	41
Figure 9.7	Receptor map for the shoreline sectors – names and locations (2 of 2)	42
Figure 9.8	Receptor map for the DoT shoreline sections (1 of 6)	42
Figure 9.9	Receptor map for the DoT shoreline sections (2 of 6)	43
Figure 9.10	Receptor map for the DoT shoreline sections (3 of 6)	43
Figure 9.11	Receptor map for the DoT shoreline sections (4 of 6)	44
Figure 9.12	Receptor map for the DoT shoreline sections (5 of 6)	44
Figure 9.13	Receptor map for the DoT shoreline sections (6 of 6)	45
Figure 10.1	Sorted bar plots of the predicted area of the low, moderate and high zones of potential floating oil exposure for the unmitigated (red) and mitigated (blue) cases, in the event of a 786,858 m³ of crude oil over 77 days, tracked for 98 days during summer conditions. The results from 100 spill trajectories are presented.	48
Figure 10.2	Sorted bar plots of the predicted area of the low, moderate and high zones of potential floating oil exposure for the unmitigated (red) and mitigated (blue) cases, in the event of a 786,858 m³ of crude oil over 77 days, tracked for 98 days during transitional conditions. The results from 100 spill trajectories are presented.	49
Figure 10.3	Sorted bar plots of the predicted area of the low, moderate and high zones of potential floating oil exposure for the unmitigated (red) and mitigated (blue) cases, in the event of a 786,858 m³ of crude oil over 77 days, tracked for 98 days during winter conditions. The results from 100 spill trajectories are presented.	50
Figure 10.4	Zones of potential floating oil exposure for the unmitigated (upper image) and mitigated (lower image) cases, in the event of a 786,858 m³ of crude oil over 77 days, tracked for 98 days during summer conditions. The results were calculated from 100 spill trajectories.	63
Figure 10.5	Zones of potential floating oil exposure for the unmitigated (upper image) and mitigated (lower image) cases, in the event of a 786,858 m ³ of crude oil over 77 days, tracked for	

	98 days during transitional conditions. The results were calculated from 100 spill trajectories
Figure 10.6	Zones of potential floating oil exposure for the unmitigated (upper image) and mitigated (lower image) cases, in the event of a 786,858 m³ of crude oil over 77 days, tracked for 98 days during winter conditions. The results were calculated from 100 spill trajectories65
Figure 10.7	Sorted bar plots of the predicted length of shoreline accumulation for the low, moderate and high shoreline accumulation thresholds for the unmitigated (red) and mitigated (blue) cases, in the event of a 786,858 m³ of crude oil over 77 days, tracked for 98 days during summer conditions. The results from 100 spill trajectories are presented
Figure 10.8	Sorted bar plots of the predicted length of shoreline accumulation for the low, moderate and high shoreline accumulation thresholds for the unmitigated (red) and mitigated (blue) cases, in the event of a 786,858 m³ of crude oil over 77 days, tracked for 98 days during summer conditions. The results from 100 spill trajectories are presented69
Figure 10.9	Sorted bar plots of the predicted length of shoreline accumulation for the low, moderate and high shoreline accumulation thresholds for the unmitigated (red) and mitigated (blue) cases, in the event of a 786,858 m³ of crude oil over 77 days, tracked for 98 days during summer conditions. The results from 100 spill trajectories are presented70
Figure 10.10	Maximum potential shoreline loading for the unmitigated (upper image) and mitigated (lower image) cases, in the event of a 786,858 m³ surface release of crude oil over 77 days, tracked for 98 days during summer conditions. The results were calculated from 100 spill trajectories
Figure 10.12	Maximum potential shoreline loading for the unmitigated (upper image) and mitigated (lower image) cases, in the event of a 786,858 m³ surface release of crude oil over 77 days, tracked for 98 days during transitional conditions. The results were calculated from 100 spill trajectories.
Figure 10.12	Maximum potential shoreline loading for the unmitigated (upper image) and mitigated (lower image) cases, in the event of a 786,858 m³ surface release of crude oil over 77 days, tracked for 98 days during winter conditions. The results were calculated from 100 spill trajectories
Figure 10.13	Sorted bar plots of the predicted area of the low, moderate and high zones of dissolved hydrocarbon exposure for the unmitigated (red) and mitigated (blue) cases, in the event of a 786,858 m ³ of crude oil over 77 days, tracked for 98 days during summer conditions. The results from 100 spill trajectories are presented90
Figure 10.14	Sorted bar plots of the predicted area of the low, moderate and high zones of dissolved hydrocarbon exposure for the unmitigated (red) and mitigated (blue) cases, in the event of a 786,858 m ³ of crude oil over 77 days, tracked for 98 days during transitional conditions. The results from 100 spill trajectories are presented91
Figure 10.15	Sorted bar plots of the predicted area of the low, moderate and high zones of dissolved hydrocarbon exposure for the unmitigated (red) and mitigated (blue) cases, in the event of a 786,858 m ³ of crude oil over 77 days, tracked for 98 days during winter conditions. The results from 100 spill trajectories are presented

the unm 786,858	potential dissolved hydrocarbon exposure at 0-10 m below the sea surface for tigated (upper image) and mitigated (lower image) cases, in the event of a m³ surface release of crude oil over 77 days, tracked for 98 days, during conditions. The results were calculated from 100 spill trajectories	L4
the unm 786,858	potential dissolved hydrocarbon exposure at 0-10 m below the sea surface for tigated (upper image) and mitigated (lower image) cases, in the event of a m ³ surface release of crude oil over 77 days, tracked for 98 days, during hal conditions. The results were calculated from 100 spill trajectories	L5
the unm 786,858	potential dissolved hydrocarbon exposure at 0-10 m below the sea surface for tigated (upper image) and mitigated (lower image) cases, in the event of a m ³ surface release of crude oil over 77 days, tracked for 98 days, during winter as. The results were calculated from 100 spill trajectories	16
hydroca of a 786	ar plots of the predicted area of the low and high zones of entrained bon exposure for the unmitigated (red) and mitigated (blue) cases, in the event 858 m ³ of crude oil over 77 days, tracked for 98 days during summer conditions. ts from 100 spill trajectories are presented	L8
hydroca of a 786	ar plots of the predicted area of the low and high zones of entrained bon exposure for the unmitigated (red) and mitigated (blue) cases, in the event 858 m ³ of crude oil over 77 days, tracked for 98 days during transitional as. The results from 100 spill trajectories are presented	L9
hydroca of a 786	ar plots of the predicted area of the low and high zones of entrained bon exposure for the unmitigated (red) and mitigated (blue) cases, in the event 858 m ³ of crude oil over 77 days, tracked for 98 days during winter conditions. ts from 100 spill trajectories are presented	20
the unm 786,858	potential entrained hydrocarbon exposure at 0-10 m below the sea surface for tigated (upper image) and mitigated (lower image) cases, in the event of a m ³ surface release of crude oil over 77 days, tracked for 98 days, during conditions. The results were calculated from 100 spill trajectories	18
the unm 786,858	potential entrained hydrocarbon exposure at 0-10 m below the sea surface for tigated (upper image) and mitigated (lower image) cases, in the event of a m ³ surface release of crude oil over 77 days, tracked for 98 days, during hal conditions. The results were calculated from 100 spill trajectories	19
the unm 786,858	potential entrained hydrocarbon exposure at 0-10 m below the sea surface for tigated (upper image) and mitigated (lower image) cases, in the event of a m ³ surface release of crude oil over 77 days, tracked for 98 days, during winter as. The results were calculated from 100 spill trajectories	50
with the image) a	potential floating oil exposure and shoreline accumulation, for the trajectory largest swept area of floating oil above 1 g/m² for the unmitigated (upper nd mitigated (lower image) cases. Results are based on a 786,858 m³ surface f crude oil over 77 days, tracked for 98 days.	54
-	es of the area of low (1 g/m 2), moderate (10 g/m 2) and high (50 g/m 2) floating e trajectory with the largest swept area of floating oil above 1 g/m 2 for the	

	unmitigated (upper image) and mitigated (lower image) cases. Results are based on a 786,858 m ³ surface release of crude oil over 77 days, tracked for 98 days	155
Figure 10.27	7 Predicted weathering and fates graph for the trajectory with the largest swept area of floating oil above 1 g/m² for the unmitigated (upper image) and mitigated (lower image) cases. Results are based on a 786,858 m³ surface release of crude oil over 77 days, tracked for 98 days.	156
Figure 10.28	8 Zones of potential floating oil exposure and shoreline accumulation, for the trajectory with the minimum time before shoreline accumulation above 10 g/m² for the unmitigated (upper image) and mitigated (lower image) cases. Results are based on a 786,858 m³ surface release of crude oil over 77 days, tracked for 98 days	158
Figure 10.29	Predicted weathering and fates graph for the trajectory with the minimum time before shoreline accumulation above 10 g/m² for the unmitigated (upper image) and mitigated (lower image) cases. Results are based on a 786,858 m³ surface release of crude oil over 77 days, tracked for 98 days.	159
Figure 10.30	OZones of potential floating oil exposure and shoreline accumulation, for the trajectory with the largest volume of oil ashore for the unmitigated (upper image) and mitigated (lower image) cases. Results are based on a 786,858 m³ surface release of crude oil over 77 days, tracked for 98 days.	161
Figure 10.31	Time series of the volume of oil accumulating on shorelines at the low (10g/m^2) , moderate (100g/m^2) and high $(1,000 \text{g/m}^2)$ thresholds for the trajectory with the largest volume of oil ashore for the unmitigated (upper image) and mitigated (lower image) cases. Results are based on a 786,858 m3 surface release of crude oil over 77 days, tracked for 98 days.	162
Figure 10.32	2 Predicted weathering and fates graph for the trajectory with the largest volume of oil ashore for the unmitigated (upper image) and mitigated (lower image) cases. Results are based on a 786,858 m³ surface release of crude oil over 77 days, tracked for 98 days	163
Figure 10.33	3 Zones of potential floating oil exposure and shoreline accumulation, for the trajectory with the longest length of shoreline accumulation above 10 g/m² for the unmitigated (upper image) and mitigated (lower image) cases. Results are based on a 786,858 m³ surface release of crude oil over 77 days, tracked for 98 days.	165
Figure 10.34	4Time series of the length of shoreline at the low (10 g/m²), moderate (100 g/m²) and high (1,000 g/m²) thresholds for the trajectory with the longest length of shoreline accumulation above 10 g/m² for the unmitigated (upper image) and mitigated (lower image) cases. Results are based on a 786,858 m³ surface release of crude oil over 77 days, tracked for 98 days.	166
Figure 10.35	5 Predicted weathering and fates graph for the trajectory with the longest length of shoreline accumulation above 10 g/m ² for the unmitigated (upper image) and mitigated (lower image) cases. Results are based on a 786,858 m ³ surface release of crude oil over 77 days, tracked for 98 days.	167
Figure 10.36	5 Zones of potential entrained hydrocarbon exposure, for the trajectory with the largest area of entrained hydrocarbons above 10 ppb for the unmitigated (upper image) and mitigated (lower image) cases. Results are based on a 786,858 m³ surface release of crude oil over 77 days, tracked for 98 days.	
	·	

Figure 10.37	7 Time series of the area of low (10 ppb) and moderate (100 ppb) entrained hydrocarbons for the trajectory with the largest area of entrained hydrocarbons above 10 ppb for the unmitigated (upper image) and mitigated (lower image) cases. Results are based on a 786,858 m³ surface release of crude oil over 77 days, tracked for 98 days	170
Figure 10.38	8 Predicted weathering and fates graph for the trajectory with the largest area of entrained hydrocarbons above 10 ppb for the unmitigated (upper image) and mitigated (lower image) cases. Results are based on a 786,858 m³ surface release of crude oil over 77 days, tracked for 98 days.	171
Figure 10.39	9 Zones of potential dissolved hydrocarbon exposure, for the trajectory with the largest area of dissolved hydrocarbons above 10 ppb for the unmitigated (upper image) and mitigated (lower image) cases. Results are based on a 786,858 m³ surface release of crude oil over 77 days, tracked for 98 days.	173
Figure 10.40	OTime series of the area of low (10 ppb), moderate (50 ppb) and high (400 ppb) dissolved hydrocarbons for the trajectory with the largest area of dissolved hydrocarbons above 10 ppb for the unmitigated (upper image) and mitigated (lower image) cases. Results are based on a 786,858 m³ surface release of crude oil over 77 days, tracked for 98 days	174
Figure 10.43	1 Predicted weathering and fates graph for the trajectory with the largest area of dissolved hydrocarbons above 10 ppb for the unmitigated (upper image) and mitigated (lower image) cases. Results are based on a 786,858 m³ surface release of crude oil over 77 days, tracked for 98 days.	175

TERMS AND ABBREVIATIONS

۰	Degrees	
4	Minutes	
ű	Seconds	
μm	Micrometre (unit of length; 1 μm = 0.001 mm)	
Actionable oil	Oil which is thick enough for the effective use of mitigation strategies	
AIS	Automatic identification system	
AMP	Australian Marine Park	
AMSA	Australian Maritime Safety Authority	
ANZECC	Australian and New Zealand Environment and Conservation Council	
API	American Petroleum Institute gravity. A measure of how heavy or light a petroleum liquid is compare to water.	
ARMCANZ	Agriculture and Resource Management Council of Australia and New Zealand	
ASTM	American Society for Testing and Materials	
Aventus	Aventus Consulting Pty Ltd	
bbl	Barrel (unit of volume; 1 bbl = 0.159 m3)	
bbl/d	Barrels per day	
Bonn Agreement	An agreement for cooperation in dealing with pollution of the North Sea by oil and other harmful substances, 1983, includes: Governments of the Kingdom of Belgium, the Kingdom of Denmark, the French Republic, the Federal Republic of Germany, the Republic of Ireland, the Kingdom of the Netherlands, the Kingdom of Norway, the Kingdom of Sweden, the United Kingdom of Great Britain and Northern Ireland and the European Union.	
BP	Boiling point. The temperature at which the vapor pressure of the liquid is equal to the pressure exerted on it by the surrounding atmosphere	
BTEX	Benzene, Toluene, Ethylbenzene, and Xylenes	
°C	degree Celsius (unit of temperature)	
CFSR	Climate Forecast System Reanalysis	
cm	Centimetre (unit of length)	
сР	Centipoise (unit of dynamic viscosity)	
Decay	The process where oil components are changed either chemically or biologically (biodegradation) to another compound. It includes breakdown to simpler organic carbon compounds by bacteria and other organisms, photo-oxidation by solar energy, and other chemical reactions.	
Dynamic viscosity	The dynamic viscosity of a fluid expresses its resistance to shearing flows, where adjacent layers move parallel to each other with different speeds.	
EOG	EOG Resources, Inc.	
EP	Environment Plan	
Floating oil exposure	Contact by floating oil on the sea surface at concentrations equal to or exceeding defined threshold concentrations. The consequence will vary depending on the threshold and the receptors	
g/m²	Grams per square meter (unit of surface area density)	
GODAE	Global Ocean Data Assimilation Experiment	

Advanced ocean/coastal tidal model used to predict tidal water levels, current speed and current direction.	
Interim Biogeographic Regionalisation for Australia	
Integrated Marine and Coastal Regionalisation of Australia	
Index of Agreement	
International Tanker Owners Pollution Federation Limited	
Key Ecological Feature	
Kilometre (unit of length)	
Square Kilometres (unit of area)	
unit of speed (1 knot = 0.514 m/s)	
Loss of well control	
Meter (unit of length)	
Cubic meter (unit of volume)	
Meter per Second (unit of speed)	
Mean Absolute Error	
Monoaromatic Hydrocarbons	
Marine National Park	
Marine Park	
Number of observations	
National Aeronautics and Space Administration (USA)	
National Centres for Environmental Prediction (USA)	
Nautical mile	
National Oceanic and Atmospheric Administration (USA)	
National Offshore Petroleum Safety and Environmental Management Authority	
National Park	
Nature Reserve	
Observed variable	
Observed surface elevation	
Oil Pollution Emergency Plan	
Model-predicted variable	
Model predicted surface elevation	
Polynuclear Aromatic Hydrocarbons	
Pre-drilling seabed assessment	
The pour point of a liquid is the temperature below which the liquid loses its flow characteristics	
Parts per billion (concentration)	

REPORT

REPURI			
scf	Standard cubic feet (defined as one cubic foot of gas at 15.56 °C and at normal sea level air pressure)		
Shoreline contact	Arrival of oil at or near shorelines at on-water concentrations equal to or exceeding defined thresho concentrations. Shoreline contact is judged for floating oil arriving within a 2 km buffer zone from ar shoreline as a conservative measure		
SIMAP	Spill Impact Model Application Package. SIMAP is designed to simulate the fate and effects of spille hydrocarbons for surface or subsea releases		
Single Oil spill modelling	Oil spill modelling involving a computer simulation of a single hypothetical oil spill event subject to a single sequence of wind, current and other sea conditions over time. Single oil spill modelling, also referred to as "deterministic modelling" provides a simulation of one possible outcome of a given spill scenario, subject to the metocean conditions that are imposed. Single oil spill modelling is commonly used to consider the fate and effects of 'worst-case' oil spill scenarios that are carefully selected in consideration of the nature and scale of the offshore petroleum activity and the local environment (NOPSEMA, 2017). Because the outcomes of a single oil spill simulation can only represent the outcome of that scenario under one sequence of metocean conditions, worst-case conditions are often identified from stochastic modelling. It is impossible to calculate the likelihood of any outcome from a single oil spill simulation. Single oil spill modelling is generally used for response planning, preparedness planning and for supporting oil spill response operations in the event of an actual spill		
SRTM	Shuttle Radar Topography Mission		
Stochastic oil spill modelling	Stochastic oil spill modelling is created by overlaying and statistically analysing the outcomes of many single oil-spill simulations of a defined spill scenario, where each simulation was subject to a different sequence of metocean conditions, selected objectively (typically by random selection) from a long sequence of historic conditions for the study area. Analysis of this larger set of simulations provides a more accurate indication of the environment that maybe affected (EMBA) and indicates which locations are more likely to be affected (as well as other statistics). Stochastic oil spill modelling avoids biases that affect single oil spill modelling (due to the reliance on only one possible sequence of conditions). However, when interpreting stochastic modelling, which is based on a wide range of potential conditions that might happen to occur, it is essential to understand that calculations will encompass a much larger area than could be affected in any single spill event, where a more limited set of conditions will occur. Consequently, it is misleading to imply that the region derived from stochastic modelling indicate the outcomes expected from a single spill event (NOPSEMA, 2017) Stochastic modelling is generally used for risk assessment and preparedness planning by indicating locations that could be exposed and may require response or subsequent impact assessment		
TOPEX/Poseid on	A joint satellite mission between NASA and CNES to map ocean surface topography using an array of satellites equipped with detailed altimeters		
USA	United States of America		
US CG	United States Coast Guard		
US EPA	United States Environmental Protection Agency		
World Ocean Atlas	A collection of objectively analysed, quality controlled physicochemical parameters (e.g. temperature, salinity, oxygen, phosphate, silicate, and nitrate) based on profile data from the World Ocean Database (NCEI, 2021) established by NOAA's National Centers for Environmental Information (NCEI)		
WGS 1984	World Geodetic System 1984 (WGS84); reference coordinate system		
Xmodel	Model predicted surface elevation		
Xobs	Observed surface elevation		

EXECUTIVE SUMMARY

Background

EOG Resources Australia Block WA-488 Pty Ltd (EOG) is planning to undertake the Beehive-1 drilling campaign within permit area WA-488-P located in the Bonaparte Basin in the Joseph Bonaparte Gulf, Western Australia.

Aventus Consulting Pty Ltd (Aventus) has been contracted by EOG to prepare the Environment Plan (EP) and Oil Pollution Emergency Plan (OPEP) for the planned activity.

To inform the potential environmental impact and risk assessments for the proposed drilling campaign, Aventus commissioned RPS to undertake a detailed crude oil spill modelling study assessing the following hypothetical scenario:

• **Scenario**: A 786,858 m³ (or 4,949,338 bbl) surface release of crude oil over 77 days to represent a loss of well control (unmitigated case).

In addition, the study examined the potential benefit of applying surface dispersant as a mitigation measure (referred to as the mitigated case).

The spill modelling was performed using an advanced three-dimensional trajectory and fates model; Spill Impact Model Application Program (SIMAP). The SIMAP model calculates the transport, spreading, entrainment and evaporation of spilled hydrocarbons over time, based on the prevailing wind and current conditions and the physical and chemical properties.

Methodology

The modelling study was carried out in several stages. Firstly, a ten-year CFSR wind and HYCOM current dataset (2010–2019) was generated and the currents included the combined influence of three-dimensional large-scale ocean currents and tidal currents. Secondly, the currents, winds and detailed hydrocarbon characteristics were used as inputs in the three-dimensional oil spill model (SIMAP) to simulate the drift, spread, weathering and fate of the spilled oil.

As spills can occur during any set of wind and current conditions, modelling was conducted using a stochastic (random or non-deterministic) approach, which involved running 100 spill simulations initiated at random start times, using the same release information (spill volume, duration and composition of the oil). This ensured that each simulation was subject to different wind and current conditions and, in turn, movement and weathering of the oil for an annual based assessment.

The 100 simulations per season were remodelled under identical conditions, with surface dispersant applied to oil within an area where the age of the oil ranged between 3 hours and 72 hours. A dispersant to oil ratio of 1:20 and effectiveness of 65% was assumed for 10 hours during daylight, starting from 24 hours after the initial release.

The SIMAP system, the methods and analysis presented herein, use modelling algorithms which have been anonymously peer reviewed and published in international journals. Further, RPS warrants that this work meets and exceeds the ASTM Standard F2067-13 "Standard Practice for Development and Use of Oil Spill Models".

Oil Properties

An analogue crude oil was used to represent the LOWC scenario. The analogue crude oil was carefully selected based on EOG recommendations to represent the crude oil likely to be found within permit area WA-488-P. The crude oil has an API of 42.3 and a density of 813.9 kg/m³ (at 15°C) with a viscosity value (3.0 cP) classifying it as a Group II (light-persistent) oil according to the International Tankers Owners Pollution Federation (ITOPF, 2014) and US EPA/USCG classifications.

The crude is a mixture of volatile (79%) and persistent hydrocarbons (21%). In favourable evaporation conditions, about 24.2% of the oil mass should evaporate within the first 12 hours (BP < 180° C); a further 20.8% should evaporate within the first 24 hours (180° C < BP < 160° C); and a further 33.9% should evaporate over several days (160° C < BP < 380° C). Approximately 21.0% of the oil is shown to be persistent.

Results

Scenario: LOWC – 786,858 m³ Surface Release of Crude Oil over 77 Days

- The maximum distance from the release location to the low (1–10 g/m²), moderate (10–50 g/m²) and high (> 50 g/m²) exposure levels was 1,517 km (winter), 153 km (summer) and 61 km (winter) respectively, for the unmitigated case. In comparison for the mitigated case (i.e. application of surface dispersant) the maximum distance from the release location to the low, moderate and high exposure levels was 1,424 km west (winter), 153 km east-northeast (summer) and 61 km southeast (winter), respectively.
- Of all the receptors considered in the assessment, the following receptors recorded surface oil exposure
 greater than 70% for both the unmitigated and mitigated cases: Joseph Bonaparte Gulf AMP,
 Carbonate bank and terrace system of the Sahul Shelf KEF and Western Australia State Waters. during
 all seasonal conditions.
- The probability of accumulation to any shoreline at, or above, the low threshold (10 g/m²) was 100% for all seasons for both the unmitigated and mitigated cases and the minimum time before shoreline accumulation at, or above, the low threshold ranged between 10.29 days (transitional) to 11.58 days (summer) for the unmitigated case and 10.50 days (winter) to 12.17 days (summer) for the mitigated case.
- The greatest volume of oil on shore from a single spill trajectory was predicted to reduce from 704.7 m³ (summer) to 612.0 m³ (summer) when the mitigation option was considered. This represented a reduction of 13.2%.
- For all seasonal conditions assessed, the modelling demonstrated a reduction in the length of shoreline contact above the low (3.1%), moderate (3.1%) and high (5.5%) thresholds, when the surface dispersant was applied.
- In the surface (0-10 m) depth layer, low, moderate and high exposure to dissolved hydrocarbons was recorded for a range of receptors for both the unmitigated and mitigated cases. The highest dissolved hydrocarbon concentrations predicted for both cases were the Joseph Bonaparte Gulf AMP and the Carbonate bank and terrace system of the Sahul Shelf KEF, the North Kimberley MP and the Kimberley AMP during the seasonal conditions. As well, the nearshore waters of the Thamarrurr, Wyndham-East Kimberley, Dorcherty Island, Clump Island Quoin, Island, Victoria Daly shorelines and were some of the receptors with the highest entrained hydrocarbons concentrations for all seasonal conditions.

Predicted low and high entrained hydrocarbons exposure in the surface (0-10 m) depth layer was
recorded for a range of receptors. Furthermore, the identified receptors with the highest predicted
entrained hydrocarbons concentrations for the unmitigated and mitigated cases for all three seasons,
included: Carbonate bank and terrace system of the Sahul Shelf KEF, Joseph Bonaparte Gulf AMP,
Kimberley AMP, North Kimberley MP and nearshore waters of the Thamarrurr, Wyndham - East
Kimberley, Dorcherty Island, Clump Island, Quoin Island, Victoria Daly shorelines and RSB receptors,
Bassett-Smith Shoal, Branch Banks, East Holothuria Reef, Emu Reefs, Holothuria Banks, Howland
Shoals, Otway Bank and Tait Bank).

1 INTRODUCTION

1.1 Background

EOG Resources Australia Block WA-488 Pty Ltd (EOG) is planning to undertake a drilling campaign within permit area WA-488-P located in the Bonaparte Basin in the Joseph Bonaparte Gulf, Western Australia.

Aventus Consulting Pty Ltd (Aventus) has been contracted by EOG to prepare the Environment Plan (EP) and Oil Pollution Emergency Plan (OPEP) for the planned activity.

To inform the potential environmental impact and risk assessments for the proposed drilling campaign, Aventus commissioned RPS to undertake a detailed oil spill modelling study assessing the following hypothetical scenario:

• **Scenario**: A 786,858 m³ (or 4,949,338 bbl) surface release of crude oil over 77 days to represent a loss of well control (unmitigated case).

In addition, the study examined the potential benefit of applying surface dispersant as a mitigation measure (referred to as the mitigated case).

Table 1.1 presents the Beehive-1 exploration well location used for Scenario 1. Figure 1.1 illustrates the exploration well location.

The potential risk of exposure to the surrounding waters and contact to shorelines was assessed for three distinct seasons defined by prevailing wind conditions.

- i. summer (October to February),
- ii. the transitional periods (March and September), and
- iii. winter (April to August).

This approach assists with identifying the environmental values and sensitivities that would be at risk of exposure on a seasonal basis, given the dominant winds and water currents vary significantly among the seasons.

The spill modelling was performed using an advanced three-dimensional trajectory and fates model; Spill Impact Model Application Program (SIMAP). The SIMAP model calculates the transport, spreading, entrainment and evaporation of spilled hydrocarbons over time, based on the prevailing wind and current conditions and the physical and chemical properties.

Note that the oil spill model, the method and analysis presented herein uses modelling algorithms which have been anonymously peer reviewed and published in international journals. Furthermore, RPS warrants that this work meets and exceeds the American Society for Testing and Materials (ASTM) Standard F2067-13 "Standard Practice for Development and Use of Oil Spill Models".

Table 1.1 Coordinates for the Beehive-1 exploration well (GDA2020).

Location	Latitude	Longitude
Beehive-1	14° 03′ 14.4″ S	128° 34' 35.76" E

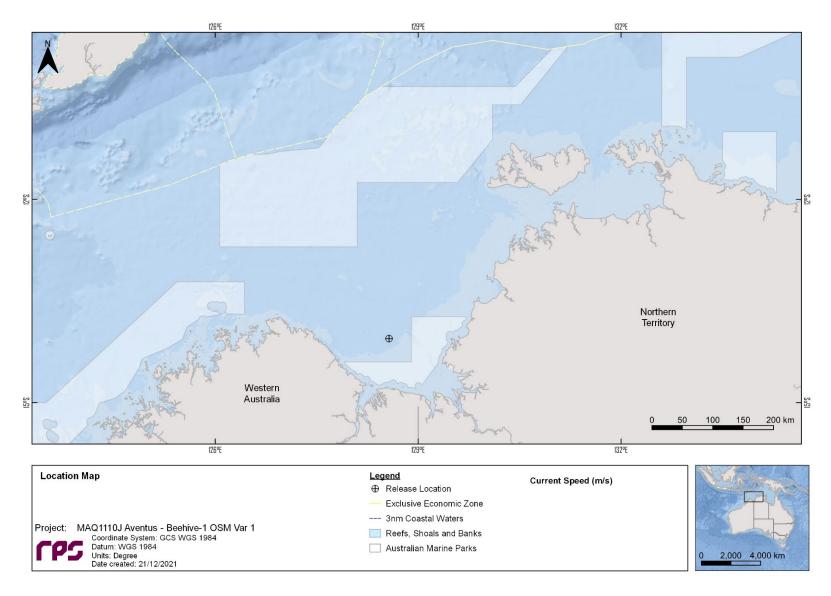


Figure 1.1 Map of the Beehive-1 exploration well.

1.2 What is Oil Spill Modelling?

Oil spill modelling is a valuable tool widely used for risk assessment, emergency response and contingency planning where it can be particularly helpful to proponents and decision makers. By modelling a series of the most likely oil spill scenarios, decisions concerning suitable response measures and strategic locations for deploying equipment and materials can be made, and the locations at most risk can be identified. The two types of oil spill modelling often used are stochastic (Section 1.2.1) and deterministic (Section 1.2.2) modelling.

1.2.1 Stochastic Modelling (Multiple Spill Simulations)

Stochastic oil spill modelling is created by overlaying a great number (often hundreds) of individual, computer-simulated hypothetical spills (NOPSEMA, 2018; Figure 1.2).

Stochastic modelling is a common means of assessing the potential risks from oil spills related to new projects and facilities. Stochastic modelling typically utilises hydrodynamic data for the location in combination with historic wind data. Typically, 100 iterations of the model will be run utilising the data that is most relevant to the season or timing of the project.

The outcomes are often presented as a probability of exposure and is primarily used for risk assessment purposes in view to understand the range of environments that may be affected or impacted by a spill. Elements of the stochastic modelling can also be used in oil spill preparedness and planning.

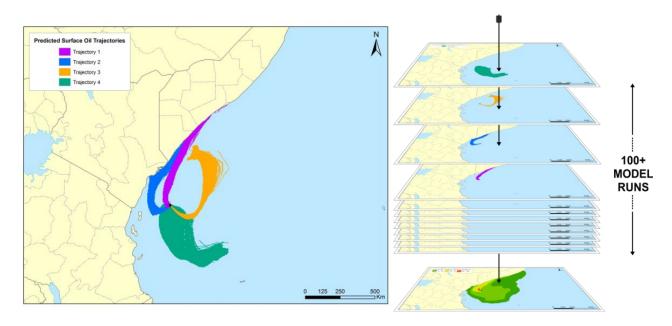


Figure 1.2 Examples of four individual spill trajectories (four replicate simulations) predicted by SIMAP for a spill scenario. The frequency of contact with given locations is used to calculate the probability of impacts during a spill. Essentially, all model runs are overlain (shown as the stacked runs on the right) and the number of times that trajectories contact a given location at a concentration is used to calculate the probability.

1.2.2 Deterministic Modelling (Single Spill Simulation)

Deterministic modelling is the predictive modelling of a single incident subject to a single sample of wind and weather conditions over time (NOPSEMA, 2018; Figure 1.3).

Deterministic modelling is often paired with stochastic modelling to place the large stochastic footprint into perspective. This deterministic analysis is generally a single run selected from the stochastic analysis and serves as the basis for developing the plans and equipment needs for a realistic spill response. Deterministic spills can be selected on several basis such as minimum time to shoreline, largest swept area, maximum volume ashore and longest length of shoreline contacted by oil.

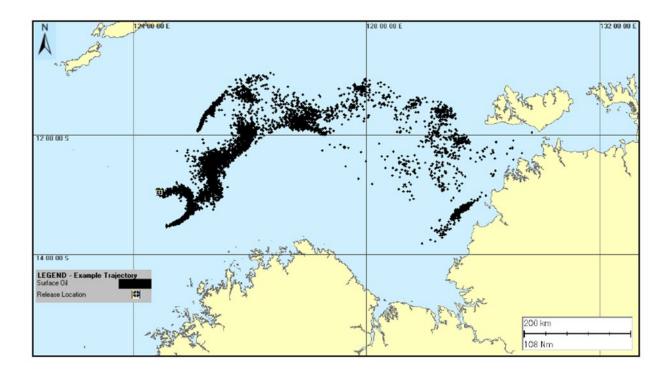


Figure 1.3 Example of an individual spill trajectory predicted by SIMAP for a spill scenario. Note, this image represents surface oil as spillets and do not take any thresholds into consideration.

2 SCOPE OF WORK

The scope of work included the following components:

- Generate 10 years of CFSR winds and three-dimensional hindcast HYCOM currents from 2010 to 2019 (inclusive). The currents include the combined influence of HYDROMAP tidal and HYCOM ocean currents:
- Include the wind and current data and hydrocarbon characteristics of the crude oil as input into the three-dimensional oil spill model SIMAP, to model the movement, spreading, weathering and shoreline accumulation by hydrocarbons over time;
- Use SIMAP's stochastic model (also known as a probability model) to calculate exposure to surrounding
 waters and shorelines. This involved running 100 randomly selected single trajectory simulations (per
 season), with each simulation having the same spill information (spill volume, location, duration and
 composition of hydrocarbons) but with varying start times. This ensured that each spill trajectory was
 subject to a unique set of wind and current conditions;
- Rerun SIMAP's stochastic model with the application of surface dispersant as a mitigation measure to calculate the reduced exposure to surrounding waters and shorelines;
- Review the unmitigated stochastic model results and present the worst-case deterministic runs identified case based on the following criteria:
 - a. Largest swept area of floating oil above 1 g/m² (visible floating oil);
 - b. Minimum time before shoreline accumulation above 10 g/m²;
 - c. Largest volume of oil ashore;
 - d. Longest length of shoreline accumulation above 10 g/m²;
 - e. Largest area of entrained hydrocarbons above 10 ppb; and
 - f. Largest area of dissolved hydrocarbons above 10 ppb.
- Present a comparison between the unmitigated and mitigated cases for the above worst-case deterministic runs to demonstrate the potential benefit of surface dispersant application.

3 REGIONAL CURRENTS

The Operational Area is located within the Joseph Bonaparte Gulf, a shallow (generally <100 m) waterbody bordered by the Indian Ocean and Timor Sea. The gulf is characterised by complex geomorphology (i.e. shoals, valleys and terraces) and is dominated by tidal (ranges > 4 m) and wind driven currents which are dependent on season (DEWHA, 2007).

The Indonesian Throughflow brings southwest flowing, less saline, warm waters from the tropics, however the internal gyres generate local currents in any direction. As these gyres migrate through the area, large spatial variations in the speed and direction of currents will occur at a given location over time. The Holloway current, which flows southwest and close to the coastline, intensifies during April to July due to increased wind forcing.

A comprehensive description of the circulation patterns of the Northwest Shelf and Timor Sea is provided in a review by Condie and Andrewartha (2008). A schematic of the ocean currents along the Northwest Australian continental shelf is shown in Figure 3.1.

While, the tidal currents are generally weaker in the deeper waters (beyond the Gulf), its influence is greatest along the near shore, within the Gulf, coastal passage regions and, in and around the islands. Therefore, to accurately account for the movement of an oil spill, which can move between the offshore and near shore region, ocean and tidal currents were combined as part of the study.

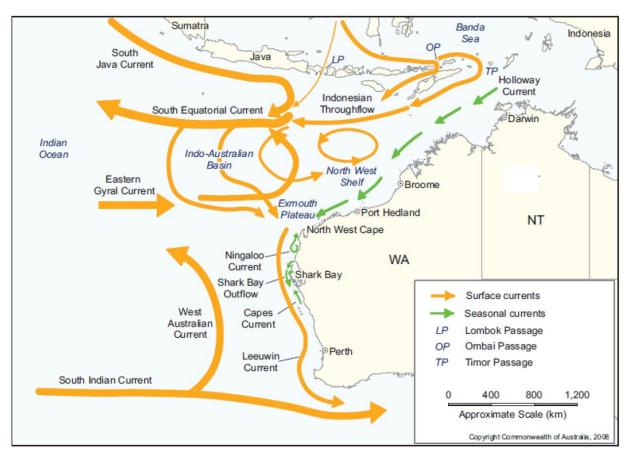


Figure 3.1 Schematic of ocean currents along the Northwest Australian continental shelf. Image adapted from DEWHA (2008).

3.1 Tidal currents

Tidal current data was generated using RPS's advanced ocean/coastal model, HYDROMAP. The HYDROMAP model has been thoroughly tested and verified through field measurements throughout the world for more than 30 years (Isaji & Spaulding, 1984; Isaji, et al., 2001; Zigic, et al., 2003). HYDROMAP tidal current data has been used as input to forecast (in the future) and hindcast (in the past) pollutant spills in Australian waters and forms part of the Australian National Oil Spill Emergency Response System operated by AMSA (Australian Maritime Safety Authority).

HYDROMAP employs a sophisticated sub-gridding strategy, which supports up to six levels of spatial resolution, halving the grid cell size as each level of resolution is employed. The sub-gridding allows for higher resolution of currents within areas of greater bathymetric and coastline complexity, and/or of interest to a study.

The numerical solution methodology follows that of Davies (1977a and 1977b) with further developments for model efficiency by Owen (1980) and Gordon (1982). A more detailed presentation of the model can be found in Isaji and Spaulding (1984) and Isaji et al. (2001).

3.1.1 Grid Setup

RPS has a global tidal model with global coverage. The model is sub-gridded to a resolution of 500 m for shallow and coastal regions, starting from an offshore (or deep water) resolution of 8 km. The finer grids are progressively allocated in a step-wise fashion to more accurately resolve flows along the coastline, around islands and over regions with more complex bathymetry. Figure 3.2 shows the tidal model grid covering the study domain.

A combination of datasets was used and merged to describe the shape of the seabed within the grid domain (Figure 3.3). These included spot depths and contours which were digitised from nautical charts released by the hydrographic offices as well as Geoscience Australia database and depths extracted from the Shuttle Radar Topography Mission (SRTM30_PLUS) Plus dataset (see Becker et al., 2009).

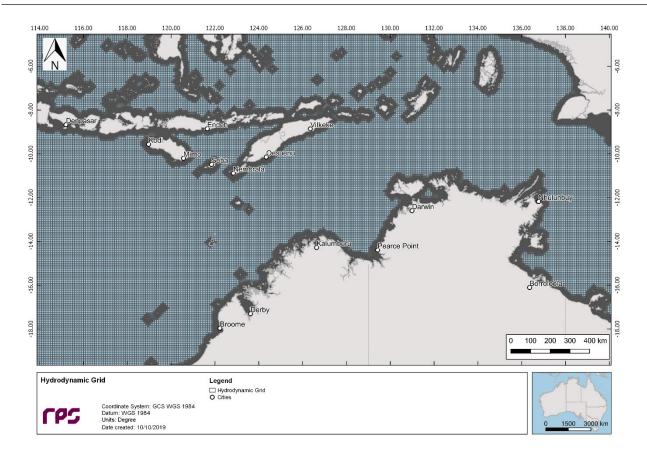


Figure 3.2 Sample of the model grid used to generate the tidal currents for the study region. Higher resolution areas are shown by the denser mesh.

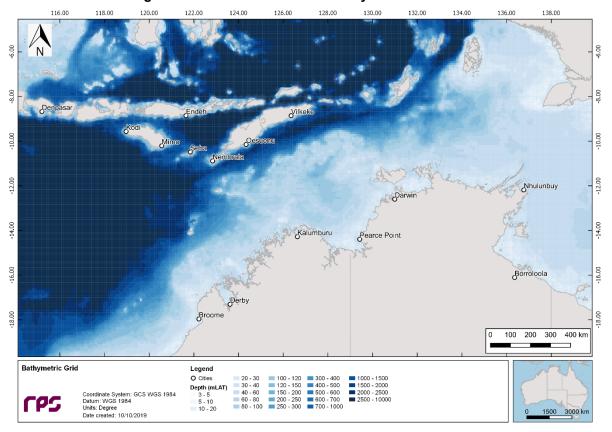


Figure 3.3 Bathymetry defined throughout the tidal model domain.

3.1.2 Tidal Conditions

The ocean boundary data for the regional model was obtained from satellite measured altimetry data (TOPEX/Poseidon 8.0) which provided estimates of the eight dominant tidal constituents at a horizontal scale of approximately 0.25 degrees. The eight major tidal constituents used were K_2 , S_2 , M_2 , N_2 , K_1 , P_1 , O_1 and Q_1 . Using the tidal data, time series surface heights were calculated along the open boundaries for the simulation period.

The Topex/Poseidon satellite data has a resolution of 0.25 degrees globally, with higher resolution in coastal regions, and is produced and quality controlled by NASA (National Aeronautics and Space Administration). The data capturing satellites, equipped with two altimeters capable of taking sea level measurements accurate to less than ± 5 cm, measured oceanic surface elevations (and the resultant tides) for the period 1992–2005. In total these satellites carried out 62,000 orbits of the planet. The Topex-Poseidon tidal data has been widely used amongst the oceanographic community, being referenced in more than 2,100 research publications (e.g. Andersen, 1995; Ludicone et al., 1998; Matsumoto et al., 2000; Kostianoy et al., 2003; Yaremchuk & Tangdong, 2004; Qiu & Chen 2010). The Topex/Poseidon tidal data is considered suitably accurate for this study.

3.1.3 Surface Elevation Validation

To ensure that tidal predictions were accurate, predicted surface elevations were compared to data observed at a location situated within the study area (Figure 3.4).

To provide a statistical measure of the model performance, the Index of Agreement (IOA – Willmott, 1981) and the Mean Absolute Error (MAE – Willmott, 1982; Willmott & Matsuura, 2005) were used.

The MAE (Eq.1) is simply the average of the absolute values of the difference between the model-predicted (P) and observed (O) variables. It is a more natural measure of the average error (Willmott and Matsuura, 2005) and more readily understood. The MAE is determined by:

$$MAE = N^{-1} \sum_{i=1}^{N} |P_i - O_i|$$
 Eq.1

Where: N = Number of observations

Pi = Model predicted surface elevation

Oi = Observed surface elevation

The Index of Agreement (IOA; Eq. 2) in contrast, gives a non-dimensional measure of model accuracy or performance. A perfect agreement between the model predicted and observed surface elevations exists if the index gives an agreement value of 1, and complete disagreement between model and observed surface elevations will produce an index measure of 0 (Wilmott, 1981). Willmott et al. (1985) also suggests that values larger than 0.5 may represent good model performance. The IOA is determined by:

$$IOA = 1 - \frac{\sum |X_{model} - X_{obs}|^2}{\sum (|X_{model} - \overline{X_{obs}}| + |X_{obs} - \overline{X_{obs}}|)^2}$$
 Eq.2

Where: Xmodel = Model predicted surface elevation

Xobs = Observed surface elevation

Clearly, a greater IOA and lower MAE represent a better model performance.

Figure 3.5 and Figure 3.6 illustrate a comparison of the predicted and observed surface elevations in January 2014. As shown on the graph, the model accurately reproduced the phase and amplitudes throughout the spring and neap tidal cycles.

Table 3.1 shows the IOA and MAE values for the selected tide station locations indicating that the model is performing well.

Table 3.1 Statistical comparison between the observed and HYDROMAP predicted surface elevations.

Tide Station	IOA	MAE (m)
Calder Shoal	0.95	0.21
Evans Shoal	0.97	0.14
Lacrosse Island	0.97	0.44
Snake Bay	0.98	0.16
The Boxers	0.94	0.23

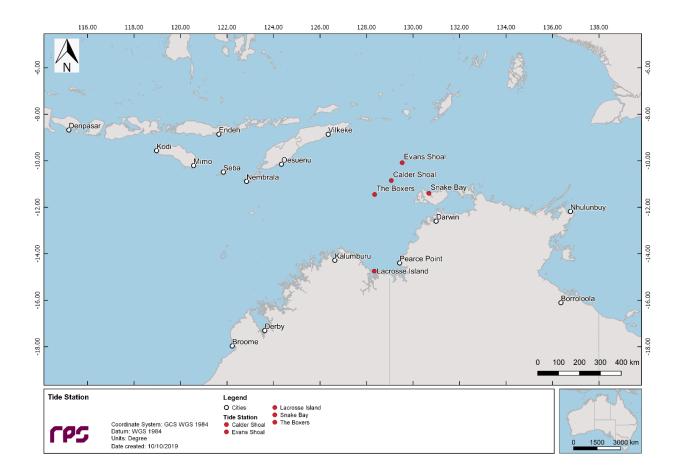


Figure 3.4 Location of the tide stations used in the surface elevation validation.

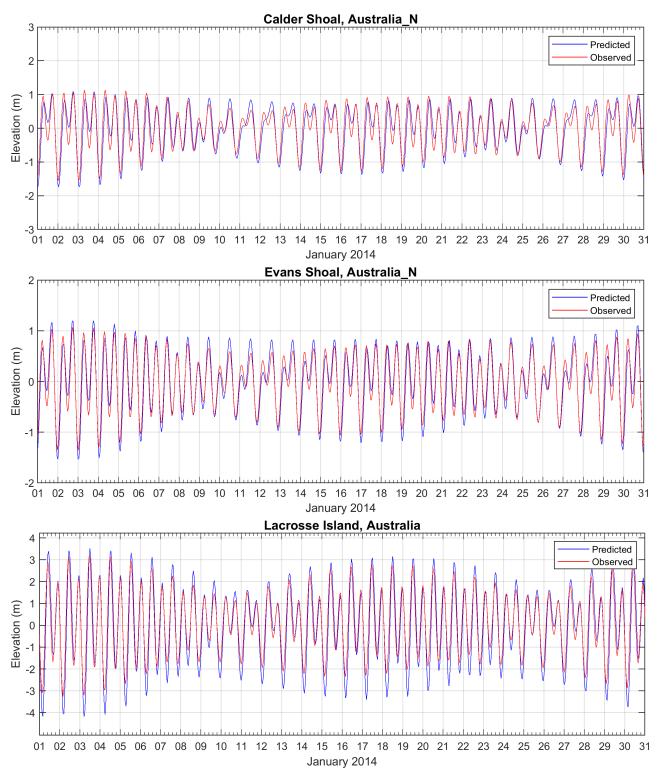


Figure 3.5 Comparison between HYDROMAP predicted (blue line) and observed (red line) surface elevation at tidal stations Calder Shoal (upper image), Evans Shoal (middle image) and Lacrosse Island (lower image).

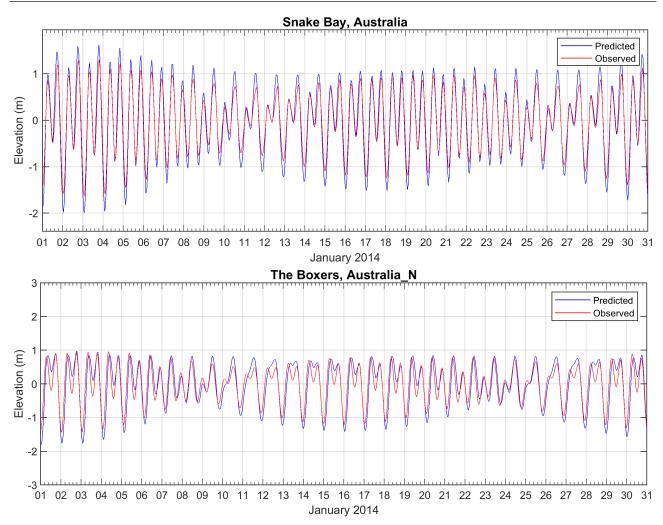


Figure 3.6 Comparison between HYDROMAP predicted (blue line) and observed (red line) surface elevation at tidal stations Snake Bay (upper image) and The Boxers (lower image).

3.2 Ocean Currents

Data describing the flow of ocean currents was obtained from HYCOM (Hybrid Coordinate Ocean Model, (Chassignet et al., 2007), which is operated by the HYCOM Consortium, sponsored by the Global Ocean Data Assimilation Experiment (GODAE). HYCOM is a data-assimilative, three-dimensional ocean model that is run as a hindcast (for a past period), assimilating time-varying observations of sea surface height, sea surface temperature and in-situ temperature and salinity measurements (Chassignet et al., 2009). The HYCOM predictions for drift currents are produced at a horizontal spatial resolution of approximately 8.25 km (1/12th of a degree) over the region, at a frequency of once per day. HYCOM uses isopycnal layers in the open, stratified ocean, but uses the layered continuity equation to make a dynamically smooth transition to a terrain-following coordinate in shallow coastal regions, and to z-level coordinates in the mixed layer and/or unstratified seas.

For this study, the HYCOM hindcast currents were obtained for the years 2010 to 2019 (inclusive). Figure 3.7 illustrates the spatial resolution of HYCOM currents.

Table 3.2 presents the average and maximum net current speeds from combined HYCOM and tidal currents nearby the Beehive-1 release location. Current speed and direction in the study area were shown to be dominated by the tides, flowing predominantly along the northwest to southeast axis. The monthly current speeds averaged between 0.33 to 0.40 m/s and reached a peak of 0.96 to 1.17 m/s.

Figure 3.8 and Figure 3.9 show the monthly and total current rose distributions resulting from the combination of HYCOM ocean current data and HYDROMAP tidal data nearby the release location.

Note the convention for defining current direction is the direction the current flows towards, which is used to reference current direction throughout this report. Each branch of the rose represents the currents flowing to that direction, with north to the top of the diagram. Sixteen directions are used. The branches are divided into segments of different colour, which represent the current speed ranges for each direction. Speed intervals of 0.1 m/s are predominantly used in these current roses. The length of each coloured segment is relative to the proportion of currents flowing within the corresponding speed and direction.

Table 3.2 Predicted monthly average and maximum surface current speeds nearby the Beehive-1 release location. The data was derived by combining the HYCOM ocean data and HYDROMAP tidal data from 2010–2019 (inclusive).

Season	Month	Average current speed (m/s)	Maximum current speed (m/s)	General direction (Towards)
0	January	0.35	1.10	
Summer	February	0.37	1.12	•
Transitional	March	0.40	1.05	•
	April	0.39	1.06	•
	May	0.35	1.17	•
Winter	June	0.34	1.07	•
	July	0.35	0.96	Northwest and
	August	0.37	1.15	Southeast
Transitional	September	0.39	1.10	•
	October	0.37	1.09	•
Summer	November	0.34	1.06	•
	December	0.33	0.98	•
Minimum		0.33	0.96	•
Maximum		0.40	1.17	•

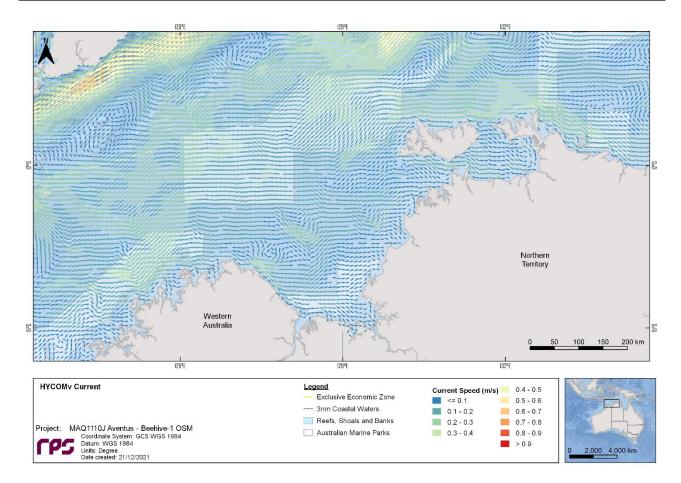


Figure 3.7 Map illustrating the spatial resolution of HYCOM currents.

RPS Data Set Analysis

Current Speed (m/s) and Direction Rose (All Records)

Longitude = 128.57°E, Latitude = 14.05°S Analysis Period: 01-Jan-2010 to 31-Dec-2019

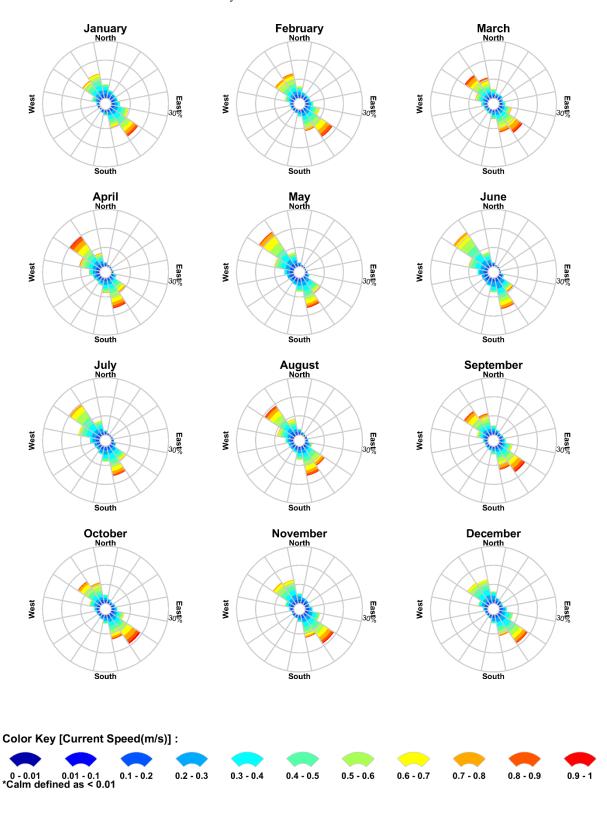


Figure 3.8 Monthly surface current rose plots nearby the Beehive-1 release location (derived by combining the HYDROMAP tidal currents and HYCOM ocean currents for 2010–2019 (inclusive).

RPS Data Set Analysis

Current Speed (m/s) and Direction Rose (All Records)

Longitude = 128.57°E, Latitude = 14.05°S Analysis Period: 01-Jan-2010 to 31-Dec-2019

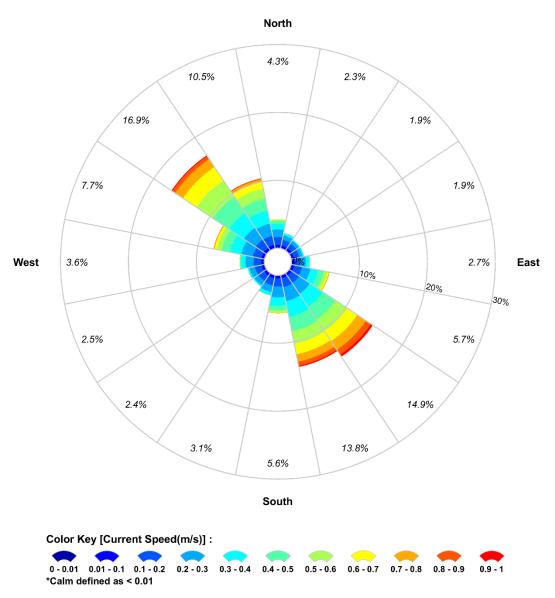


Figure 3.9 Modelled total surface current rose plot nearby the Beehive-1 release location (derived by combining the HYDROMAP tidal currents and HYCOM ocean currents for 2010–2019 (inclusive).

4 WIND DATA

High resolution wind data was sourced from the National Centre for Environmental Prediction (NCEP) Climate Forecast System Reanalysis dataset (CFSR; see Saha et al., 2010). The CFSR wind model is a fully coupled, data-assimilative hindcast model representing the interaction between the earth's oceans, land and atmosphere. The gridded wind data output is available at ¼ of a degree resolution (~33 km) and 1-hourly time intervals.

The CFSR wind data for the years 2010–2019 (inclusive) was extracted across the entire current model domain for input into the oil spill model. Figure 4.1 shows the spatial resolution of the wind field used as input into the oil spill model. Table 4.1 presents the monthly average and maximum winds derived from a CFSR wind node nearby the release location.

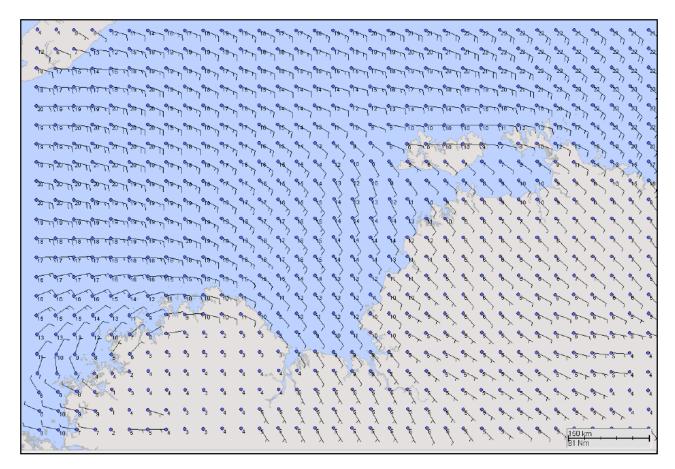


Figure 4.1 Spatial resolution of the CFSR modelled wind data used as input into the oil spill model.

Figure 4.2 and Figure 4.3 show the monthly and total wind rose distributions derived from the CFSR data for the nearest CFSR wind node to the release location. The wind data demonstrated a clear seasonality throughout the year with winds from the west-northwest in summer and southeast during the winter months. Monthly average wind speeds ranged between 8.7 and 14.1 knots whilst monthly maximums oscillated between 24.1 and 46.2 knots.

Note that the atmospheric convention for defining wind direction, that is, the direction the wind blows from, is used to reference wind direction throughout this report. Each branch of the rose represents wind coming from that direction, with north to the top of the diagram. Sixteen directions are used. The branches are divided into segments of different colour, which represent wind speed ranges from that direction. Speed ranges of 3 knots are predominantly used in these wind roses. The length of each segment within a branch

is proportional to the frequency of winds blowing within the corresponding range of speeds from that direction.

Table 4.1 Predicted average and maximum winds for the nearest CFSR wind node to the Beehive-1 release location. Data derived from CFSR hindcast model from 2010–2019 (inclusive).

Season	Month	Average wind speed (knots)	Maximum wind speed (knots)	General direction (from)
C	January	13.2	44.9	Mart Northwest
Summer	February	11.4	35.2	- West-Northwest
Transitional	March	9.7	46.2	Variable
	April	9.3	32.7	
	May	11.7	28.8	_
Winter	June	14.1	27.4	Southeast
	July	12.3	30.9	_
	August	10.4	29.5	_
Transitional	September	8.7	29.3	Variable
	October	8.8	24.7	
Summer	November	8.8	24.1	West-Northwest
	December	9.9	35.9	_
Minimum		8.7	24.1	
Maximum		14.1	46.2	

RPS Data Set Analysis Wind Speed (knots) and Direction Rose (All Records)

Longitude = 128.57°E, Latitude = 14.05°S Analysis Period: 01-Jan-2010 to 31-Dec-2019

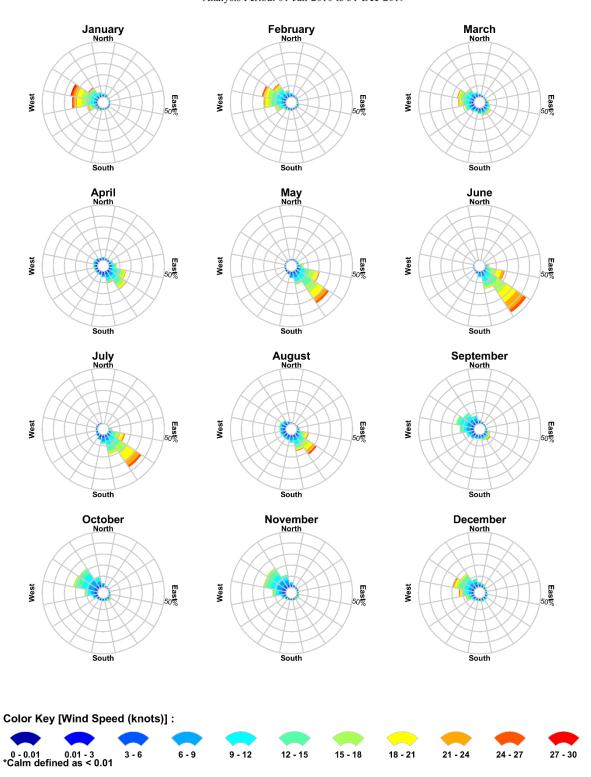


Figure 4.2 Modelled monthly wind rose distributions from 2010–2019 (inclusive), for the closest wind node to the Beehive-1 release location.

RPS Data Set Analysis

Wind Speed (knots) and Direction Rose (All Records)

Longitude = 128.57°E, Latitude = 14.05°S Analysis Period: 01-Jan-2010 to 31-Dec-2019

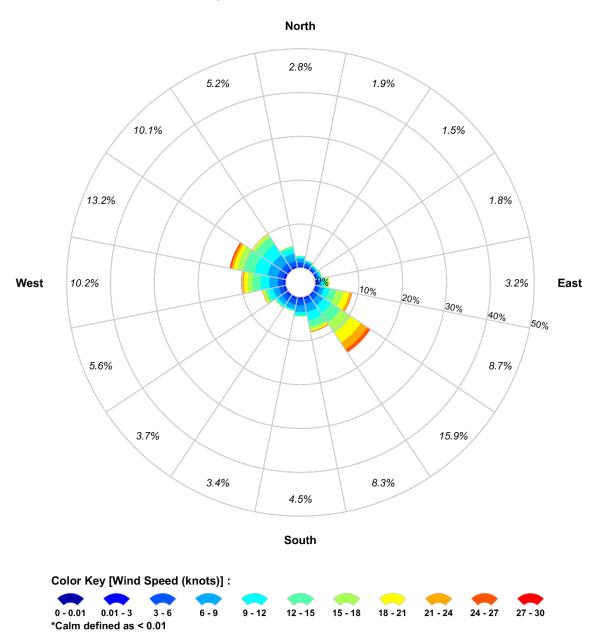


Figure 4.3 Modelled total wind rose distributions from 2010–2019 (inclusive), for the closest wind node to the Beehive-1 release location.

5 WATER TEMPERATURE AND SALINITY

The monthly sea temperature and salinity profiles of the water column within the study was obtained from the World Ocean Atlas 2013 database produced by the National Oceanographic Data Centre (National Oceanic and Atmospheric Administration) and its co-located World Data Center for Oceanography (see Levitus et al., 2013).

To account for depth-varying sea temperature and salinity the modelling used monthly average sea temperature and salinity profiles. Table 5.1 presents the sea temperature and salinity of the surface layer nearby the release sites.

The monthly average sea surface temperatures ranged between 25.9°C (July) and 30.9°C (March). The monthly average salinity values remain relatively consistent ranging between 33.4 psu and 35.2 psu, observed during April and October, respectively.

These parameters were used as factors to inform the weathering, movement and evaporative loss of hydrocarbon spills in the surface and sub-surface layers.

Figure 5.1 illustrates the vertical profile of sea temperature and salinity nearby the release location.

Table 5.1 Monthly average sea surface temperature and salinity in the study area.

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Temperature (°C)	29.5	30.1	30.9	29.6	28.0	26.8	25.9	26.4	26.8	28.6	30.1	30.0
Salinity (psu)	34.1	34.5	34.9	33.4	33.6	34.8	34.3	34.8	34.2	35.2	34.8	34.8

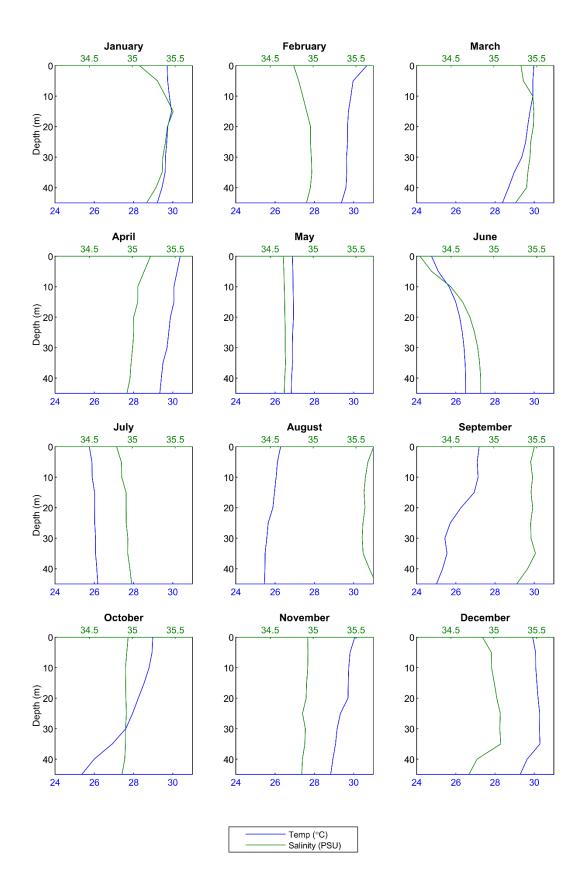


Figure 5.1 Temperature and salinity profiles nearby the Beehive-1 release location.

6 OIL SPILL MODEL – SIMAP

Modelling of the fate of oil was performed using the Spill Impact Mapping Analysis Program (SIMAP). SIMAP is designed to simulate the fate and effects of spilled hydrocarbons for both the surface and subsurface releases (Spaulding et al., 1994; French et al., 1999; French-McCay, 2003, 2004; French-McCay et al., 2004).

SIMAP has been used to predict the weathering and fate of oil spills during and after major incidents including: Montara (Australia) well blowout August 2009 in the Timor Sea (Asia-Pacific ASA, 2010); Macondo (USA) well blowout April 2010 in the Gulf of Mexico; Bohai Bay (China) oil spill August 2011; and the pipeline oil spill July 2013 in the Gulf of Thailand.

The SIMAP model calculates the transport, spreading, entrainment, evaporation and decay of surface hydrocarbon slicks as well as the entrained and dissolved oil components in the water column, either from surface slicks or from oil discharged subsea. The movement and weathering of the spilled oil is calculated for specific oil types. Input specifications for oil mixtures include the density, viscosity, pour point, distillation curve (volume lost versus temperature) and the aromatic/aliphatic component ratios within given boiling point ranges.

SIMAP is a three-dimensional model that allows for various response actions to be modelled including oil removal from skimming, burning, or collection booms, and surface and subsurface dispersant application.

The SIMAP oil spill model includes advanced weathering algorithms, specifically focussed on unique oils that tend to form emulsions and/or tar balls. The weathering algorithms are based on 5 years of extensive research conducted in response to the Deepwater Horizon oil spill in the Gulf of Mexico (French-McCay et al., 2015).

Biodegradation is included in the oil spill model. In the model, SIMAP, degradation is calculated for the surface slick, deposited oil on the shore, the entrained oil and dissolved constituents in the water column, and oil in the sediments. For surface oil, water column oil and sedimented oil, a first order degradation rate is specified. Biodegradation rates are relatively high for hydrocarbons in dissolved state or in dispersed small droplets.

6.1 Stochastic Modelling

Stochastic oil spill modelling is created by overlaying a great number (often 100 hundred) simulated hypothetical oil spills (Section 1.2.1). Stochastic modelling involves running numerous individual oil spill simulations using a range of prevailing wind and current conditions that are historically representative of the season and location of where the spill event may occur.

For the stochastic modelling undertaken in this study, 100 oil spills were modelled per season (300 spills in total) using the same spill information (spill volume, duration and oil type) but with varied start dates and times. During each simulation, the model records whether any grid cells are exposed to any oil concentrations, the concentrations involved and the elapsed time before exposure. The results of all 100 oil spill simulations (per season) were analysed to determine the following annualised statistics for every grid cell:

- Exposure load (concentrations and volumes);
- Minimum time before exposure;
- Probability of contact above defined concentrations;

- Volume of oil that may strand on shorelines from any single simulation;
- Concentration that might occur on sections of individual shorelines;
- Exposure (instantaneous and/or over a specified duration) to dissolved hydrocarbons in the water column; and
- Exposure (instantaneous and/or over a specified duration) to entrained hydrocarbons in the water column.

6.1 Floating, Shoreline and In-Water Thresholds

The thresholds and their relationship to exposure for the sea surface, shoreline, and water column (entrained and dissolved hydrocarbons) are presented in Sections 6.1.1 to 6.1.3. Supporting justifications of the adopted thresholds applied during the study and additional context relating to the area of influence are also provided. It is important to note that the thresholds herein are based on NOPSEMA (2019).

6.1.1 Floating Oil Exposure Thresholds

The modelling results can be presented to any levels; therefore, thresholds have been specified (based on scientific literature) to record floating oil exposure to the sea-surface at meaningful levels only, described in the following paragraphs.

The low threshold to assess the potential for floating oil exposure, was 1 g/m², which equates approximately to an average thickness of 1 μ m, referred to as visible oil. Oil of this thickness is described as rainbow sheen in appearance, according to the Bonn Agreement Oil Appearance Code (Bonn Agreement, 2009; AMSA, 2014) (see Table 6.1). Figure 6.1 shows photographs highlighting the difference in appearance between a silvery sheen, rainbow sheen and metallic sheen. This threshold is considered below levels which would cause environmental harm and it is more indicative of the areas perceived to be affected due to its visibility on the sea surface and potential to trigger temporary closures of areas (i.e., fishing grounds) as a precautionary measure. Table 6.1 provides a description of the appearance in relation to exposure zone thresholds used to classify the zones of floating oil exposure.

Ecological impact has been estimated to occur at 10 g/m^2 (a film thickness of approximately 10 \mu m or 0.01 mm) according to French et al. (1996) and French-McCay (2009) as this level of fresh oiling has been observed to mortally impact some birds through adhesion of oil to their feathers, exposing them to secondary effects such as hypothermia. The appearance of oil at this average thickness has been described as a metallic sheen (Bonn Agreement, 2009). Concentrations above 10 g/m^2 is also considered the lower actionable threshold, where oil may be thick enough for containment and recovery as well as dispersant treatment (AMSA, 2015).

Scholten et al. (1996) and Koops et al. (2004) indicated that at oil concentrations on the sea surface of 25 g/m² (or greater), would be harmful for all birds that have landed in an oil film due to potential contamination of their feathers, with secondary effects such as loss of temperature regulation and ingestion of oil through preening. The appearance of oil at this thickness is also described as metallic sheen (Bonn Agreement, 2009). For this study the high exposure threshold was set to 50 g/m² and above based on NOPSEMA (2019). This threshold can also be used to inform response planning.

Table 6.2 defines the thresholds used to classify the zones of floating oil exposure reported herein.

Table 6.1 The Bonn Agreement Oil Appearance Code.

Code	Description Appearance	Layer Thickness Interval (g/m² or μm)	Litres per km ²
1	Sheen (silvery/grey)	0.04 - 0.30	40 - 300
2	Rainbow	0.30 - 5.0	300 – 5,000
3	Metallic	5.0 – 50	5,000 - 50,000
4	Discontinuous True Oil Colour	50 – 200	50,000 - 200,000
5	Continuous True Oil Colour	≥ 200	≥ 200,000

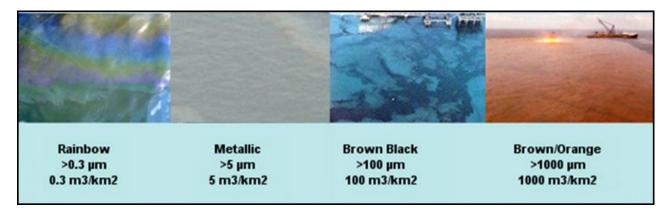


Figure 6.1 Photographs showing the difference between oil colour and thickness on the sea surface (source: adapted from Oil Spill Solutions, 2015).

Table 6.2 Floating oil exposure thresholds used in this report (in alignment with NOPSEMA (2019)).

Threshold level	Floating oil (g/m²)	Description
Low	1	Approximates range of socio-economic effects and establishes planning area for scientific monitoring
Moderate	10	Approximates lower limit for harmful exposures to birds and marine mammals
High	50*	Approximates surface oil slick and informs response planning

^{* 50} g/m² also used to define the threshold for actionable floating oil.

6.1.2 Shoreline Accumulation Thresholds

There are many different types of shorelines, ranging from cliffs, rocky beaches, sandy beaches, mud flats and mangroves, and each of these influences the volume of oil that can remain stranded ashore and its thickness before the shoreline saturation point occurs. For instance, a sandy beach may allow oil to percolate through the sand, thus increasing its ability to hold more oil ashore over tidal cycles and various wave actions than an equivalent area of water; hence oil can increase in thickness onshore over time. A rocky shoreline was assumed as the default shoreline type for the modelling in this study, as a large part of the shoreline in the study area (especially the western part of the Joseph Bonaparte Gulf) is characterised by exposed rocky shorelines.

In previous risk assessment studies, French-McCay et al. (2005a; 2005b) used a threshold of 10 g/m2 to assess the potential for shoreline accumulation. This is a conservative threshold used to define regions of socio-economic impact, such as triggering temporary closures of adjoining fisheries or the need for shore

clean-up on beaches or man-made features/amenities (breakwaters, jetties, marinas, etc.). It would equate to approximately 2 teaspoons of hydrocarbon per square meter of shoreline accumulation. The appearance is described as a stain/film. On that basis, the 10 g/m² shoreline accumulation threshold has been selected to define the zone of potential "low shoreline accumulation".

French et al. (1996) and French-McCay (2009) define a shoreline oil accumulation threshold of 100 g/m2, or above, would potentially harm shorebirds and wildlife (fur-bearing aquatic mammals and marine reptiles on or along the shore) based on studies for sub-lethal and lethal impacts. This threshold has been used in previous environmental risk assessment studies (see French-McCay, 2003; French-McCay et al., 2004, French-McCay et al., 2011; 2012; NOAA, 2013). Additionally, a shoreline concentration of 100 g/m², or above, is the minimum concentration that the oil can be effectively cleaned according to AMSA (2015). This threshold equates to approximately $\frac{1}{2}$ a cup of oil per square meter of shoreline accumulation. The appearance is described as a thin oil coat. Therefore, 100 g/m² has been selected to define the zone of potential "moderate shoreline accumulation".

Observations by Lin & Mendelssohn (1996), demonstrated that loadings of more than 1,000 g/m² of hydrocarbon during the growing season would be required to impact marsh plants significantly. Similar thresholds have been found in studies assessing hydrocarbon impacts on mangroves (Grant et al., 1993; Suprayogi & Murray, 1999). Hence, 1,000 g/m² has been selected to define the zone of potential "high shoreline accumulation". It equates to approximately 1 litre of hydrocarbon per square meter of shoreline accumulation. The appearance is described as a hydrocarbon cover.

These shoreline accumulation thresholds derived from extensive literature review (outlined in

Table 6.3) align with the commonly used threshold values for oil spill modelling specified in NOPSEMA (2019).

Table 6.3 Thresholds used to assess shoreline accumulation.

Threshold level	Shoreline concentration (g/m²)	Description
Low (socio-economic/sublethal)	10	Predicts potential for some socio-economic impact
Moderate	100*	Loading predicts area likely to require clean-up effort
High	> 1,000	Loading predicts area likely to require intensive clean-up effort

^{* 100} g/m2 also used to define the threshold for actionable shoreline oil.

6.1.3 In-water Exposure Thresholds

Oil is a mixture of thousands of hydrocarbons of varying physical, chemical, and toxicological characteristics, and therefore, demonstrate varying fates and impacts on organisms. As such, for in-water exposure, the SIMAP model provides separate outputs for dissolved and entrained hydrocarbons from oil droplets. The consequences of exposure to dissolved and entrained components will differ because they have different modes and magnitudes of effect.

Entrained hydrocarbon concentrations were calculated based on oil droplets that are suspended in the water column, though not dissolved. The composition of this oil would vary with the state of weathering (oil age) and may contain soluble hydrocarbons when the oil is fresh. Calculations for dissolved hydrocarbons specifically calculates oil components which are dissolved in water, which are known to be the primary source of toxicity exerted by oil.

6.1.3.1 Dissolved Hydrocarbons

Laboratory studies have shown that dissolved hydrocarbons exert most of the toxic effects of oil on aquatic biota (Carls et al., 2008; Nordtug et al., 2011; Redman, 2015). The mode of action is a narcotic effect, which is positively related to the concentration of soluble hydrocarbons in the body tissues of organisms (French-McCay, 2002). Dissolved hydrocarbons are taken up by organisms directly from the water column by absorption through external surfaces and gills, as well as through the digestive tract. Thus, soluble hydrocarbons are termed "bioavailable".

Hydrocarbon compounds vary in water-solubility and the toxicity exerted by individual compounds is inversely related to solubility, however bioavailability will be modified by the volatility of individual compounds (Nirmalakhandan & Speece, 1988; Blum & Speece, 1990; McCarty, 1986; McCarty et al., 1992a, 1992b; Mackay et al., 1992; McCarty & Mackay, 1993; Verhaar et al., 1992, 1999; Swartz et al., 1995; French-McCay, 2002; McGrath and Di Toro, 2009). Of the soluble compounds, the greatest contributor to toxicity for water-column and benthic organisms are the lower-molecular-weight aromatic compounds, which are both volatile and soluble in water. Although they are not the most water-soluble hydrocarbons within most oil types, the polynuclear aromatic hydrocarbons (PAHs) containing 2-3 aromatic ring structures typically exert the largest narcotic effects because they are semi-soluble and not highly volatile, so they persist in the environment long enough for significant accumulation to occur (Anderson et al., 1974, 1987; Neff & Anderson, 1981; Malins & Hodgins, 1981; McAuliffe, 1987; NRC, 2003). The monoaromatic hydrocarbons (MAHs), including the BTEX compounds (benzene, toluene, ethylbenzene, and xylenes), and the soluble alkanes (straight chain hydrocarbons) also contribute to toxicity, but these compounds are highly volatile, so that their contribution will be low when oil is exposed to evaporation and higher when oil is discharged at depth where volatilisation does not occur (French-McCay, 2002).

French-McCay (2002) reviewed available toxicity data, where marine biota was exposed to dissolved hydrocarbons prepared from oil mixtures, finding that 95% of species and life stages exhibited 50% population mortality (LC₅₀) between 6 and 400 ppb total PAH concentration after 96 hrs exposure, with an average of 50 ppb. Hence, concentrations lower than 6 ppb total PAH value should be protective of 97.5% of species and life stages even with exposure periods of days (at least 96 hours). Early life-history stages of fish appear to be more sensitive than older fish stages and invertebrates.

Exceedances of 10, 50 or 400 ppb over a 1 hour timestep (see Table 6.4) were applied in this study to indicate the increasing potential for sub-lethal to lethal toxic effects (or low to high), based on NOPSEMA (2019).

6.1.3.2 Entrained Hydrocarbons

Entrained hydrocarbons consist of oil droplets that are suspended in the water column and insoluble. Insoluble compounds in oil cannot be absorbed from the water column by aquatic organisms, therefore they are not bioavailable through absorption of compounds from the water. Exposure to these compounds would require routes of uptake other than absorption of soluble compounds. The route of exposure of organisms to whole oil alone include direct contact with tissues of organisms and uptake of oil by direct consumption, with potential for biomagnification through the food chain (NRC, 2005).

The 10 ppb threshold represents the very lowest concentration and corresponds generally with the lowest trigger levels for chronic exposure for entrained hydrocarbons in the ANZECC & ARMCANZ (2000) water quality guidelines. Due to the requirement for relatively long exposure times (> 24 hours) for these concentrations to be expressed, they are likely to be more meaningful for juvenile fish, larvae and planktonic organisms that might be entrained (or otherwise moving) within the entrained plumes, or when entrained hydrocarbons adhere to organisms or trapped against a shoreline for periods of several days or more.

This exposure zone is not considered to be of significant biological impact and is therefore outside the adverse exposure zone. This exposure zone represents the area contacted by the spill. This area does not

define the area of influence as it is considered that the environment will not be affected by the entrained hydrocarbon at this level.

Thresholds of 10 ppb and 100 ppb were applied over a 1 hour time exposure (Table 6.4), to cover the range of thresholds outlined in ANZECC & ARMCANZ, (2000) water quality guidelines, the incremental change for greater potential effect and is per NOPSEMA (2019).

A complicating factor that should be considered when assessing the consequence of dissolved and entrained oil distributions is that there will be some areas where both physically entrained oil droplets and dissolved hydrocarbons co-exist. Higher concentrations of each will tend to occur close to the source where sea conditions can force mixing of relatively unweathered oil into the water column, resulting in more rapid dissolution of soluble compounds.

Table 6.4 Dissolved and entrained hydrocarbon exposure values assessed over a 1-hour time step, as per NOPSEMA (2019).

Threshold level	Dissolved hydrocarbon concentration (ppb)	Entrained hydrocarbon concentrations (ppb)
Low	10	10
Moderate	50	-
High	400	100

6.2 Aerial Dispersant Operations

The surface dispersant was assumed to be applied on surface oil with an age between 3 hours and 72 hours from the time of release. This enabled the evaporation process to take place during the initial 3 hours following the release whilst also avoiding any waste of dispersant on highly weathered oil, which would be ineffective.

The dispersant effectiveness was set at 65% based on a combination of surface spraying using vessels and airplanes. It was assumed that that the dispersant will be effective on fresh, weathered and emulsified oil with a minimum thickness of 10 μ m and a viscosity of up to 12,500 cP. The surface dispersant application was assumed continuous for 10 hours during daylight hours only, starting from 24 hours after the initial release until the end of the spill duration. Winds were capped at 35 knots to ensure safe operating conditions for planes, but also to allow for sufficient mixing of the chemical dispersants and oil at the water surface (API et al. 2001; NOAA 2010). A dispersant to oil ratio of 1:20 was applied.

Table 6.5 summarises the aerial dispersant application parameters.

Table 6.5 Aerial dispersant application parameters.

Parameter	Input
Total Volume available (m³)	4,278 (refer to Figure 6.2 for daily volumes)
Dispersant to oil ratio	1:20 (only applied on oil > 10 g/m²)
Dispersant effectiveness (%)	65
Maximum viscosity threshold (cP)	12,500
Minimum Operational Wind Speeds (knots)	2
Maximum Operational Wind Speeds (knots)	35
Operational hours	10 (during daylight only)

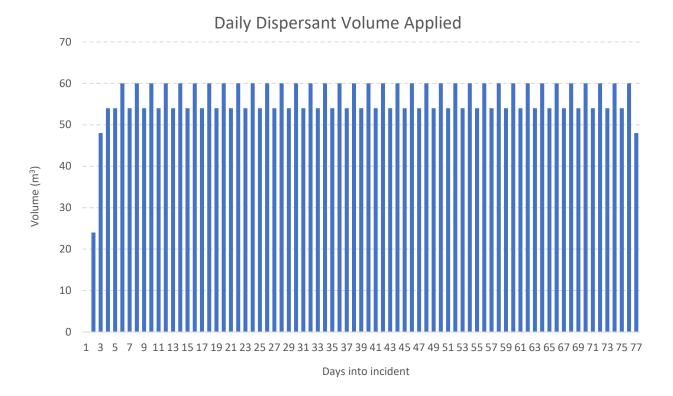


Figure 6.2 Daily dispersant volume available for application

7 OIL PROPERTIES

7.1 Oil Characteristics

7.1.1 Overview

Table 7.1 and Table 7.2 present the physical properties and boiling point ranges analogue crude oil used in this study. The analogue crude oil was carefully selected based on EOG recommendations to represent the crude oil likely to be found within permit area WA-488-P, which is likely to have an API gravity of 43° (light crude). EOG narrowed down oils in the region with a similar API to be Jabiru, Puffin, Mutineer-Exeter and Legendre crudes, all of which have APIs between 42 and 44. Based on having an API closest to that expected at Beehive-1, together with being the most conservative in terms of the residual components, EOG elected to use Jabiru crude as the analogue for spill modelling purposes.

Table 7.1 Physical properties of the oil types used in this study.

Characteristic	Crude Oil
Density (kg/m³)	813.9 (at 15°C)
API	42.3
Dynamic viscosity (cP)	3.0 (at 20°C)
Pour point (°C)	18
Hydrocarbon property category	Group II
Hydrocarbon property classification	Light-persistent

Table 7.2 Boiling point ranges of the oil types used in this study.

	Component	Volatile (%)	Semi-volatile (%)	Low-volatility (%)	Residual (%)
Oil Type	Boiling point (°C)	<180 C ₄ to C ₁₀	180-160 C ₁₁ to C ₁₅	160-380 C ₁₆ to C ₂₀	>380 >C ₂₀
Jabiru crude oil	% of total	24.2	20.9	33.9	21.0

The boiling points (BP) are dictated by the length of the carbon chains, with the longer and more complex compounds having a higher boiling point, and therefore lower volatility and evaporation rate.

The aromatic components within the volatile to low-volatility range are also soluble (with decreasing solubility following decreasing volatility) and will dissolve across the oil-water interface. The rate of dissolution will increase with increased surface area. Hence, dissolution rates will be higher under discharge conditions that generate smaller oil droplets.

Atmospheric weathering will commence if and when oil droplets float to the water surface. Typical evaporation times once the hydrocarbons reach the surface and are exposed to the atmosphere are:

- Up to 12 hours for the C₄ to C₁₀ compounds (or less than 180°C BP).
- Up to 24 hours for the C₁₁ to C₁₅ compounds (180-160°C BP).
- Several days for the C₁₆ to C₂₀ compounds (160-380°C BP).

• Not applicable for the residual compounds (BP > 380°C), which will resist evaporation, persist in the marine environment for longer periods, and be subject to relatively slow degradation.

The actual fate of released oil in the marine environment will depend greatly on the amount of oil that reaches the surface, either through the initial release or by rising after discharge in the water column.

7.1.2 Crude Oil

The analogue crude oil has an API of 42.3 and a density of 813.9 kg/m³ (at 15°C) with a viscosity value (3.0 cP) classifying it as a Group II (light-persistent) oil according to the International Tankers Owners Pollution Federation (ITOPF, 2014) and US EPA/USCG classifications.

The crude is a mixture of volatile (79%) and persistent hydrocarbons (21%). In favourable evaporation conditions, about 24.2% of the oil mass should evaporate within the first 12 hours (BP < 180 °C); a further 20.8% should evaporate within the first 24 hours (180 °C < BP < 160 °C); and a further 33.9% should evaporate over several days (160 °C < BP < 380 °C). Approximately 21.0% of the oil is shown to be persistent.

7.2 Weathering Characteristics

7.2.1 Overview

A series of model weather tests were conducted to illustrate the potential behaviour of the Jabiru crude oil when exposed to idealised and representative environmental conditions:

- A 1-hour release onto the water surface at a discharge rate of 25 m³/hr under calm wind conditions (constant 5 knots), assuming low seasonal water temperature (25 °C) and average air temperature (29 °C). The slick was also subject to ambient tidal and drift currents.
- A 1-hour release onto the water surface at a discharge rate of 50 m³/hr under variable wind conditions (1-12 knots, drawn from representative data files), assuming low seasonal water temperature (25 °C) and average air temperature (29 °C). The slick was also subject to ambient tidal and drift currents.

The first case is indicative of cumulative weathering rates under calm conditions that would not generate entrainment, while the second case may represent conditions that could cause a minor degree of entrainment. Both scenarios provide examples of potential behaviour during periods of a spill event once the oil reaches the surface.

7.2.2 Crude Oil Mass Balance Forecasts

The mass balance forecast for the constant-wind case (Figure 7.1) shows that 45.3% of the oil is predicted to evaporate within 24 hours. Under calm conditions, the majority of the remaining oil on the water surface will weather at a slower rate due to being comprised of the longer-chain compounds with higher boiling points. Evaporation of the residual compounds will slow significantly, and they will then be subject to more gradual decay through biological and photochemical processes.

Under the variable-wind case (Figure 7.2), where the winds are of greater strength on average, entrainment of the crude oil into the water column is predicted to increase. Approximately 24 hours after the spill, 54.1% of the oil mass is forecast to have entrained and a further 42.8% is forecast to have evaporated, leaving only

a small proportion of the oil floating on the water surface (<1%). The residual compounds will tend to remain entrained beneath the surface under conditions that generate wind waves (approximately >6 m/s).

The increased level of entrainment in the variable-wind case will result in a higher percentage of biological and photochemical degradation, where the decay of the floating slicks and oil droplets in the water column occurs at an approximate rate of ~1.3% per day with an accumulated total of ~9.1% after 7 days, in comparison to a rate of ~0.3% per day and an accumulated total of ~2.4% after 7 days in the constant-wind case. Given the proportion of entrained oil and the tendency for it to remain mixed in the water column, the remaining hydrocarbons will decay over several weeks.

Table 7.3 illustrates the summary of the mass balance for the calm wind and variable wind case at day 7.

Table 7.3 Summary of the mass balance at day 7. Results are based on a 25 m³ surface release of crude oil over 1 hour, tracked for 7 days under calm and variable wind conditions.

End of the simulation (day 7)					
Exposure Metrics	Calm wind conditions	Variable wind conditions			
Surface/Floating Oil (%)	44.4	0.0			
Ashore/Shoreline (%)	0.0	0.0			
Entrained (%)	3.6	44.5			
Evaporated (%)	49.2	44.2			
Decay (%)	2.4	9.1			

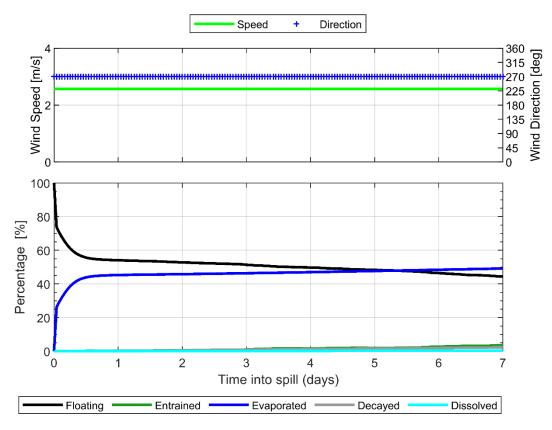


Figure 7.1 Proportional mass balance plot representing the weathering of crude oil spilled onto the water surface over 1 hour and subject to a constant 5 knots (2.6 m/s) wind speed at 25°C water temperature and 29 °C air temperature.

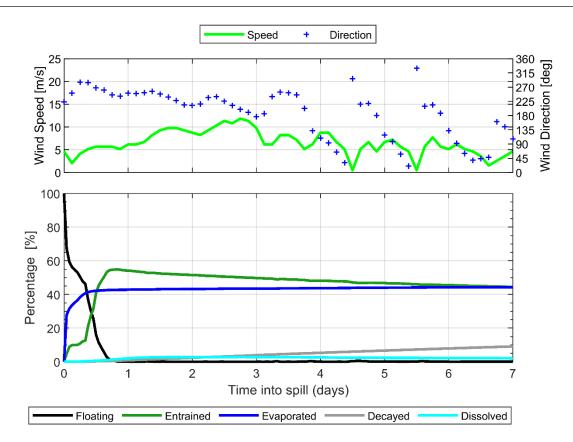


Figure 7.2 Proportional mass balance plot representing the weathering of crude oil spilled onto the water over 1 hour and subject to variable wind speeds (1-12 knots) at 25°C water temperature and 29 °C air temperature.

8 MODEL SETTINGS

Table 8.1 provides a summary of the oil spill model settings for the scenario.

Each season uses the same 100 random spill locations.

Table 8.1 Summary of the oil spill model settings used in this assessment.

Parameter	Scenario
Description	LOWC
Number of randomly selected spill start times per season for each scenario	100 (300 in total)
Release location	Single location at the Beehive-1 exploration well
Model period	Summer (October to February) Transitional (March and September) Winter (April to August)
Oil type	Crude oil
Spill volume	786,858 m ³ (4,949,192 bbl)
Release type	Surface
Release duration	77 days
Simulation length (days)	98
Surface oil concentration thresholds (g/m²) (NOPSEMA Thresholds)	1, potential low exposure 10, potential moderate exposure 50, potential high exposure
Shoreline load thresholds (g/m²) (NOPSEMA Thresholds)	10, potential low exposure 100, potential moderate exposure 1,000, potential high exposure
Dissolved hydrocarbon concentrations (ppb) (NOPSEMA Thresholds)	10, potential low exposure 50, potential moderate exposure 400, potential high exposure
Entrained hydrocarbon concentrations (ppb) (NOPSEMA Thresholds)	10, potential low exposure 100, potential high exposure

9 PRESENTATION AND INTERPRETION OF MODEL RESULTS

The results from the modelling study are presented in a number of tables and figures, which aim to provide an understanding of the predicted sea-surface and water column (subsurface) exposure and shoreline accumulation (if predicted).

9.1 Annual Analysis

9.1.1 Statistics

The statistics are based on the following principles:

- The greatest distance travelled by a spill trajectory is determined by a) recording the maximum and b) second greatest distance travelled (or 99th percentile) by a single trajectory, within a scenario, from the release location to the identified exposure thresholds.
- The probability of oil exposure to a receptor is determined by recording the number of spill trajectories to reach a specified sea surface or subsea threshold within a receptor polygon, divided by the total number of spill trajectories within that scenario.
- The minimum time before oil exposure to a receptor is determined by ranking the elapsed time before sea surface exposure, at a specified threshold, to grid cells within a receptor polygon and recording the minimum value.
- The probability of oil accumulation at a receptor is determined by recording the number of spill trajectories to reach a specified shoreline accumulation threshold within a receptor polygon, divided by the total number of spill trajectories within that scenario.
- The maximum potential oil loading within a receptor is determined by identifying the maximum loading to any grid cell within a receptor polygon, for a scenario.
- The dissolved and entrained hydrocarbon exposure is determined by recording the maximum instantaneous concentrations at each grid cell by applying a 96-hour time-based averaging.

9.2 Deterministic Trajectories

The seasonal stochastic modelling results were assessed for each scenario, and the "worst case" deterministic runs were identified and are presented in the result section based on the following criteria:

- a. Largest swept area of floating oil above 1 g/m² (visible floating oil);
- b. Minimum time before shoreline accumulation above 10 g/m²;
- c. Largest volume of oil ashore;
- d. Longest length of shoreline accumulation above 10 g/m²;
- e. Largest area of entrained hydrocarbons above 10 ppb; and
- f. Largest area of dissolved hydrocarbons above 10 ppb.

When no shoreline accumulation above the lowest shoreline accumulation threshold was predicted for any of the seasons modelled, only the largest swept area of floating oil, the largest area of entrained hydrocarbons and the largest area of dissolved hydrocarbons is presented.

9.2.1 Receptors Assessed

A range of environmental receptors and shorelines were assessed for sea surface exposure, shoreline contact and water column exposure as part of the study (see Figure 9.1 to Figure 9.13). Receptor categories (see Table 9.1) include sections of shorelines and offshore islands. All other sensitive receptors other than submerged reefs, shoals and banks (RSB) were sourced from Australian Government Department of Agriculture, Water and the Environment (http://www.environment.gov.au/). Risks of exposure were separately calculated for each sensitive receptor area and have been tabulated.

Table 9.1 Summary of receptors used to assess floating oil, shoreline and in-water exposure to hydrocarbons.

Receptor Category	Acronym	Hydrocarbon Exposure Assessment		
		Water Column	Floating oil	Shoreline
Australian Marine Park	AMP	✓	✓	×
Marine Park	MP	✓	✓	×
National Marine Reserves	MNP	✓	✓	×
Nature Reserve	NR	✓	✓	×
Key Ecological Feature	KEF	✓	✓	×
Shoreline	Shoreline	√ (Reported as: Nearshore Waters)	√ (Reported as: Nearshore Waters)	√ (Reported as: Shore)
DoT Shoreline	Shoreline	×	×	✓
Ramsar wetland	Ramsar	✓	✓	×
Reefs, Shoals and Banks	RSB	✓	✓	×
State Waters	State Waters	✓	✓	×

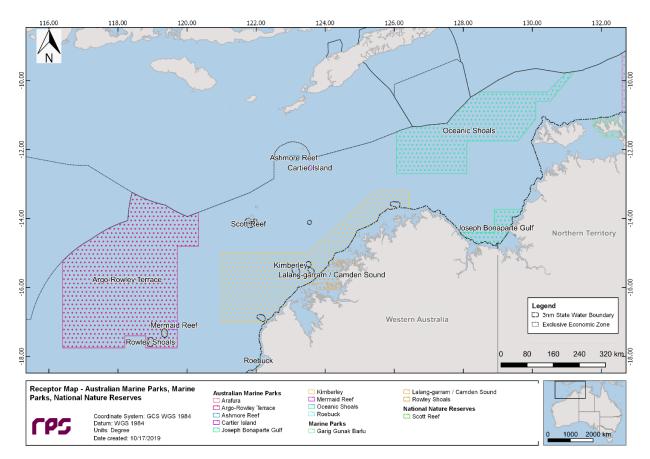


Figure 9.1 Receptor map for Australian Marine Parks, Marine Parks and National Nature Reserves.

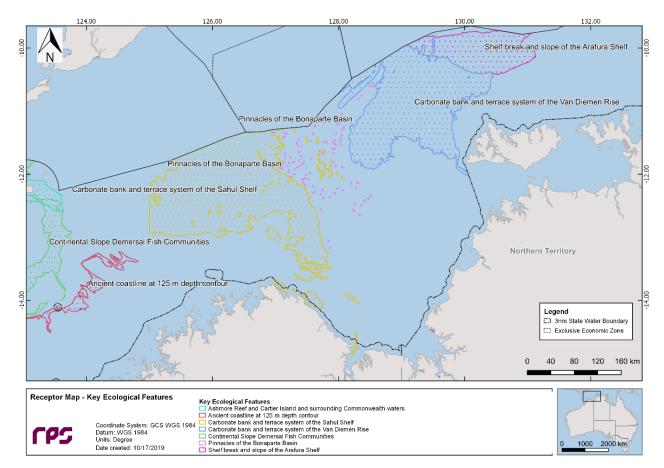


Figure 9.2 Receptor map of Key Ecological Features (KEF) (1 of 2).

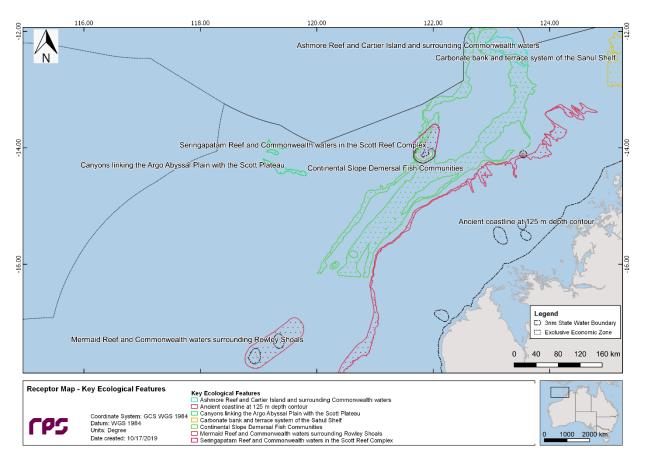


Figure 9.3 Receptor map of Key Ecological Features (KEF) (2 of 2).

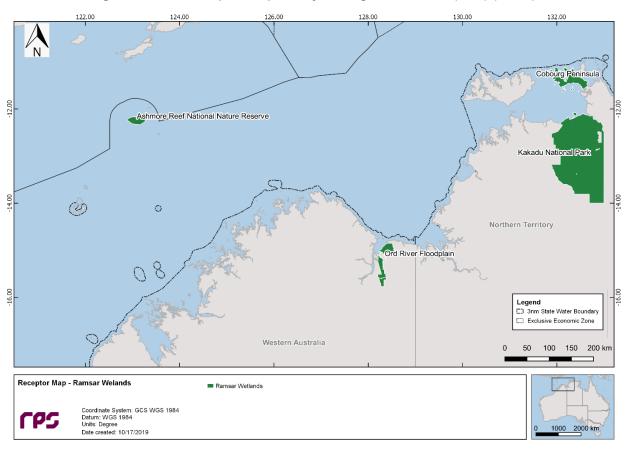


Figure 9.4 Receptor map for RAMSAR wetlands.

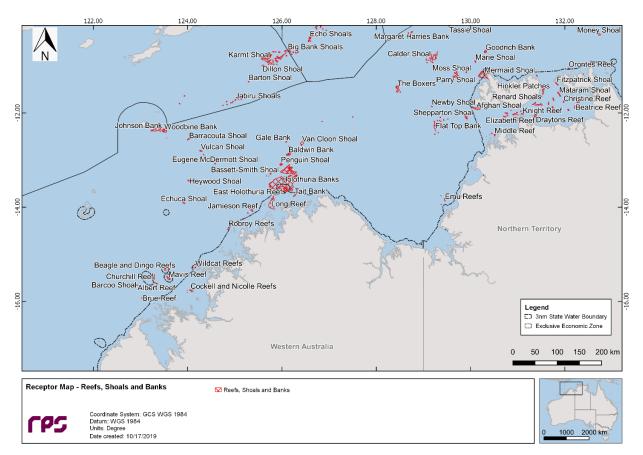


Figure 9.5 Receptor map for Reefs, Shoals and Banks.

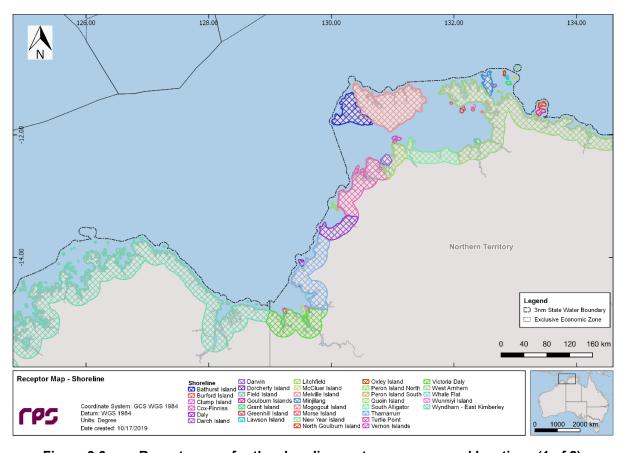


Figure 9.6 Receptor map for the shoreline sectors – names and locations (1 of 2).

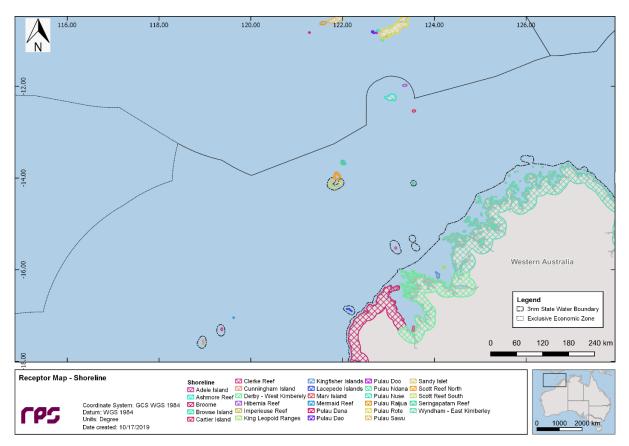


Figure 9.7 Receptor map for the shoreline sectors – names and locations (2 of 2).

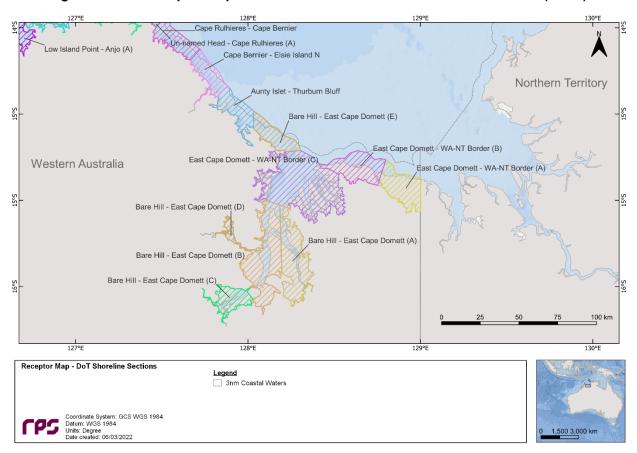


Figure 9.8 Receptor map for the DoT shoreline sections (1 of 6).

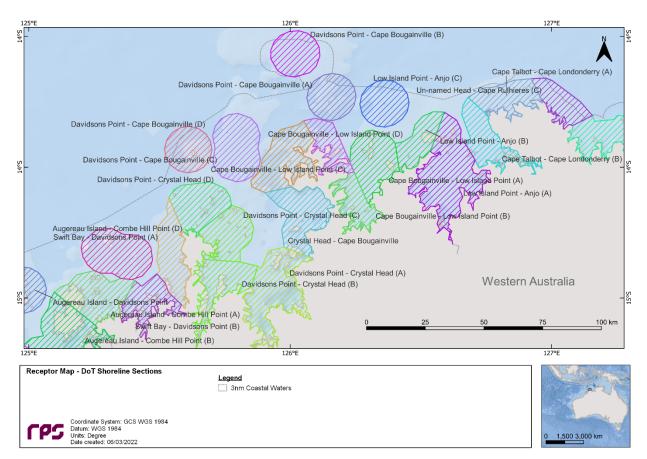


Figure 9.9 Receptor map for the DoT shoreline sections (2 of 6).

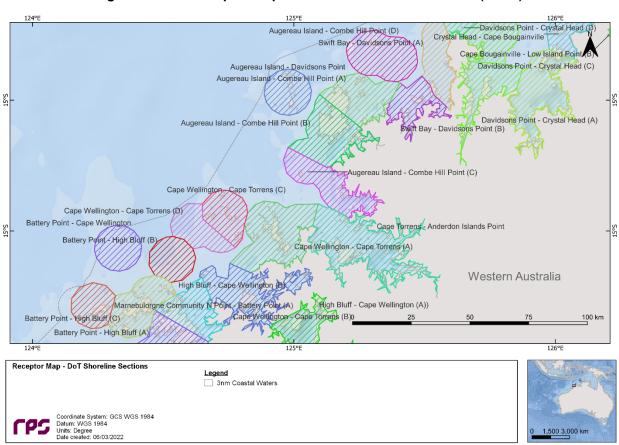


Figure 9.10 Receptor map for the DoT shoreline sections (3 of 6).

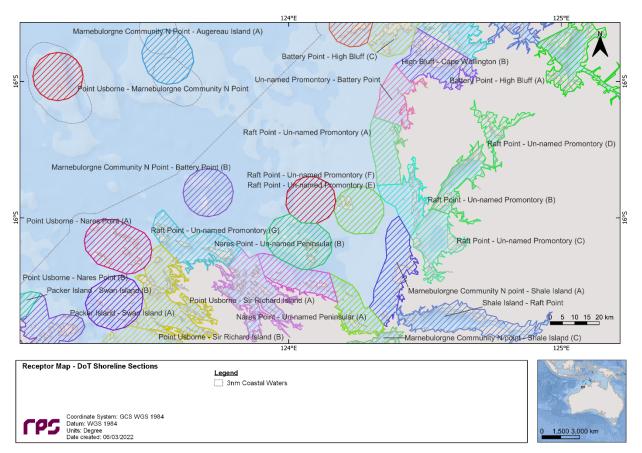


Figure 9.11 Receptor map for the DoT shoreline sections (4 of 6).

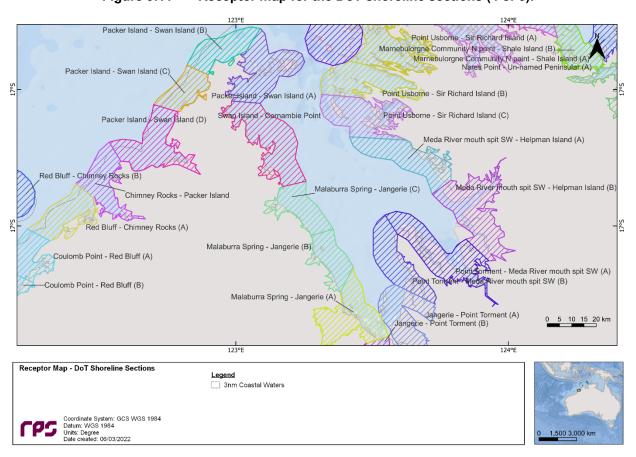


Figure 9.12 Receptor map for the DoT shoreline sections (5 of 6).

Figure 9.13 Receptor map for the DoT shoreline sections (6 of 6).

10 RESULTS – SCENARIO – LOWC – 786,858 m³ SURFACE RELEASE OF CRUDE OIL OVER 77 DAYS

This scenario examined a loss of well control of 786,858 m³ surface release of crude oil over 77 days, tracked for a period of 98 days. A total of 300 spill trajectories were simulated with (mitigated) and without (unmitigated) surface dispersant (i.e. 100 spills per season).

The seasonal stochastic analysis is presented in Section 10.1 and the deterministic trajectory analysis is discussed in Section 10.2.

10.1 Stochastic Analysis

10.1.1 Floating Oil Exposure

Table 10.1 summarises the maximum distance travelled by oil on the sea surface at each threshold for the seasonal conditions assessed, for the unmitigated and mitigated cases.

For the unmitigated case, the maximum distance and corresponding direction from the release location to the low $(1-10 \text{ g/m}^2)$, moderate $(10-25 \text{ g/m}^2)$ and high $(>25 \text{ g/m}^2)$ exposure levels was 1,517 km west-northwest (winter), 153 km east-northeast (summer) and 61 km southeast (winter), respectively. In comparison, for the mitigated case the maximum distances and corresponding directions were 1,424 km west (winter), 153 km east-northeast (summer) and 61 km southeast (winter), for the low, moderate and high threshold, respectively.

Table 10.2 to Table 10.4 summarise the potential sea surface exposure to individual receptors for each season and case. Of all the receptors considered in the assessment, the Joseph Bonaparte Gulf AMP was the only receptor predicted to be exposed to floating oil above the low, moderate and high thresholds during all seasonal conditions.

For spills commencing during summer conditions, the following receptors recorded surface oil exposure greater than 70% for the unmitigated and mitigated cases: Joseph Bonaparte Gulf AMP, Carbonate bank and terrace system of the Sahul Shelf KEF, Thamarrurr nearshore waters; and Northern Territory and Western Australia State Waters (Table 10.2).

The following receptors recorded surface oil exposure greater than 70% for the unmitigated and mitigated cases, for spills commencing during the transitional months: Joseph Bonaparte Gulf AMP, Carbonate bank and terrace system of the Sahul Shelf KEF, North Kimberley MP, Wyndham - East Kimberley nearshore waters, and Western Australia State Waters (Table 10.3).

Additionally, for spills commencing during winter conditions, the following receptors recorded surface oil exposure greater than 70% for the unmitigated and mitigated cases: Joseph Bonaparte Gulf and Kimberly AMPs, Carbonate bank and terrace system of the Sahul Shelf KEF, North Kimberley MP, Wyndham - East Kimberley nearshore waters, and Western Australia State Waters (Table 10.4).

Figure 10.1 to Figure 10.3 present sorted bar plots of the predicted area of the low, moderate and high zones of potential floating oil exposure for the unmitigated and mitigated cases from 100 spill trajectories per season and case.

Figure 10.4 to Figure 10.6 present the zones of potential floating oil exposure for the NOPSEMA thresholds under summer, transitional and winter conditions, respectively, for both unmitigated and mitigated cases.

Table 10.1 Potential zones of floating oil exposure at each threshold for the unmitigated and mitigated cases. Results are based on a 786,858 m³ surface release of crude oil over 77 days, tracked for 98 days, during seasonal conditions. The results were calculated from 100 spill trajectories per season and per case.

			Zones	s of potential	floating oil e	xposure	
Season	Distance and direction travelled		Unmitigated	I		Mitigated	
	anoonon navonoa	Low	Moderate	High	Low	Moderate	High
	Maximum distance (km) from the release location	1,048	153	49	994	153	49
Summer	Maximum distance (km) from the release location (99 th percentile)	731	95	45	730	87	45
	Direction	West- Southwest	East- Northeast	South- Southeast	West- Southwest	East- Northeast	South- Southeast
	Maximum distance (km) from the release location	1,136	79	49	1,035	78	49
Transitional	Maximum distance (km) from the release location (99 th percentile)	903	62	46	903	62	46
	Direction	West- Southwest	South- Southeast	South- Southeast	West- Southwest	West	South- Southeast
	Maximum distance (km) from the release location	1,517	79	61	1,424	80	61
Winter	Maximum distance (km) from the release location (99 th percentile)	730	68	55	719	67	55
	Direction	West- Northwest	Southeast	Southeast	West	Southeast	Southeast

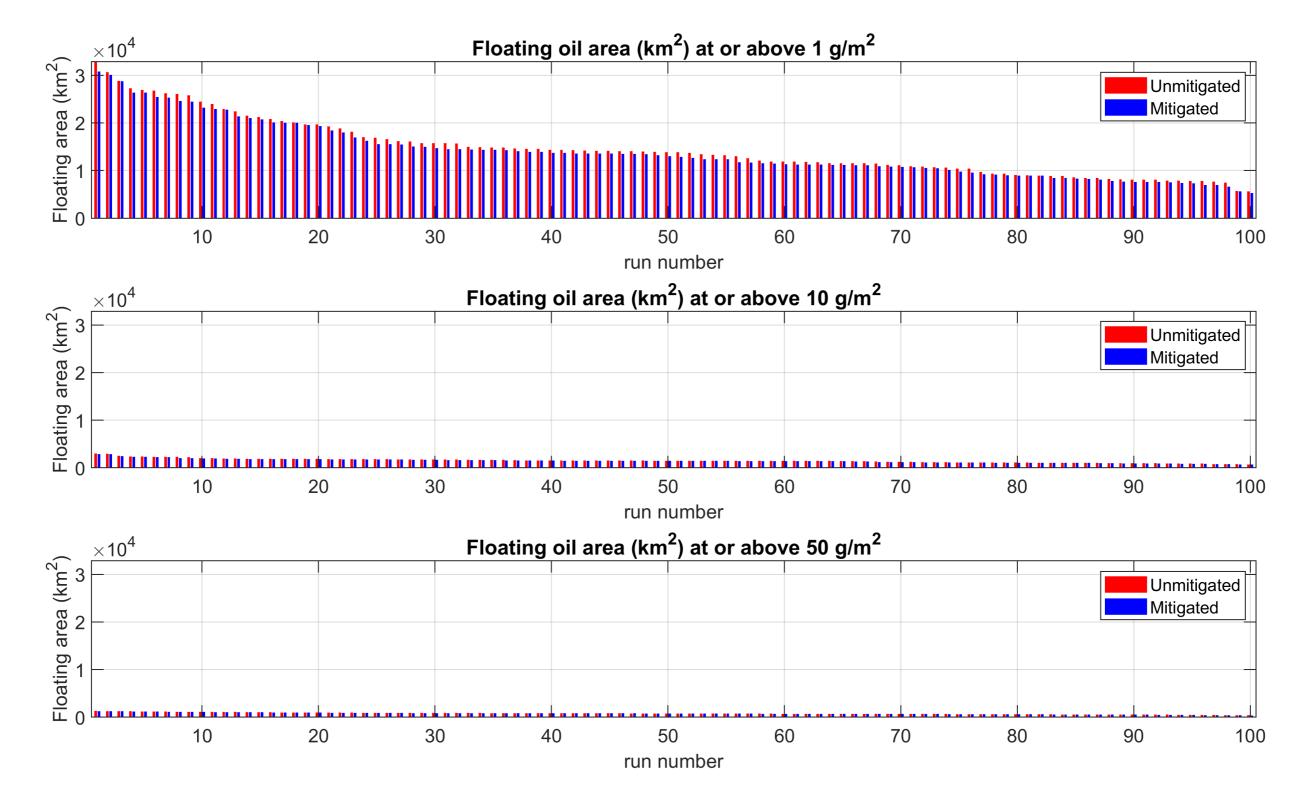


Figure 10.1 Sorted bar plots of the predicted area of the low, moderate and high zones of potential floating oil exposure for the unmitigated (red) and mitigated (blue) cases, in the event of a 786,858 m³ of crude oil over 77 days, tracked for 98 days during summer conditions. The results from 100 spill trajectories are presented.

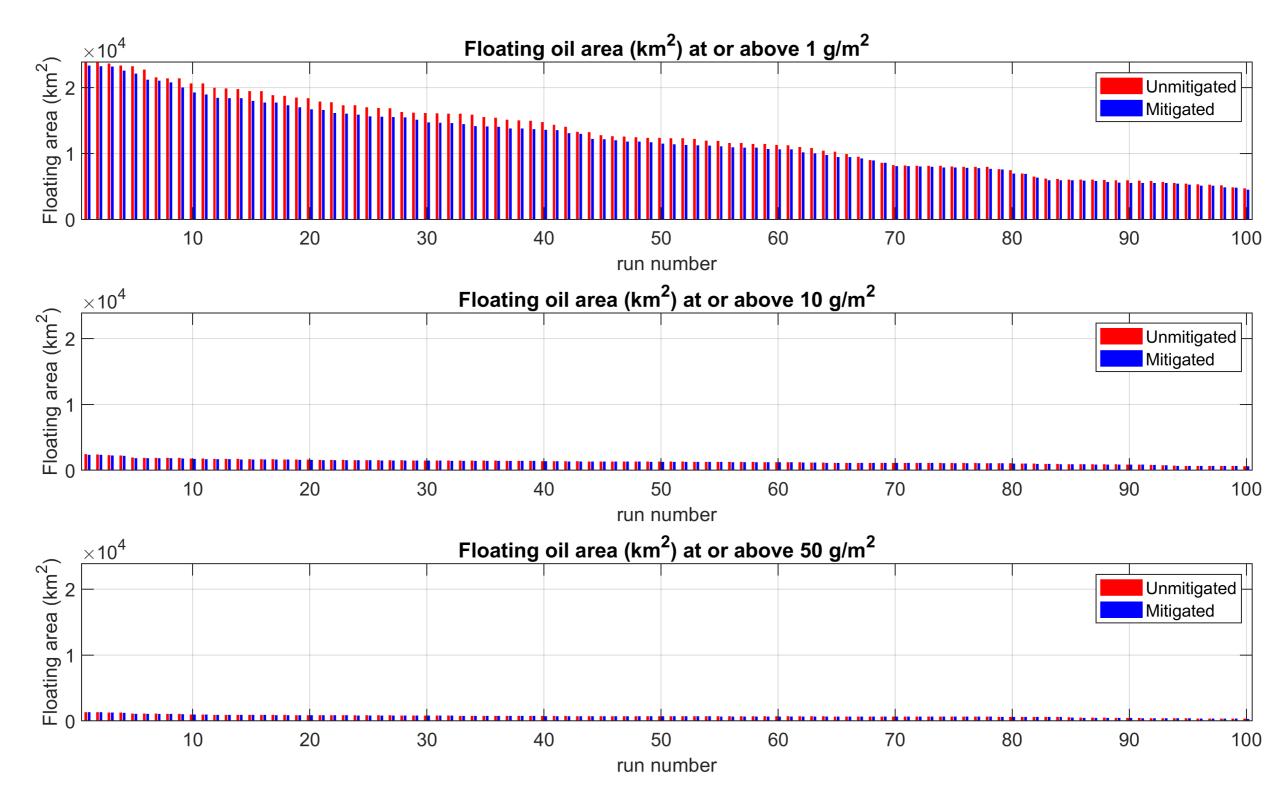


Figure 10.2 Sorted bar plots of the predicted area of the low, moderate and high zones of potential floating oil exposure for the unmitigated (red) and mitigated (blue) cases, in the event of a 786,858 m³ of crude oil over 77 days, tracked for 98 days during transitional conditions. The results from 100 spill trajectories are presented.

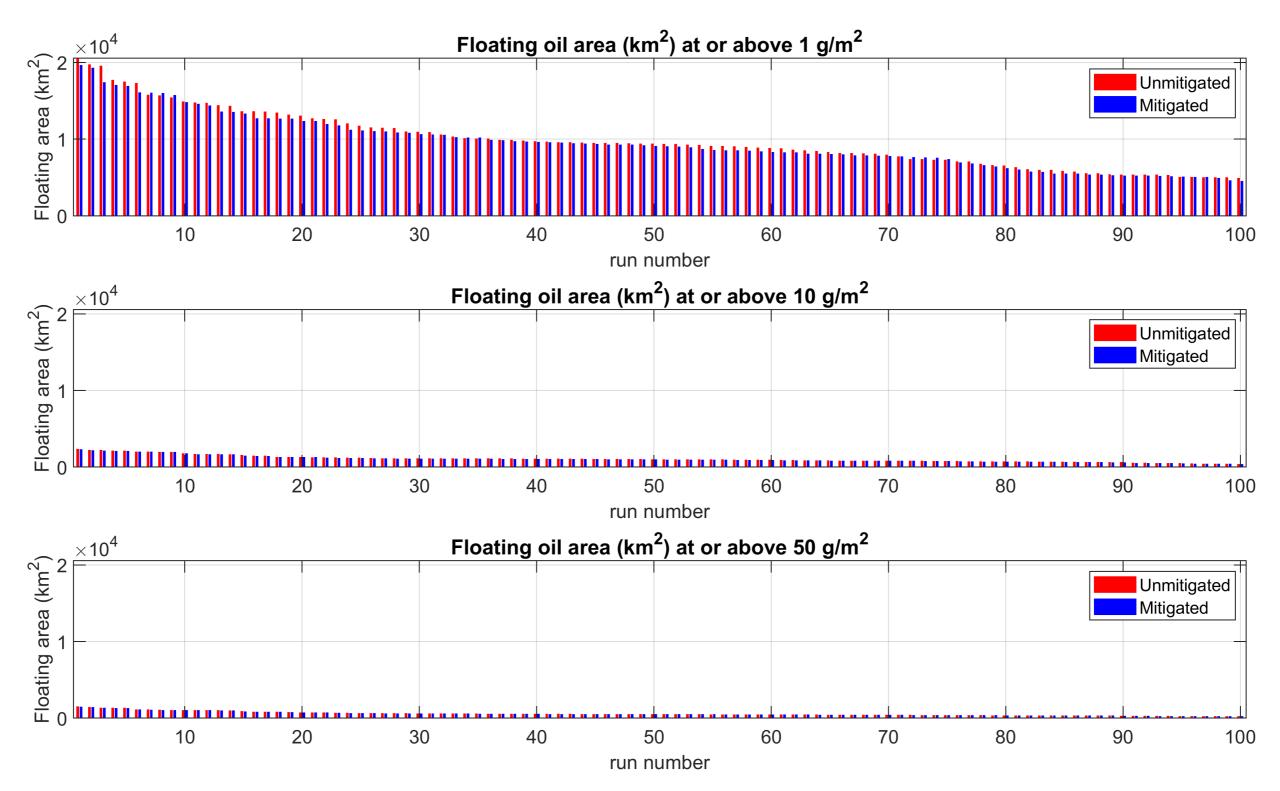


Figure 10.3 Sorted bar plots of the predicted area of the low, moderate and high zones of potential floating oil exposure for the unmitigated (red) and mitigated (blue) cases, in the event of a 786,858 m³ of crude oil over 77 days, tracked for 98 days during winter conditions. The results from 100 spill trajectories are presented.

Table 10.2 Summary of the potential floating oil exposure to individual receptors for both the unmitigated and mitigated cases. Results are based on a 786,858 m³ surface release of crude oil over 77 days, tracked for 98 days, during summer conditions. The results were calculated from 100 spill trajectories per season.

				Unmiti	gated					Mitig	gated		
Receptor		Probabil	ity of floating oil (%)	exposure		n time before f exposure (days	_	Probabi	lity of floating oi (%)	I exposure		n time before flo exposure (days	_
		Low	Moderate	High	Low	Moderate	High	Low	Moderate	High	Low	Moderate	High
AMP	Arafura	-	-	-	-	-	-	-	-	-	-	-	-
	Argo-Rowley Terrace	2	-	-	93.17	-	-	-	-	-	68.54	-	-
	Ashmore Reef	-	-	-	-	-	-	-	-	-	-	-	-
	Cartier Island	-	-	-	-	-	-	-	-	-	-	-	-
	Joseph Bonaparte Gulf	100	47	5	1.88	3.13	3.63	100	46	3	2.21	2.21	3.54
	Kimberley	43	-	-	21.71	-	-	43	-	-	11.21	21.21	-
	Mermaid Reef	-	-	-	-	-	-	-	-	-	-	-	-
	Oceanic Shoals	22	-	-	24.54	-	-	21	-	-	22.54	24.08	-
EEZ	Indonesian	-	-	-	-	-	-	-	-	-	-	-	-
KEF	Ancient coastline at 125 m depth contour	24	-	-	43.54	-	-	23	-	-	41.83	-	-
	Ashmore Reef and Cartier Island and surrounding Commonwealth waters	-	-	-	-	-	-	-	-	-	-	-	-
	Canyons linking the Argo Abyssal Plain with the Scott Plateau	-	-	-	-	-	-						
	Carbonate bank and terrace system of the Sahul Shelf	94	36	-	2.54	8.54	-	93	35	-	2.42	8.54	_
	Carbonate bank and terrace system of the Van Diemen Rise	6	-	-	58.58	-	-	8	-	-	54.04	-	-
	Continental Slope Demersal Fish Communities	21	-	-	50.25	-	-	19	-	-	51.17	-	
	Mermaid Reef and Commonwealth waters surrounding Rowley Shoals	-	-	-	-	-	-	-	-	_	-	-	
	Pinnacles of the Bonaparte Basin	6	-	-	47.42	-	-	5	-	_	47.38	-	
	Seringapatam Reef and Commonwealth waters in the Scott Reef Complex	7	_	_	62	-	_	6	_	_	62.13	_	
	Tributary Canyons of the Arafura Depression		-	-	-	-	-						
MP	Garig Gunak Barlu	_	_	_	_	-	_	_	_	_	_	_	_
	Lalang-garram / Camden Sound	_	_	_	_	-	_	1	_	_	69.46	_	_
	North Kimberley	91	9	-	5.63	22.54	-	90	11	_	5.63	22.63	_
	North Lalang-garram	1	-	-	73.54	-	-	1	-	_	97.08	-	_
	Rowley Shoals	_	_		_	-	_	_	-	_	-	_	
NR	Scott Reef	3	-	_	69.92	-	_	4	-	_	63.17		_
Ramsar	Ashmore Reef National Nature Reserve		_	-	-	-	-	-	-	_	_	_	_
	Cobourg Peninsula	_	_	_	_	-	_						
	Ord River Floodplain	12	_	-	28.71	-	-	8	-	_	43.04	_	
RSB	Abbott Shoal	_			-	-	_	_	-	_	_		
	Afghan Shoal	_	_	_	_	-	_	-	-	_	_	_	
	Albert Reef	_		_	_	-	_	1	-	_	83.96		
	Baldwin Bank	15		_	22.29	-	_	15	-	_	21.79		
	Barbara Shoal	-	-	_	-	-	_	-	-	_	-		
	Barcoo Shoal	_		_	_	-	_	_	-	_	_	_	
	Barracouta Shoal					-	_		_	_	_	_	
	Bass Reef	7			27.71	-	_	7	_		28.13		
	Bassett-Smith Shoal	7	-		41.92	<u>-</u>		6	-		60.58	<u> </u>	
	Beagle Shoals			<u> </u>	-	<u>-</u>		1		<u> </u>	91.75	<u>-</u>	
	Beagle and Dingo Reefs	3			86.67	<u>-</u>		1	<u>-</u>		95.71	<u>-</u>	
	Bill Shoal	-		<u> </u>	50.07			1	-		JJ.1 I		

				Unmitig	jated					Mitig	gated		
Receptor		Probabil	lity of floating oil (%)	exposure		n time before fl exposure (days	_	Probabil	ity of floating o (%)	il exposure		n time before flo exposure (days	_
		Low	Moderate	High	Low	Moderate	High	Low	Moderate	High	Low	Moderate	High
	Branch Banks	27	-	-	37.75	-	-	25	-	-	37.75	-	-
	Brue Reef	-	-	-	-	-	-	-	-	-	-	-	-
	Christine Reef							-	-	-	-	-	-
	Churchill Reef	-	-	-	-	-	-	1	-	-	82.17	-	-
	Clerke Reef	-	-	-	-	-	-	-	-	-	-	-	-
	Cockell and Nicolle Reefs	-	-	-	-	-	-						
	Deep Shoal 1	-	-	-	-	-	-	-	-	-	-	-	-
	Deep Shoal 2	-	-	-	-	-	-	-	-	-	-	-	-
	Draytons Reef	1	-	-	41.29	-	-	2	-	-	69.67	-	-
	East Holothuria Reef	33	-	-	37.21	-	-	32	-	-	42.83	-	-
	Echuca Shoal	16	-	-	49.63	-	-	16	-	-	49.54	-	-
	Elizabeth Reef	-	-	-	-	-	-	2	-	-	66.75	-	_
	Emu Reefs	59	-	-	6.96	-	-	57	-	-	6.29	-	_
	Eugene McDermott Shoal	4	-	-	67.88	-	-	3	-	-	45.46	-	-
	Favell Bank	4	-	-	49.75	-	-	3	-	-	49.33	-	-
	Fish Reef	6	-	-	58.38	-	-	4	-	-	50.79	-	
	Fitzpatrick Shoal							-	-	-	-	-	-
	Flat Top Bank	2	-	-	66.13	-	-	1	-	-	92.96	-	-
	Foelsche Bank	2	-	-	28.96	-	-	1	-	-	61.13	-	-
	Gale Bank	1	-	-	58	-	-	3	-	_	52.5	-	-
	Giles Shoal	-	-	_	-	-	_	-	-	_	-	-	_
	Goeree Shoal	-	_	-	-	_	-	-	_	_	-	_	
	Hancox Shoal	1	-	_	72.25	-	_	3	-	_	58.58	-	_
	Harris Reef	-	-	_	-	-	_	-	-	_	-	-	
	Heritage Reef	12	-	-	64.25	-		12	_	_	69.38	-	_
	Heywood Shoal	7	-	-	52.58	_	-	4	_	_	53.88	-	-
	Hinkler Patches	-	-	-	-	_							
	Holothuria Banks	40			19.29	_		37		_	22.71	-	
	Howland Shoals	47	-		11.63	-	_	43	_	_	14.79	-	
	Hunt Patch	-	_		-	_		1	_	_	91.17	_	
	Imperieuse Reef		_		-	_			_	_	-	-	
	Ingram Reef	14	_	_	61.25	_		9	_	_	46.54	-	
	Jamieson Reef	16	_		59.33	_		18	_	_	46.13	-	
	Johnson Bank	-	_	_	-	_		-	_	_	-	_	
	Jones Bank	2			87	_		3		_	26.42	-	
	Kelleway Reef		-		-	_		1	-	_	61.63	_	
	Knight Reef	1			38.79	_		<u> </u>	-	_	-	-	
	Long Reef	29	-	_	40	_	_	30	-	_	40.46	_	
	Lowry Shoal	1	<u>-</u>	<u> </u>	71.71	<u> </u>	<u> </u>	1	<u>-</u>		62.5	<u>-</u> -	
	Lyne Reef	1	<u>-</u>		29.92		<u> </u>	1			67.79	<u>-</u>	
	Marie Shoal	ı		<u>-</u>		-		ı	-				<u>-</u>
	-	-	-	-	62.12	-	-	- 1	-	-	- 60.67	-	-
	Marsh Shoal Mataram Shoal	2	-	-	63.13	-	-	-	-	-	60.67	-	-

				Unmitio	gated					Miti	gated		
Receptor		Probabil	ity of floating oil (%)	exposure		n time before fl exposure (days		Probabil	ity of floating oi (%)	l exposure		n time before flo exposure (days	_
		Low	Moderate	High	Low	Moderate	High	Low	Moderate	High	Low	Moderate	High
	Mavis Reef	3	-	-	76.71	-	-	2	-	-	78.21	-	-
	Mermaid Reef	-	-	-	-	-	-	-	-	-	-	-	-
	Mermaid Shoal	-	-	-	-	-	-	1	-	-	70.17	-	-
	Middle Reef	1	-	-	88.13	-	-	-	-	-	-	-	-
	Moira Reef	-	-	-	-	-	-	-	-	-	-	-	-
	Moresby Shoals	1	-	-	72.63	-	-	-	-	-	-	-	-
	Moss Shoal	-	-	-	-	-	-	-	-	-	-	-	-
	Newby Shoal	-	-	-	-	-	-	-	-	-	-	-	-
	Oliver Reef	2	-	-	72.08	-	-	-	-	-	-	-	-
	Oliver Rock	9	-	-	52.46	-	-	6	-	-	52	-	-
	Ommaney Shoals	-	-	-	-	-	-	-	-	-	-	-	-
	Osborn Reefs	-	-	-	-	-	-	-	-	-	-	-	-
	Otway Bank	24	-	-	42.42	-	-	26	-	-	37.88	-	-
	Parry Shoal	1	-	-	67.38	-	-	2	-	-	80.13	-	-
	Parsons Bank	-	-	-	-	-	-	-	-	-	-	-	-
	Penguin Shoal	16	-	-	28.67	-	-	13	-	-	19.5	-	-
	Rainbow Shoals	-	-	-	-	-	-	-	-	-	-	-	-
	Renard Shoals	-	_	-	-	-	-	-	_	-	-	-	_
	Robroy Reefs	10	-	-	64.5	-	-	8	-	-	63.92	-	-
	Rothery Reef	17	-	-	49.71	-	-	11	-	-	50.04	-	-
	Shepparton Shoal	2	-	-	82.42	-	-	2	-	-	34.42	-	_
	Skottowe Shoal	2	-	-	55.42	-	-	3	-	-	62.42	-	-
	Tait Bank	29	-	-	37	-	-	30	-	-	41.29	-	_
	Taiyun Shoal	-	-	-	-	-	-	-	-	-	-	-	_
	Taylor Patches	-	_	_	-	-	-	-	_	-	-	-	_
	Tregenna Reef	1	_		60.83	_	_	_	_	_	_		
	Van Cloon Shoal	8	-	_	42.17	-	_	9	_	-	42.04	-	_
	Vulcan Shoal		_		-	-	_	-	_	_	-	-	
	Wells Shoal	-	_	_	-	_	_	_	_	-	-	-	_
	West Holothuria Reef	9	_		47.83	-	_	4	_	-	49.38	-	
	Wildcat Reefs	-	-	_	-	_	_		-	-	-	-	
	Woodbine Bank	-		_	_	_	_	_		_	_	-	
arshore	Adele Island	<u> </u>		_	_	_	_	1	-	_	95.75	_	_
aters	Ashmore Reef	<u> </u>	<u>-</u>					<u> </u>		<u>-</u>	-	<u>-</u>	
	Bathurst Island	1	-		74.58							<u>-</u>	
	Broome			-		-	-	-	-	-	-		
	Browse Island	- 12	-	-	- 50.06	-	-	- 11	-	-		-	
	Burford Island	13	-	-	50.96	-	-	11	-	-	50.83	-	
								-	-	-	-	-	
	Clarke Reef	-	-	-	-	-	-	-	-	-	-	-	
	Clerke Reef	-	-	-	- 40.40	-	-	- 04	-	-	- 00.54	-	-
	Clump Island	25	-	-	18.13	-	-	21	-	-	26.54	-	
	Cox-Finniss	16	-	-	24.79	-	-	13	-	-	24.88	-	-
	Daly	35	-	-	15.33	-	-	35	-	-	16.29	-	

				Unmiti	gated					Mitig	gated		
Receptor		Probabil	ity of floating oil (%)	exposure		n time before f exposure (days		Probabil	ity of floating oi (%)	l exposure		n time before flo exposure (days	_
		Low	Moderate	High	Low	Moderate	High	Low	Moderate	High	Low	Moderate	High
	Darwin	1	-	-	78.08	-	-	3	-	-	76.5	-	-
	Derby - West Kimberely	-	-	-	-	-	-	1	-	-	81.58	-	-
	Dorcherty Island	55	-	-	17.29	-	-	58	-	-	17.38	-	-
	Greenhill Island							-	-	-	-	-	-
	Hibernia Reef	-	-	-	-	-	-	-	-	-	-	-	-
	Imperieuse Reef	-	-	-	-	-	-	-	-	-	-	-	-
	Litchfield	-	-	-	-	-	-	1	-	-	85.88	-	-
	Melville Island	-	-	-	-	-	-	1	-	-	70.71	-	-
	Minjilang	-	-	-	-	-	-						
	Mermaid Reef							-	-	-	-	-	-
	Peron Island North	19	-	-	17.38	-	-	16	-	-	19.21	-	-
	Peron Island South	6	-	-	22.71	-	-	3	-	-	34.63	-	-
	Quoin Island	33	-	-	18	-	-	28	-	-	17.5	-	-
	Sandy Islet	1	-	-	70.92	-	-	-	-	-	-	-	-
	Scott Reef North	2	-	-	63.67	-	-	3	-	-	63.67	-	-
	Scott Reef South	4	-	-	63.75	-	-	5	-	-	63.08	-	-
	Seringapatam Reef	-	-	-	-	-	-	-	-	-	-	-	-
	South Alligator	2	-	-	83.83	-	-	1	-	-	89.54	-	-
	Thamarrurr	71	-	-	14.5	-	-	72	-	-	12	-	-
	Turtle Point	37	-	-	23.5	-	-	33	-	-	22.96	-	-
	Vernon Islands	6	-	-	30.04	-	-	6	-	-	38.79	-	-
	Victoria Daly	67	-	-	18.08	-	-	68	-	-	15.08	-	-
	West Arnhem	-	-	-	-	-	-	-	-	-	-	-	-
	Whale Flat	33	-	-	21.54	-	-	38	-	-	22.71	-	-
	Wyndham - East Kimberley	70	2	-	14.92	28.88	-	69	1	-	16.79	44.67	-
State Waters	Northern Territory	83	3	-	9.75	46.46	-	84	2	-	9.75	60.83	-
	Western Australia	91	9	-	5.63	22.54	-	90	11	-	5.63	22.63	-

Table 10.3 Summary of the potential floating oil exposure to individual receptors for both the unmitigated and mitigated cases. Results are based on a 786,858 m³ surface release of crude oil over 77 days, tracked for 98 days, during transitional conditions. The results were calculated from 100 spill trajectories per season.

				Unmit	gated					Mitig	gated		
Receptor		Probabil	ity of floating o	il exposure		time before flo xposure (days)	_	Probab	ility of floating o (%)	il exposure		n time before fl exposure (days	_
		Low	Moderate	High	Low	Moderate	High	Low	Moderate	High	Low	Moderate	High
AMP	Arafura	-	-	-	-	-	-	-	-	-	-	-	-
	Argo-Rowley Terrace	7	-	-	88.63	-	-	4	-	-	84.54	-	-
	Ashmore Reef	-	-	-	-	-	-	-	-	-	-	-	-
	Cartier Island	-	-	-	-	-	-	-	-	-	-	-	-
	Joseph Bonaparte Gulf	96	36	4	2.13	3.46	14.96	98	35	4	2.38	3.96	14.96
	Kimberley	57	-	-	12	-	-	57	-	-	8.71	-	-
	Mermaid Reef	-	-	-	-	-	-	-	-	-	-	-	-
	Oceanic Shoals	2	-	-	24.13	-	-	2	-	-	25.71	-	-
EEZ	Indonesian	7	-	-	77.33	-	-	4	-	-	78.79	-	-
KEF	Ancient coastline at 125 m depth contour	44	-	-	28.46	-	-	44	45	-	-	31.25	-
	Ashmore Reef and Cartier Island and surrounding Commonwealth waters	-	-	-	-	-	-	-	-	-	-	-	-
	Canyons linking the Argo Abyssal Plain with the Scott Plateau	-	-	-	-	-	-	-	-	-	-	-	-
	Carbonate bank and terrace system of the Sahul Shelf	91	34	1	1.75	2.58	36.08	91	89	34	1	1.67	2.63
	Carbonate bank and terrace system of the Van Diemen Rise	-	-	-	-	-	-	-	-	-	-	-	-
	Continental Slope Demersal Fish Communities	38	-	-	31.54	-	-	38	41	-	-	31.63	-
	Mermaid Reef and Commonwealth waters surrounding Rowley Shoals	1	-	-	95.21	-	-	1	-	-	-	-	-
	Pinnacles of the Bonaparte Basin	2	-	-	30.38	-	-	2	2	-	-	29.88	-
	Seringapatam Reef and Commonwealth waters in the Scott Reef Complex	-	-	-	-	-	-	-	-	-	-	-	-
	Tributary Canyons of the Arafura Depression	-	-	-	-	-	-	-	-	-	-	-	-
MP	Garig Gunak Barlu	-	-	-	-	-	-	-	-	-	-	-	-
	Lalang-garram / Camden Sound	2	-	-	51.38	-	-	2	-	-	-	-	-
	North Kimberley	90	-	-	7.33	-	-	90	1	-	7.08	30.71	-
	North Lalang-garram	3	-	-	89.38	-	-	3	2	-	-	64.42	-
	Rowley Shoals	1	-	-	95.25	-	-	1	-	-	-	-	-
NR	Scott Reef	-	-	-	-	-	-	-	-	-	-	-	-
Ramsar	Ashmore Reef National Nature Reserve	-	-	-	-	-	-	-	-	-	-	-	-
	Cobourg Peninsula	-	-	-	-	-	-						
	Ord River Floodplain	13	-	-	46.08	-	-	11	-	-	37.63	-	
RSB	Abbott Shoal	-	-	-	-	-	-	-	-	-	-	-	
	Afghan Shoal	-	-	-	-	-	-	-	-	-	-	-	_
	Albert Reef	2	-	-	93.42	-	-	1	-	-	95.96	-	-
	Baldwin Bank	8	-	-	52.71	-	-	6	-	-	58.63	-	
	Barbara Shoal	-	-	-	-	-	-	-	-	-	-	-	
	Barcoo Shoal	-	-	-	-	-	-	-	-	-	-	-	
	Barracouta Shoal	-	-	-	-	-	-	-	-	-	-	-	-
	Bass Reef	1	-	-	98	-	-	1	-	-	97	-	-
	Bassett-Smith Shoal	15	_	-	31.29	-	-	14	_	-	30.92	-	-
	Beagle Shoals	-	-	-	-	-	-	-	-	-	-	-	-
	Beagle and Dingo Reefs	2	_	-	68.63		-	-	_	_	_	-	-
	Bill Shoal		_	_	-	_	_						

				Unmit	igated					Miti	gated		
Receptor		Probabi	lity of floating o	oil exposure		time before flo xposure (days)		Probabi	lity of floating o (%)	il exposure		n time before flo exposure (days	
		Low	Moderate	High	Low	Moderate	High	Low	Moderate	High	Low	Moderate	High
	Branch Banks	35	-	-	28.13	-	-	38	-	-	25.13	-	-
	Brue Reef	-	-	-	-	-	-	-	-	-	-	-	-
	Christine Reef							-	-	-	-	-	-
	Churchill Reef	2	-	-	94.46	-	-	2	-	-	87.33	-	-
	Clerke Reef	-	-	-	-	-	-	-	-	-	-	-	-
	Cockell and Nicolle Reefs	-	-	-	-	-	-						
	Deep Shoal 1	-	-	-	-	-	-	-	-	-	-	-	-
	Deep Shoal 2	-	-	-	-	-	-	-	-	-	-	-	-
	Draytons Reef	-	-	-	-	-	-	-	-	-	-	-	-
	East Holothuria Reef	40	-	-	17.04	-	-	37	-	-	15.96	-	-
	Echuca Shoal	28	-	-	48.63	-	-	28	-	-	48.63	-	-
	Elizabeth Reef	-	-	-	-	-	-	-	-	-	-	-	-
	Emu Reefs	8	-	-	65.04	-	-	8	-	-	17.13	-	-
	Eugene McDermott Shoal	-	-	-	-	-	-	1	-	-	63.25	-	-
	Favell Bank	-	-	-	-	-	-	-	-	-	-	-	-
	Fish Reef	-	-	-	-	-	-	-	-	-	-	-	-
	Fitzpatrick Shoal							-	-	-	-	-	-
	Flat Top Bank	-	-	-	-	-	-	-	-	-	-	-	-
	Foelsche Bank	-	-	-	-	-	-	-	-	-	-	-	-
	Gale Bank	-	-	-	-	-	-	-	-	-	-	-	-
	Giles Shoal	-	-	-	-	-	-	-	-	-	-	-	-
	Goeree Shoal	-	-	-	-	-	-	-	-	-	-	-	-
	Hancox Shoal	-	-	-	-	-	-	-	-	-	-	-	-
	Harris Reef	-	-	-	-	-	-	-	-	-	-	-	-
	Heritage Reef	17	-	-	40.58	-	-	14	-	-	41.96	-	-
	Heywood Shoal	1	-	-	88.04	-	-	-	-	-	-	-	-
	Hinkler Patches	-	-	-	-	-	-						
	Holothuria Banks	53	-	-	13	-	-	50	-	-	13.17	-	-
	Howland Shoals	13	-	-	36.42	-	-	9	-	-	36.08	-	-
	Hunt Patch	-	-	-	-	-	-	-	-	-	-	-	-
	Imperieuse Reef	-	-	-	-	-	-	-	-	-	-	-	-
	Ingram Reef	21	-	-	42.13	-	-	20	-	-	32.08	-	-
	Jamieson Reef	26	-	-	34.54	-	-	26	-	-	32.38	-	-
	Johnson Bank	-	-	-	-	-	-	-	-	-	-	-	-
	Jones Bank	-	-	-	-	-	-	-	-	-	-	-	-
	Kelleway Reef	-	-	-	-	-	-	-	-	-	-	-	-
	Knight Reef	-	-	-	-	-	-	-	-	-	-	-	-
	Long Reef	39	-	-	29.42	-	-	39	-	-	29.42	-	-
	Lowry Shoal	-	-	-	-	-	-	-	-	-	-	-	-
	Lyne Reef	-	-	-	-	-	-	-	-	-	-	-	-
	Marie Shoal	-	-	-	-	-	-	-	-	-	-	-	-
	Marsh Shoal	-	-	-	-	_	-	1	_	-	97.25	_	-
	Mataram Shoal								_	_	-	-	_

Merr Merr Midd Moir Moss New Olive Olive Omr Osbo Otwa Parr Pars Peng Rain Rena Robi		Probabi	it. of flooting o										
Merr Merr Midd Moir Moss New Olive Olive Omr Osbo Otwa Parr Pars Peng Rain Rena Robi			(%)	ıı exposure		time before floo xposure (days)		Probabi	lity of floating o (%)	il exposure		n time before flo exposure (days	_
Merr Merr Midd Moir Moss New Olive Olive Omr Osbo Otwa Parr Pars Peng Rain Rena Robi		Low	Moderate	High	Low	Moderate	High	Low	Moderate	High	Low	Moderate	High
Merri Middo Moir Moss New Olive Olive Omr Osbo Otwa Parri Pars Peng Rain Rena Rob	avis Reef	2	-	-	74.25	-	-	1	-	-	66.79	-	-
Middo Moir More Mos New Olive Olive Otwa Parr Pars Peng Rain Rena Robi Roth	ermaid Reef	-	-	-	-	-	-	-	-	-	-	-	-
Moir More Moss New Olive Olive Omr Osb Otwa Parr Pars Peng Rain Rena Rob Roth She	ermaid Shoal	-	-	-	-	-	-	-	-	-	-	-	-
More Mos New Olive Olive Omr Osbo Otwa Parr Pars Peng Rain Rena Robb Roth She	iddle Reef	-	-	-	-	-	-	-	-	-	-	-	-
Mos New Olive Olive Omr Osb Otwa Parr Pars Peng Rain Rena Rob	pira Reef	-	-	-	-	-	-	-	-	-	-	-	-
New Olive Olive Omr Osbo Otwa Parr Pars Pene Rain Rena Rob Roth Shep	oresby Shoals	-	-	-	-	-	-	-	-	-	-	-	-
Olive Olive Olive Omr Osb Otwa Parr Pars Peng Rain Rena Robi Roth	oss Shoal	-	-	-	-	-	-	-	-	-	-	-	-
Olive Omr Osbo Otwa Parr Pars Pene Rain Rena Rob Roth	ewby Shoal	-	-	-	-	-	-	-	-	-	-	-	-
Omr Osbo Otwa Parr Pars Peng Rain Rena Robi	iver Reef	-	-	-	-	-	-	-	-	-	-	-	-
Osbo Otwa Parr Pars Peng Rain Rena Rob Roth	iver Rock	15	-	-	30.92	-	-	13	-	-	52.08	-	-
Otwa Parr Pars Peng Rain Rena Robi Roth She	mmaney Shoals	-	-	-	-	-	-	-	-	-	-	-	-
Parr Pars Peng Rain Rens Robi	sborn Reefs	-	-	-	-	-	-	-	-	-	-	-	-
Pars Peng Rain Rena Robi Roth She	way Bank	31	-	-	23.17	-	-	33	-	-	23.17	-	-
Peng Rain Rena Robi Roth	arry Shoal	-	-	-	-	-	-	-	-	-	-	-	-
Rain Rena Robi Roth Shep	arsons Bank	-	-	-	-	-	-	-	-	-	-	-	-
Rena Robi Roth Shep	enguin Shoal	16	-	-	28.96	-	-	15	-	-	18.63	-	-
Robin Roth Shep	ainbow Shoals	-	-	-	-	-	-	-	-	-	-	-	-
Roth	enard Shoals	-	-	-	-	-	-	-	-	-	-	-	-
Shep	obroy Reefs	12	-	-	39.13	-	-	12	-	-	39.21	-	_
	othery Reef	21	-	-	29.46	-	-	16	-	-	29.71	-	-
Skot	nepparton Shoal	-	-	-	-	-	-	-	-	-	-	-	-
SKUL	cottowe Shoal	-	-	-	-	-	-	-	-	-	-	-	-
Tait	ait Bank	38	-	-	29.17	-	-	38	-	-	24.96	-	-
Taiy	aiyun Shoal	-	-	-	-	-	-	-	-	-	-	-	-
	aylor Patches	-	-	-	-	-	-	-	-	-	-	-	_
	egenna Reef		_	-	_	-	_	_	_	_	-	_	
	an Cloon Shoal	1	_	_	53.04	-	_	2	-	-	34.67	_	_
	ılcan Shoal		-	-	-	-	_	_	_	_	-	_	_
	ells Shoal		_	_	-	-	-	_			-	_	_
	est Holothuria Reef	15	-	_	26.58	-		13	-	_	19.71	-	
	ildcat Reefs	-	-		-	-	_	-	-	_	-	-	_
	oodbine Bank	_	_	_	-	-		_	-	_	_	_	
	dele Island	3	_		86.46	_	_	1	-	_	94.08	_	_
1-4	Shmore Reef	-	_		-	_	_	-	-		-	_	
	athurst Island	-	_	_	-	-	_	_	-	_	_		
	come		<u>-</u>		<u>-</u>	<u>-</u>		<u> </u>	-			<u> </u>	
	owse Island	14			47.79			16			48.29		
	urford Island	14	-	-	₩1.18	-	-		-	-		<u>-</u>	
								-	-	-	-	-	
	artier Island	-	-	-	-	-	-	-	-	-	-	-	-
	erke Reef	-	-	-	- 24.40	-	-	- 10	-	-	- 24	-	-
	ump Island	15	-	-	31.46	-	-	19	-	-	34	-	-
Cox- Daly	ox-Finniss	1	-	-	95.71	-	-	1	-	-	95.75	-	

				Unmit	igated					Mitig	gated		
Receptor		Probabi	lity of floating o	il exposure		time before flo exposure (days)		Probabi	lity of floating o (%)	il exposure		n time before flo exposure (days	
		Low	Moderate	High	Low	Moderate	High	Low	Moderate	High	Low	Moderate	High
	Darwin	-	-	-	-	-	-	-	-	-	-	-	-
	Derby - West Kimberely	-	-	-	-	-	-	-	-	-	-	-	-
	Dorcherty Island	13	-	-	23.71	-	-	14	-	-	24.5	-	-
	Greenhill Island							-	-	-	-	-	-
	Hibernia Reef	-	-	-	-	-	-	-	-	-	-	-	-
	Imperieuse Reef	-	-	-	-	-	-	-	-	-	-	-	-
	Litchfield	-	-	-	-	-	-	-	-	-	-	-	-
	Melville Island	-	-	-	-	-	-	-	-	-	-	-	-
	Minjilang	-	-	-	-	-	-						
	Mermaid Reef							-	-	-	-	-	-
	Peron Island North	2	-	-	91.71	-	-	2	-	-	91.63	-	-
	Peron Island South	-	-	-	-	-	-	1	-	-	92.63	-	-
	Quoin Island	29	-	-	27.75	-	-	30	-	-	25.5	-	-
	Sandy Islet	-	-	-	-	-	-	-	-	-	-	-	-
	Scott Reef North	-	-	-	-	-	-	-	-	-	-	-	-
	Scott Reef South	-	-	-	-	-	-	-	-	-	-	-	-
	Seringapatam Reef	-	-	-	-	-	-	-	-	-	-	-	-
	South Alligator	-	-	-	-	-	-	-	-	-	-	-	-
	Thamarrurr	40	-	-	22.79	-	-	37	-	-	24.63	-	-
	Turtle Point	16	-	-	29.33	-	-	18	-	-	23.67	-	-
	Vernon Islands	1	-	-	97.42	-	-	1	-	-	97.79	-	-
	Victoria Daly	36	-	-	14.29	-	-	40	-	-	14.29	-	-
	West Arnhem	-	-	-	-	-	-						
	Whale Flat	22	-	-	29.79	-	-	20	-	-	26.75	-	-
	Wyndham - East Kimberley	77	-	-	14.5	-	-	77	-	-	10.33	-	-
State Waters	Northern Territory	50	-	-	7.29	-	-	51	-	-	6.71	-	-
	Western Australia	90	-	-	7.33	-	-	91	1	-	7.13	30.71	-

Table 10.4 Summary of the potential floating oil exposure to individual receptors for both the unmitigated and mitigated cases. Results are based on a 786,858 m³ surface release of crude oil over 77 days, tracked for 98 days, during winter conditions. The results were calculated from 100 spill trajectories per season.

				Unmiti	gated					ı	Mitigated		
Receptor		Probab	ility of floating oi (%)	il exposure		time before flo exposure (days)		Pro	bability of float exposure (%)	_		m time before floa exposure (days)	_
		Low	Moderate	High	Low	Moderate	High	Low	Moderate	High	Low	Moderate	High
AMP	Arafura	-	-	-	-	-	-						
	Argo-Rowley Terrace	2	-	-	73.21	-	-	2	-	-	72.88	-	-
	Ashmore Reef	1	-	-	80.79	-	-	-	-	-	-	-	-
	Cartier Island	2	-	-	66.75	-	-	2	-	-	66.67	-	-
	Joseph Bonaparte Gulf	87	22	9	2.67	3.96	4.29	87	17	7	3.04	3.96	4.29
	Kimberley	70	-	-	16.13	-	-	71	-	-	16.08	-	-
	Mermaid Reef	-	-	-	-	-	-	-	-	-	-	-	-
	Oceanic Shoals	21	-	-	35.29	-	-	25	-	-	34.83	-	-
EEZ	Indonesian	12	-	-	46.54	-	-	12	-	-	62.67	-	-
KEF	Ancient coastline at 125 m depth contour	27	-	-	33.88	-	-	28	-	-	32.63	-	-
	Ashmore Reef and Cartier Island and surrounding Commonwealth waters	3	-	-	66.75	-	-	3	-	-	66.67	-	-
	Canyons linking the Argo Abyssal Plain with the Scott Plateau	-	-	-	-	-	-	-	-	-	-	-	-
	Carbonate bank and terrace system of the Sahul Shelf	97	19	1	1.58	5.71	11.25	98	21	1	1.58	6.46	7.92
	Carbonate bank and terrace system of the Van Diemen Rise	-	-	-	-	-	-	-	-	-	-	-	-
	Continental Slope Demersal Fish Communities	23	-	-	39.08	-	-	23	-	-	38.88	-	-
	Mermaid Reef and Commonwealth waters surrounding Rowley Shoals	-	-	-	-	-	-	-	-	-	-	-	-
	Pinnacles of the Bonaparte Basin	11	-	-	25.88	-	-	16	-	-	23.04	-	-
	Seringapatam Reef and Commonwealth waters in the Scott Reef Complex	1	-	-	62.33	-	-	1	-	-	89.54	-	-
	Tributary Canyons of the Arafura Depression	-	-	-	-	-	-	-	-	-	-	-	-
MP	Garig Gunak Barlu	-	-	-	-	-	-	-	-	-	-	-	-
	Lalang-garram / Camden Sound	-	-	-	-	-	-	-	-	-	-	-	-
	North Kimberley	98	-	-	8.08	-	-	98	-	-	8.08	-	-
	North Lalang-garram	-	-	-	-	-	-	1	-	-	77.75	-	-
	Rowley Shoals	-	-	-	-	-	-	-	-	-	-	-	-
NR	Scott Reef	-	-	-	-	-	-	-	-	-	-	-	-
Ramsar	Ashmore Reef National Nature Reserve	1	-	-	80.79	-	-	-	-	-	-	-	-
	Cobourg Peninsula	-	-	-	-	-	-						
	Ord River Floodplain	8	-	-	47.33	-	-	5	-	-	45.71	-	-
RSB	Abbott Shoal	-	-	-	-	-	-	-	-	-	-	-	-
	Afghan Shoal	-	-	-	-	-	-	-	-	-	-	-	-
	Albert Reef	-	-	-	-	-	-	2	-	-	68.96	-	-
	Baldwin Bank	3	-	-	46.83	-	-	6	-	-	47.79	-	-
	Barbara Shoal	-	-	-	-	-	-	-	-	-	-	-	-
	Barcoo Shoal	-	-	-	-	-	-	-	-	-	-	-	-
	Barracouta Shoal	4	-	-	64.63	-	-	3	-	-	62.08	-	-
	Bass Reef	-	-	-	-	-	-	-	-	-	-	-	-
	Bassett-Smith Shoal	10	-	-	42.29	-	-	15	-	-	25.67	-	-
	Beagle Shoals	-	-	-	-	-	-	-	-	-	-	-	-
	Beagle and Dingo Reefs	1	-	-	80.96	-	-	2	-	-	80.38	-	-
	Bill Shoal	_	-	-	_	_	_						

				Unmit	igated					ı	Mitigated		
eceptor		Probab	ility of floating o	il exposure		n time before flo exposure (days)	_	Pro	bability of float exposure (%)	_		n time before floa exposure (days)	ating oil
		Low	Moderate	High	Low	Moderate	High	Low	Moderate	High	Low	Moderate	High
	Branch Banks	25	-	-	23.38	-	-	29	-	-	23.33	-	-
	Brue Reef	-	-	-	-	-	-	-	-	-	-	-	-
	Christine Reef							-	-	-	-	-	-
	Churchill Reef	1	-	-	73.04	-	-	2	-	-	72.13	-	-
	Clerke Reef	-	-	-	-	-	-	-	-	-	-	-	-
	Cockell and Nicolle Reefs	-	-	-	-	-	-						
	Deep Shoal 1	-	-	-	-	-	-	-	-	-	-	-	-
	Deep Shoal 2	-	-	-	-	-	-	-	-	-	-	-	-
	Draytons Reef	-	-	-	-	-	-	-	-	-	-	-	-
	East Holothuria Reef	33	-	-	18.5	-	-	32	-	-	18.63	-	-
	Echuca Shoal	10	-	-	41.08	-	-	5	-	-	45.54	-	-
	Elizabeth Reef	-	-	-	-	-	-	-	-	-	-	-	-
	Emu Reefs	11	-	-	31.46	-	-	10	-	-	28.42	-	-
	Eugene McDermott Shoal	6	-	-	57.79	-	-	8	-	-	57.42	-	-
	Favell Bank	1	-	-	48.71	-	-	1	-	-	76.08	-	-
	Fish Reef	-	-	-	-	-	-	-	-	-	-	-	-
	Fitzpatrick Shoal							-	-	-	-	-	-
	Flat Top Bank	-	-	-	-	-	-	-	-	-	-	-	-
	Foelsche Bank	-	-	-	-	-	-	-	-	-	-	-	-
	Gale Bank	2	-	-	51.92	-	-	-	-	-	-	-	-
	Giles Shoal	-	-	-	-	-	-	-	-	-	-	-	-
	Goeree Shoal	3	-	-	65.58	-	-	3	-	-	64.38	-	-
	Hancox Shoal	-	-	-	-	-	-	-	-	-	-	-	-
	Harris Reef	-	-	-	-	-	-	-	-	-	-	-	-
	Heritage Reef	4	-	-	35.92	-	-	3	-	-	35.92	-	-
	Heywood Shoal	1	-	-	89.21	-	-	3	-	-	42.71	-	-
	Hinkler Patches	-	-	-	-	-	-						
	Holothuria Banks	61	-	-	17.38	-	-	62	-	-	17.29	-	-
	Howland Shoals	11	-	-	26.83	-	-	12	-	-	27.13	-	_
	Hunt Patch	-	-	-	-	-	-	-	-	-	-	-	-
	Imperieuse Reef	-	-	-	-	-	-	-	-	-	-	-	-
	Ingram Reef	10	-	-	38.5	-	-	11	-	-	41.21	-	-
	Jamieson Reef	20	-	-	31.63	-	-	16	-	-	31.04	-	-
	Johnson Bank	-	-	-	-	-	-	-	-	-	-	-	-
	Jones Bank	-	-	-	-	-	-	-	-	-	-	-	_
	Kelleway Reef	-	-	-	-	-	-	-	-	-	-	-	_
	Knight Reef	-	-	-	-	-	-	-	-	-	-	-	-
	Long Reef	36	-	-	23.75	_	-	38	_	-	24.42	-	_
	Lowry Shoal	-	-	-	-	_	-	-	_	-	-	_	_
	Lyne Reef	_	-	-	-	_	-	-	-	-	-	-	_
	Marie Shoal	-	-		-	-		-	-	-	-	-	_
	Marsh Shoal	-	-			_		_	_	_		-	_
	Mataram Shoal						·	-				<u> </u>	

Receptor		Duchah		Unmit									
		Probab	ility of floating of (%)	l exposure		time before floa exposure (days)	ating oil	Pro	bability of floati exposure (%)	_		n time before floa exposure (days)	iting oil
		Low	Moderate	High	Low	Moderate	High	Low	Moderate	High	Low	Moderate	High
	Mavis Reef	2	-	-	74.25	-	-	1	-	-	73	-	-
	Mermaid Reef	-	-	-	-	-	-	-	-	-	-	-	-
	Mermaid Shoal	-	-	-	-	-	-	-	-	-	-	-	-
	Middle Reef	-	-	-	-	-	-	-	-	-	-	-	-
	Moira Reef	-	-	-	-	-	-	-	-	-	-	-	-
	Moresby Shoals	-	-	-	-	-	-	-	-	-	-	-	-
	Moss Shoal	-	-	-	-	-	-	-	-	-	-	-	-
	Newby Shoal	-	-	-	-	-	-	-	-	-	-	-	-
	Oliver Reef	-	-	-	-	-	-	-	-	-	-	-	-
	Oliver Rock	5	-	-	33.83	-	-	4	-	-	33.88	-	-
	Ommaney Shoals	-	-	-	-	-	-	-	-	-	-	-	-
	Osborn Reefs	-	-	-	-	-	-	-	-	-	-	-	-
	Otway Bank	24	-	-	23.96	-	-	18	-	-	23.88	-	-
	Parry Shoal	-	-	-	-	-	-	-	-	-	-	-	-
	Parsons Bank	-	-	-	-	-	-	-	-	-	-	-	-
	Penguin Shoal	8	-	-	38.5	-	-	8	-	-	29.88	-	-
	Rainbow Shoals	-	_	-	-	-	-	-	-	-	-	-	_
	Renard Shoals	-	-	-	-	-	-	-	-	-	-	-	_
	Robroy Reefs	3	_	-	50.33	-	-	1	-	-	50.42	-	
	Rothery Reef	7	-	-	33.88	-	-	8	-	-	38.67	-	_
	Shepparton Shoal	_	_	_	_	_	_	_	-	_	_	-	_
	Skottowe Shoal	-	-	-	-	-	-	-	-	-	_	-	_
	Tait Bank	33	_	_	19.88	_	_	35	-	_	30.08	-	_
	Taiyun Shoal	-	-	-	-	-	_	-	-	-	-	-	_
	Taylor Patches	-	-	_	_	_	_	_	_	_	_		_
	Tregenna Reef	_	_		_	_							
	Van Cloon Shoal	4	-	_	38.63	_		4	_	-	71	-	_
	Vulcan Shoal	5	-	_	60.29	_	_	5	_	_	63.58	-	
	Wells Shoal	-	-	-	-	_	_	-	_	_	-	-	
	West Holothuria Reef	2	-	_	28.38	-	_	6	_	_	28.75	-	
	Wildcat Reefs	-	-	_	-	_	_	-	_	_	-	-	_
	Woodbine Bank		-	<u> </u>					<u> </u>			-	
arshore	Adele Island	1	-	_	71.29	_	_	1	-	_	72.13	-	_
aters	Ashmore Reef	1	<u>-</u>	<u> </u>	80.79			<u>'</u>			-		
	Bathurst Island	-					-		-	-		-	
	Broome		-	-	-	-	-	-	-	-	-	-	
	Browse Island		-	-	62.17	-	-	5	-	-	50.04	-	
	Burford Island	4	-	-	02.17	-	-		-	-		-	
								- 1	-	-	67.17	-	
	Cartier Island	<u>-</u>	-	-	-	-	-	1	<u>-</u>	-	67.17	-	
	Clerke Reef	-	-	-	-	-	-	-	-	-	- 40.50	-	
	Clump Island	5	-	-	65.08	-	-	9	-	-	48.58	-	
	Cox-Finniss Daly	-	-	-	80.5	-	-	-	-	-	-	-	

				Unmit	igated					N	/litigated		
Receptor		Probab	ility of floating o (%)	il exposure		n time before flo exposure (days)		Prol	pability of floati exposure (%)			n time before floa exposure (days)	ıting oil
		Low	Moderate	High	Low	Moderate	High	Low	Moderate	High	Low	Moderate	High
	Darwin	-	-	-	-	-	-	-	-	-	-	-	-
	Derby - West Kimberely	-	-	-	-	-	-	-	-	-	-	-	-
	Dorcherty Island	19	-	-	35.88	-	-	18	-	-	38.58	-	-
	Greenhill Island							-	-	-	-	-	-
	Hibernia Reef	-	-	-	-	-	-	-	-	-	-	-	-
	Imperieuse Reef	-	-	-	-	-	-	-	-	-	-	-	-
	Litchfield	-	-	-	-	-	-	-	-	-	-	-	-
	Melville Island	-	-	-	-	-	-	-	-	-	-	-	-
	Minjilang	-	-	-	-	-	-						
	Mermaid Reef							-	-	-	-	-	-
	Peron Island North	-	-	-	-	-	-	-	-	-	-	-	-
	Peron Island South	-	-	-	-	-	-	-	-	-	-	-	-
	Quoin Island	29	-	-	41.33	-	-	26	-	-	33.46	-	-
	Sandy Islet	-	-	-	-	-	-	-	-	-	-	-	-
	Scott Reef North	-	-	-	-	-	-	-	-	-	-	-	-
	Scott Reef South	-	-	-	-	-	-	-	-	-	-	-	-
	Seringapatam Reef	-	-	-	-	-	-	-	-	-	-	-	-
	South Alligator	-	-	-	-	-	-	-	-	-	-	-	-
	Thamarrurr	29	-	-	42.63	-	-	30	-	-	44.96	-	-
	Turtle Point	27	-	-	14.92	-	-	27	-	-	14.92	-	-
	Vernon Islands	-	-	-	-	-	-	-	-	-	-	-	-
	Victoria Daly	48	-	-	14.92	-	-	48	-	-	15	-	-
	West Arnhem	-	-	-	-	-	-						
	Whale Flat	13	-	-	54.75	-	-	9	-	-	56.25	-	-
	Wyndham - East Kimberley	93	-	-	9.46	-	-	93	-	-	9.5	-	-
State Waters	Northern Territory	59	-	-	10.83	-	-	59	-	-	10.88	-	-
	Western Australia	98	-	-	8.08	-	-	98	-	-	8.08	-	-

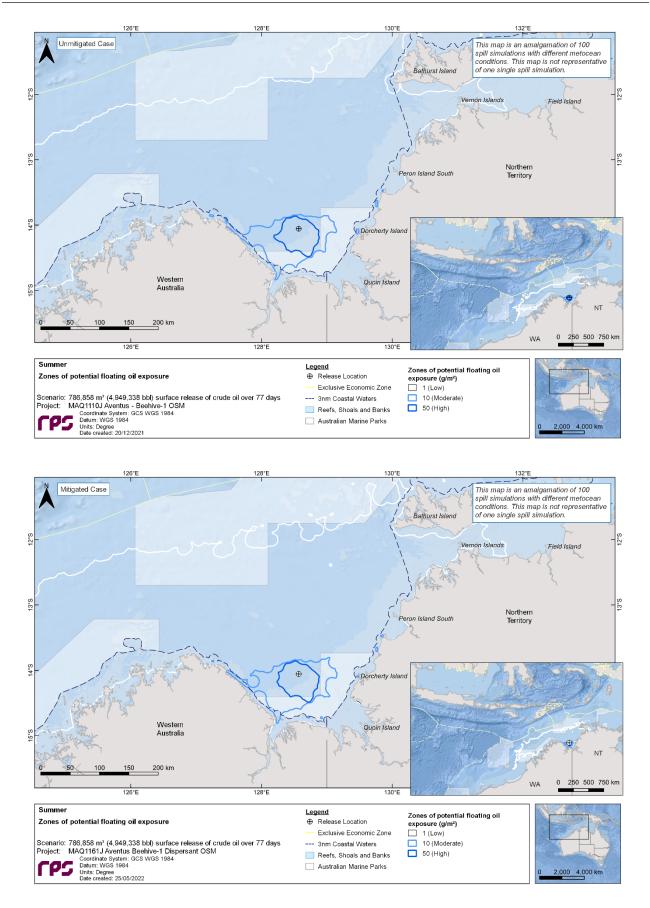


Figure 10.4 Zones of potential floating oil exposure for the unmitigated (upper image) and mitigated (lower image) cases, in the event of a 786,858 m³ of crude oil over 77 days, tracked for 98 days during summer conditions. The results were calculated from 100 spill trajectories.

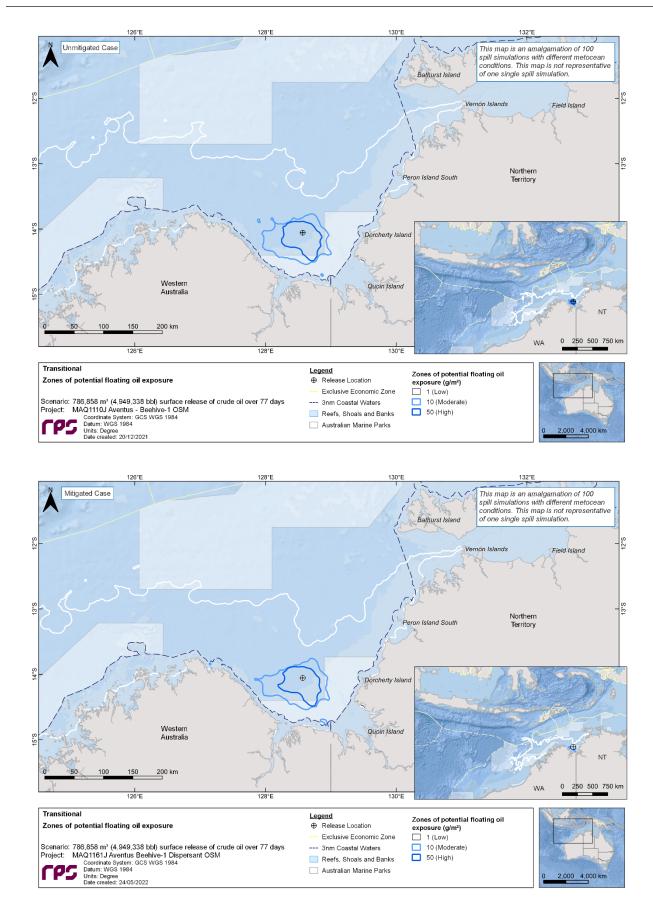


Figure 10.5 Zones of potential floating oil exposure for the unmitigated (upper image) and mitigated (lower image) cases, in the event of a 786,858 m³ of crude oil over 77 days, tracked for 98 days during transitional conditions. The results were calculated from 100 spill trajectories.

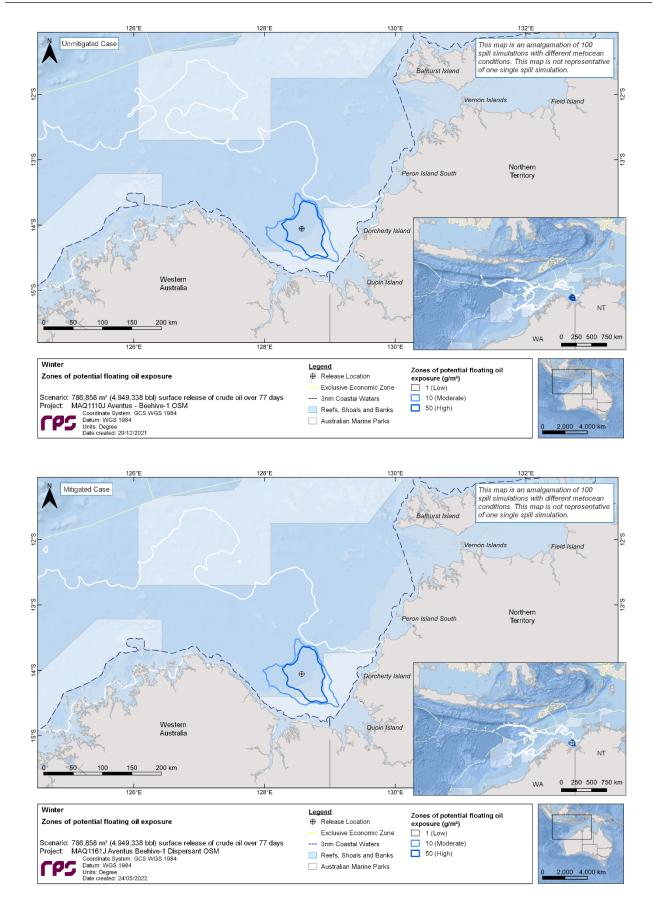


Figure 10.6 Zones of potential floating oil exposure for the unmitigated (upper image) and mitigated (lower image) cases, in the event of a 786,858 m³ of crude oil over 77 days, tracked for 98 days during winter conditions. The results were calculated from 100 spill trajectories.

10.1.2 Shoreline Accumulation

Table 10.5 presents a summary of the predicted potential shoreline accumulation during seasonal conditions for the unmitigated and mitigated cases.

For the unmitigated case, the probability of accumulation to any shoreline at, or above, the low threshold ($10~g/m^2$) was 100% for all seasons and the minimum time before shoreline accumulation at, or above, the low threshold ranged between 10.29 hours (transitional) to 11.58 hours (summer). The maximum volume ashore for a single spill trajectory ranged between $406.9~m^3$ (winter) and $704.7~m^3$ (summer) and the maximum length of shoreline contacted at the low threshold was 201~km for winter and 224~km for summer and transitional.

Similarly, for the mitigated case, the probability of accumulation to any shoreline at, or above, the low threshold ($10~g/m^2$) was 100% for all seasons and the minimum time before shoreline accumulation at, or above, the low threshold ranged between 10.50~days (winter) to 12.17~days (summer). The maximum volume ashore for a single spill trajectory ranged between $366.6~m^3$ (winter) and $612.0~m^3$ (summer), which represented a reduction of 13.2% in the maximum volume ashore in comparison to the unmitigated case. The maximum length of shoreline contacted at the low threshold was 190~km for winter and 217~km for summer and transitional. For all seasonal conditions assessed, the modelling demonstrated a reduction in the length of shoreline contact above the low (3.1%), moderate (3.1%) and high (5.5%) thresholds, when the surface dispersant was applied.

Table 10.5 Summary of oil accumulation across all shorelines for the unmitigated and mitigated cases. Results are based on a 786,858 m³ surface release of crude oil over 77 days, tracked for 98 days, during seasonal conditions. The results were calculated from 100 spill trajectories per season.

Shoreline Statistics		Unmitigated			Mitigated	
Snoreline Statistics	Summer	Transitional	Winter	Summer	Transitional	Winter
Probability of accumulation on any shoreline (%)	100	100	100	100	100	100
Absolute minimum time for visible oil to shore (days)	11.58	10.29	11.25	12.17	10.88	10.50
Maximum volume of hydrocarbons ashore (m³)	704.7	414.9	406.9	612.0	358.7	366.6
Average volume of hydrocarbons ashore (m³)	259.5	176.9	145.8	256.6	179.7	142
Maximum length of the shoreline at 10 g/m² (km)	224	224	201	217	217	190
Average shoreline length (km) at 10 g/m² (km)	119.7	82.6	90.9	115.9	81.7	89
Maximum length of the shoreline at 100 g/m² (km)	129	116	99	130	115	93
Average shoreline length (km) at 100 g/m² (km)	61.6	45.5	40.9	58.7	44.9	39
Maximum length of the shoreline at 1,000 g/m² (km)	16	9	8	15	10	7

REPORT

0.7	4.7	0.0	0.5
2.7	4.7	3.2	2.5
	2.7	2.7 4.7	2.7 4.7 3.2

Table 10.6 to Table 10.8 summarises the shoreline accumulation on individual receptors for each season for the unmitigated and mitigated cases.

For the unmitigated case, the shoreline assessment identified Wyndham - East Kimberley, Thamarrurr, Daly, Victoria Daly, Dorcherty Island and Un-named Head - Cape Rulhieres (A) shorelines as the sectors with the largest potential shoreline oil accumulation during summer conditions with volumes ranging between 134.8 m³ to 404.4 m³ (Table 10.6). During the transitional and winter months, the Wyndham - East Kimberley, Victoria Daly and Thamarrurr shorelines recorded potential shoreline oil accumulation ranging between 164.9 m³ to 414.9 m³ (transitional; Table 10.7) and 155.6 m³ and 406.9 m³ (winter; Table 10.8). Additionally, Wyndham - East Kimberley recorded the earliest shoreline contact (11.25 days) and the longest mean length (58.1 km) of shoreline accumulation above the low threshold during transitional conditions.

Similarly, for the mitigated case, the shoreline assessment identified Wyndham - East Kimberley, Thamarrurr, Daly, Victoria Daly, Dorcherty Island and Un-named Head - Cape Rulhieres (A) shorelines as the sectors with the largest potential shoreline oil accumulation during summer conditions with volumes ranging between 157.7 m³ to 395.3 m³ (Table 10.6). During the transitional months, for the mitigated case the Wyndham - East Kimberley, Victoria Daly, Thamarrurr and Un-named Head - Cape Rulhieres (A) shorelines recorded potential shoreline oil accumulation ranging between 150.4 m³ to 342.8 m³ (Table 10.7). In comparison during the winter months for the mitigated case the shorelines with the largest potential shoreline oil accumulation was Wyndham - East Kimberley, Victoria Daly, Thamarrurr and Cape Bernier – Elsie Island N, ranging between 142.3 m³ and 362.0 m³ (Table 10.8). Additionally, during both transitional and winter conditions the Wyndham - East Kimberley shoreline recorded the earliest shoreline contact (10.88 days, transitional and 10.50 days, winter) and the longest mean length (53.0, winter and 56.7 km, transitional) of shoreline accumulation above the low threshold.

Figure 10.7 to Figure 10.9 present sorted bar plots of the predicted length of shoreline accumulation for the low, moderate and high shoreline accumulation thresholds for the unmitigated and mitigated cases from 100 spill trajectories per season and case.

The maximum potential shoreline loading above the low, moderate and high shoreline thresholds are presented for each season, for both unmitigated and mitigated cases in Figure 10.10 to Figure 10.12.

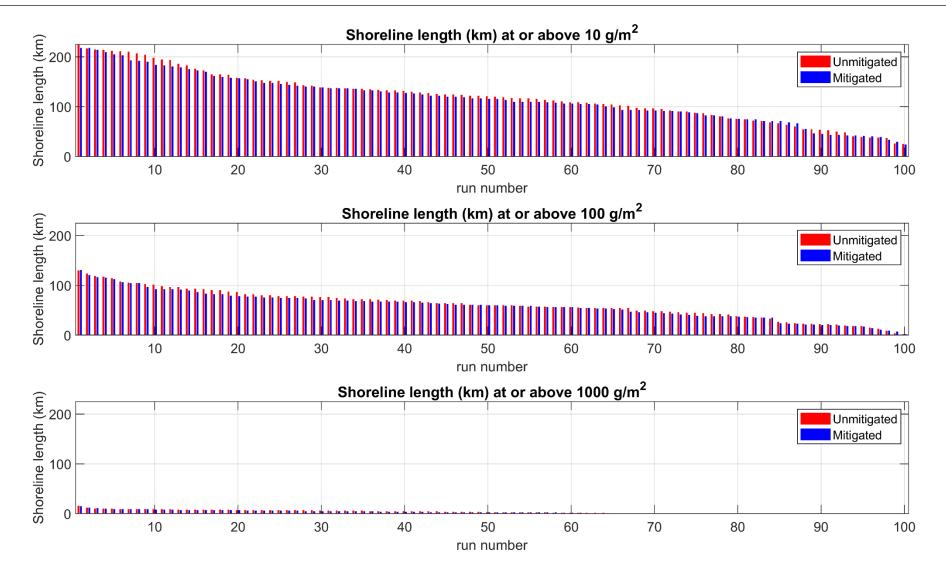


Figure 10.7 Sorted bar plots of the predicted length of shoreline accumulation for the low, moderate and high shoreline accumulation thresholds for the unmitigated (red) and mitigated (blue) cases, in the event of a 786,858 m³ of crude oil over 77 days, tracked for 98 days during summer conditions. The results from 100 spill trajectories are presented.

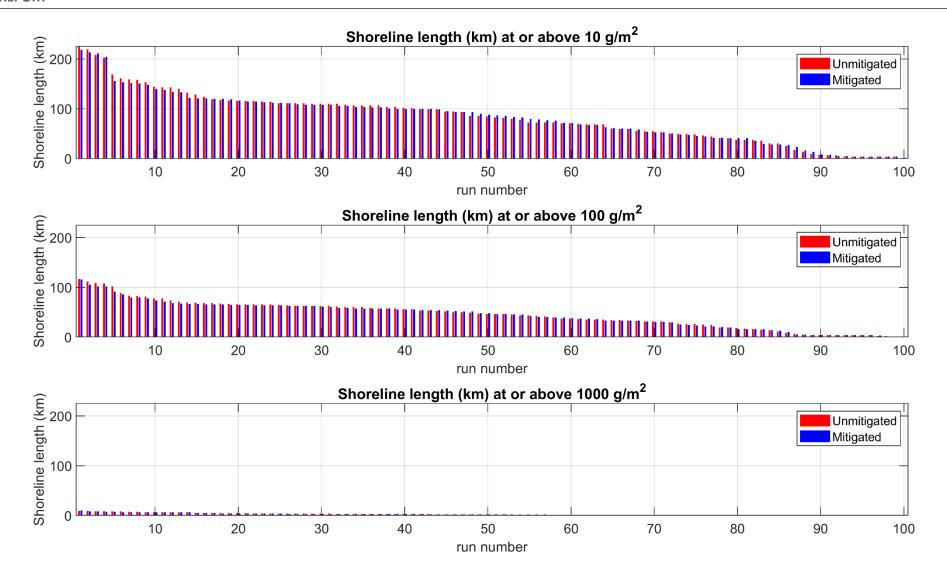


Figure 10.8 Sorted bar plots of the predicted length of shoreline accumulation for the low, moderate and high shoreline accumulation thresholds for the unmitigated (red) and mitigated (blue) cases, in the event of a 786,858 m³ of crude oil over 77 days, tracked for 98 days during summer conditions. The results from 100 spill trajectories are presented.

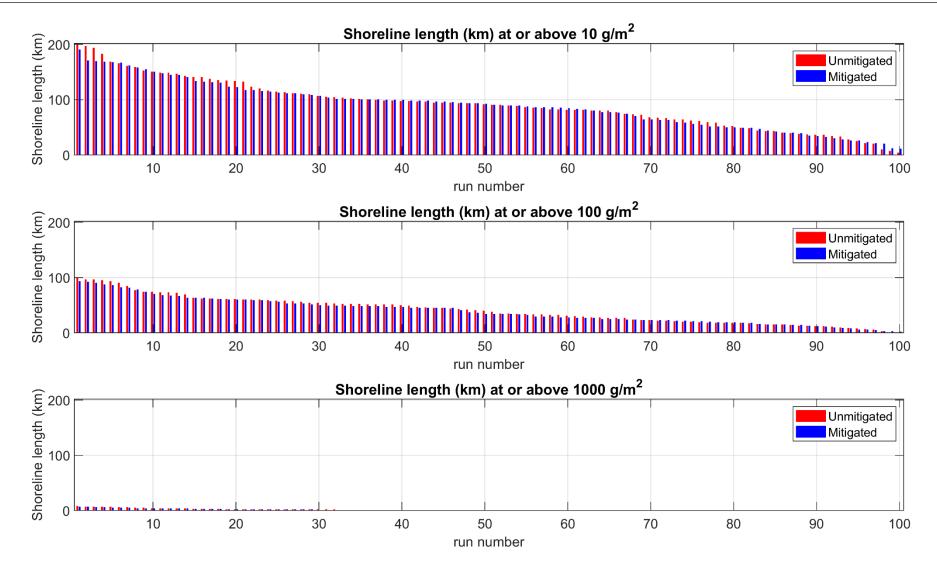


Figure 10.9 Sorted bar plots of the predicted length of shoreline accumulation for the low, moderate and high shoreline accumulation thresholds for the unmitigated (red) and mitigated (blue) cases, in the event of a 786,858 m³ of crude oil over 77 days, tracked for 98 days during summer conditions. The results from 100 spill trajectories are presented.

Table 10.6 Summary of oil accumulation on individual shoreline sectors for the unmitigated and mitigated cases. Results are based on a 786,858 m³ surface release of crude oil over 77 days, tracked for 98 days, during summer conditions. The results were calculated from 100 spill trajectories.

							l	Unmitigate	ed															Mitigat	ted							
Shoreline sector		num prob preline lo (%)			num time ine accum (days)		sho	ad on reline /m²)	Volun shor (m	eline	s	an lengt shorelin tacted	е		mum ler eline cor (km)	_		um prob preline lo (%)		:	um time shorelin nulation	е	Load shore (g/n	eline	shor	me on reline n³)		an lengtl line cont (km)			mum len line con (km)	_
	Low	Mod.	High	Low	Mod.	High	Mean	Peak	Mean	Peak	Low	Mod.	High	Low	Mod.	High	Low	Mod.	High	Low	Mod.	High	Mean	Peak	Mean	Peak	Low	Mod.	High	Low	Mod.	High
Adele Island	6	1	-	70.92	96.08	-	66	132	< 0.1	1.7	1.3	1	-	2	1	-	5	5	-	70.54	71.29	-	122	150	0.1	3	1.4	1	-	2	1	
Ashmore Reef	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	
Bathurst Island	4	3	-	69.08	71.75	-	65	248	0.3	12.3	10.8	2	-	17.1	3	-	5	3	-	67.96	69.46	-	60	145	0.3	10.9	8.8	1.7	-	15.1	3	
Broome	1	-	-	97.21	-	-	39	39	< 0.1	0.5	1	-	-	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	
Browse Island	23	20	1	48.54	50.54	91.92	299	2,059	3.1	64.3	3.5	3	3	4	4	3	22	18	1	49.63	50.08	91.88	265	1,863	2.5	50.1	3.2	3	1	4	4	1
Cartier Island	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Clump Island	55	42	-	18.58	19.58	-	164	928	3.5	20.6	3.2	1.9	-	8	5	-	64	49	-	19	20.29	-	148	933	3.3	20.1	2.7	1.9	-	7	4	-
Cox-Finniss	20	14	-	23.79	26.13	-	91	582	4.6	51.4	20.5	10.8	-	43.2	19.1	-	22	14	-	21.21	25.79	-	87	585	4.2	55.6	17.4	10.5	-	41.2	18.1	-
Daly	57	41	2	18.33	25.79	46.13	104	3,692	8.4	199.6	9.2	4.6	4	32.2	24.1	6	56	44	2	14.38	21.29	46.33	105	3,422	8.7	211.5	9.3	4.2	5.5	33.2	27.1	6
Darwin	8	3	-	48.08	51.71	-	69	134	0.1	2.6	1.9	1	-	3	1	-	10	-	-	62.42	-	-	55	91	0.1	2.1	1.5	-	-	3	-	-
Derby - West Kimberely	2	-	-	90.33	-	-	43	44	< 0.1	1	1.5	-	-	2	-	-	2	2	-	81.75	82.33	-	136	196	< 0.1	2.4	1.5	1	-	2	1	-
Dorcherty Island	66	54	12	17.38	19.25	50.46	239	7,065	12.4	134.8	4.8	3.4	1.6	12.1	8	2	68	56	13	14.13	18.21	40.54	233	6,557	12.1	122.2	4.7	3.3	1.2	12.1	9	2
Hibernia Reef	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Litchfield	8	-	-	60.33	-	-	52	60	< 0.1	2	1.5	-	-	3	-	-	6	-	-	65.13	-	-	50	56	< 0.1	1.3	1.5	-	-	2	-	-
Melville Island	9	-	-	61.96	-	-	47	89	0.2	4.2	3.5	-	-	8	-	-	9	2	-	40	95.29	-	58	118	0.2	4.9	4.2	1	-	8	1	-
Minjilang	3	-	-	70.83	-	-	61	88	< 0.1	1.1	1	-	-	1	-	-	2	-	-	85.5	-	-	43	44	< 0.1	1.1	1.5	-	-	2	-	-
New Year Island	2	-	-	80.25	-	-	44	45	< 0.1	0.6	1	-	-	1	-	-	2	-	-	84.04	-	-	86	87	< 0.1	1.1	1	-	-	1	-	-
Oxley Island	2	-	-	81.33	-	-	44	44	< 0.1	0.5	1	-	-	1	-	-	3	-	-	81.42	-	-	51	87	< 0.1	1.6	1.3	-	-	2	-	-
Peron Island North	27	17	-	18.71	21.58	-	144	880	2.3	32.4	3.8	3.4	-	8	7	-	27	17	-	20.17	21.63	-	150	763	2.4	29.5	3.8	3.7	-	8	7	-
Peron Island South	12	6	-	22.67	22.75	-	102	399	0.4	10.6	2.6	1.7	-	4	4	-	12	7	-	21.79	22.17	-	115	647	0.5	12.2	2.8	2	-	5	4	-
Quoin Island	64	49	2	17.38	17.63	59.58	124	1,056	8.4	59.1	7.4	4.7	1	20.1	11.1	1	63	38	1	16.38	17.92	70.96	119	1,141	7.9	67.9	7.3	5.3	1	19.1	14.1	1
Sandy Islet	3	-	-	70.67	-	-	49	50	< 0.1	1.2	1.3	-	-	2	-	-	4	-	-	71.67	-	-	49	53	< 0.1	1.2	1.3	-	-	2	-	-
Scott Reef North	10	3	-	64.08	64.13	-	61	216	0.4	12.4	4.9	4	-	14.1	6	-	9	3	-	63.96	64	-	61	168	0.4	13	4.8	3	-	13.1	5	-
Scott Reef South	12	7	-	62.13	63.5	-	87	611	2	57.5	10.6	7.8	-	29.2	18.1	-	11	5	-	63.25	63.58	-	90	534	1.9	57.4	10.9	10.9	-	28.1	20.1	-
Seringapatam Reef	8	1	-	70.25	97.58	-	66	117	0.1	3.4	2.3	2	-	4	2	-	9	-	-	71.42	-	-	49	98	< 0.1	2.4	1.6	-	-	3	-	-
South Alligator	8	4	-	54.21	57.75	-	58	117	0.1	3.1	2.4	1	-	5	1	-	8	2	-	58.38	83.38	-	72	180	0.1	2.5	1.8	1	-	4	1	-
Thamarrurr	80	74	31	11.58	14.46	18.92	190	6,903	54.9	271.2	27.1	15.6	2.2	60.3	40.2	7	82	75	31		14.33	18.38	190	6,551	53.8			15.2	1.9	60.3	44.2	4
Turtle Point	58	47	-	18.63	24.17	-	155	819	4.8	29.4	4	2.7	-	7	6	-	58	44	-	20.88	23.42	-	141	833	4	24.1	3.7	2.6	-	7	7	_
Vernon Islands	18	11	-	30.54	39.17	-	98	627	1.4	26.4	5.8	3.4	-	14.1	8	-	19	11	-	33.17	39.21	-	97	684	1.3	24.7	5.2	3	-	11.1	7	-
Victoria Daly	76	73	28	14.75	19.13	25.21	189	4,229	52.9	258.3	27.8	14.6	2.6	57.3	42.2	6	76	72	26	15.63	16.13	27.25	183	4,414	49.3	220.8	26.9	13.9	2.8	62.3	39.2	5
Whale Flat	65	54	6	18.29	22.54	67.88	180	1,947	9.1	78.7	5.2	3.6	1.8	13.1	10.1	3	68	48	8	18.5	20.46	67.92	169	1,741	8.5	69.7	4.6	3.7	1.4	12.1	9	2
Wyndham - East Kimberley	78	70	41	16.17	17.38	28.38	208	4,644	108.7	404.4	51.2	30.6	4.5	156.8	85.4	9	79	70	41	14.63	20.46	23.54	197	4,452	98.1	395.3	48.4	28.4	3.6	147.8	91.5	9

							ι	Jnmitigate	d															Mitigat	ed							
Shoreline sector		num prob oreline lo (%)			num time ine accum		sho	nd on reline /m²)	Volun shore (m	eline	5	an lengt shorelin tacted (е		imum len eline con (km)	_		um prob preline lo (%)		:	um time shorelin nulation	e	Load shore (g/n	line	Volun shore (m	eline		an length line cont (km)			mum len eline con (km)	_
	Low	Mod.	High	Low	Mod.	High	Mean	Peak	Mean	Peak	Low	Mod.	High	Low	Mod.	High	Low	Mod.	High	Low	Mod.	High	Mean	Peak	Mean	Peak	Low	Mod.	High	Low	Mod.	High
East Cape Domett - WA- NT Border (A)	41	26	5	23.08	24.08	28.58	155	2,415	7.6	126.5	6.2	5.3	2.6	17.1	15.1	4	35	24	5	23.08	24.08	27.54	167	2,228	7.4	117.5	6.5	5.1	3	17.1	15.1	4
East Cape Domett - WA- NT Border (B)	29	23	4	21.21	22.58	59.58	143	1,452	3.5	46.6	6.1	3.8	1	12.1	8	1	30	20	4	18.96	26.25	59.67	119	1,372	2.9	32.9	5.8	3.9	1	13.1	8	1
East Cape Domett - WA- NT Border (C)	45	26	5	16.46	17.38	42.79	128	2,350	5.4	69	6	4.5	1.4	21.1	14.1	3	48	25	5	16.92	20.92	23.54	126	2,055	5.1	56	5.2	4.2	1.2	25.1	12.1	2
Bare Hill - East Cape Domett (A)	13	3	-	36.92	64.63	-	73	193	0.2	3.7	1.3	1	-	3	1	-	8	2	-	45.5	77.5	-	83	191	0.1	2.5	1.4	1	-	2	1	-
Bare Hill - East Cape Domett (B)	21	10	-	33.21	45	-	79	480	0.8	15.4	3.6	2	-	15.1	3	-	19	11	-	36.71	48.63	-	86	424	0.8	15.9	4.3	1.8	-	16.1	5	-
Bare Hill - East Cape Domett (E)	40	25	-	19.46	22.46	-	110	486	2.2	18.1	3.7	2.7	-	11.1	9	-	36	18	-	20.46	20.46	-	102	464	1.7	21.1	3.3	2.6	-	11.1	6	-
Aunty Islet - Thurburn Bluff	43	36	1	16.42	27.33	64.58	158	1,206	6.3	37.3	6.9	4.4	1	13.1	10.1	1	42	35	-	18.54	27.83	-	159	989	5.4	33.3	6.6	4	-	14.1	8	-
Cape Bernier - Elsie Island N	38	29	8	20.38	28.29	28.38	203	3,949	7.7	101.3	6.5	4.5	1.1	16.1	13.1	2	39	30	7	28.13	28.25	28.42	191	4,314	7.1	97.1	5.8	3.8	1.1	16.1	15.1	2
Cape Rulhieres - Cape Bernier	36	25	1	28.29	29	87.67	144	1,337	4	34.7	5.5	3.5	1	15.1	6	1	42	23	-	27.58	28.67	-	125	967	3.7	33.7	4.8	3.5	-	18.1	8	-
Un-named Head - Cape Rulhieres (A)	46	37	18	23.79	24.33	29.38	409	4,644	18.7	183.9	5.9	5.3	2.8	14.1	12.1	6	45	34	17	14.63	24.33	29.38	393	4,452	17.7	157.7	6.1	5.5	2.7	14.1	11.1	6
Un-named Head - Cape Rulhieres (B)	40	23	1	24.71	27.29	91.04	119	1,021	3.9	52.2	5.5	4.3	1	17.1	12.1	1	40	29	1	24.79	38.21	79.25	127	1,127	4.2	41	6	4.3	1	21.1	15.1	1
Un-named Head - Cape Rulhieres (C)	40	39	21	37.33	37.83	41.54	361	3,712	14.7	88.3	7.7	5.4	1.2	13.1	12.1	2	40	39	17	36.54	38.83	42.29	321	3,303	12.2	72.4	7.3	5.2	1.2	12.1	10.1	2
Cape Talbot - Cape Londonderry (A)	28	22	-	16.17	19.13	-	120	408	2	15.7	5.3	2.7	-	13.1	5	-	33	22	-	18.25	47.08	-	94	377	1.8	16.2	4.8	2.5	-	12.1	5	-
Cape Talbot - Cape Londonderry (B)	16	8	-	25.46	35.5	-	85	147	0.3	4.7	1.9	1.1	-	5	2	-	17	2	-	25.92	29.96	-	69	149	0.3	3.7	1.8	1.5	-	4	2	-
Low Island Point - Anjo (A)	27	21	12	36.08	48.96	56.17	240	1,363	7.8	61.5	8.3	6.7	1.4	18.1	11.1	2	29	21	7	45.54	49.42	57.71	195	1,536	6.9	61.1	7.6	5.8	1.4	16.1	11.1	2
Low Island Point - Anjo (B)	24	14	-	48.46	49.42	-	104	576	1	13.3	3.2	1.8	-	7	3	-	23	12	-	51.25	52.25	-	82	390	0.8	9.2	3.3	1.4	_	6	3	
Cape Bougainville - Low Island Point (A)	33	28	1	38.92	46.21	83.25	138	1,061	2.9	24.4	4.9	3.3	1	10.1	7	1	34	26	-	40.13	40.17	-	130	778	2.8	24.8	4.6	3.6	-	10.1	6	-

							ι	Jnmitigate	ed															Mitigat	ted							
Shoreline sector		num prol preline lo (%)			mum time line accum		Loa shoi	d on reline m²)	Volun shore	eline	5	an lengt shorelin	е		imum ler eline cor (km)	_		num prok preline lo (%)	•		um time shorelin nulation	е	Load shore (g/n	l on eline	Volur shor (n	eline		an lengtl line cont (km)			mum ler eline cor (km)	_
	Low	Mod.	High	Low	Mod.	High	Mean	Peak		Peak		Mod.		Low	Mod.	High	Low	Mod.	High	Low	Mod.	High	Mean	Peak		Peak	Low		High	Low		High
Cape Bougainville - Low Island Point (B)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Cape Bougainville - Low Island Point (C)	21	13	-	49.38	51.33	-	86	315	0.8	7.9	3.6	1.5	-	7	4	-	23	16	-	49.04	49.88	-	92	288	0.9	10.3	3.2	2	-	9	4	-
Cape Bougainville - Low Island Point (D)	34	27	14	39.88	39.88	57.58	307	2,234	8.3	63.5	5.2	3.9	1.4	12.1	7	2	35	28	13	39.83	40.88	57.46	268	1,853	6.9	60.2	4.7	3.7	1	9	6	1
Crystal Head - Cape Bougainville	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Davidsons Point - Crystal Head (A)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Davidsons Point - Crystal Head (C)	18	11	-	52.13	52.25	-	100	289	0.5	6.7	2.6	1.6	-	6	3	-	16	5	-	52.17	55.5	-	77	251	0.4	6	2.5	1.6	-	6	2	-
Davidsons Point - Crystal Head (D)	29	20	3	50.29	51.63	81.71	226	4,437	5.8	109.5	5.2	5	2	13.1	9	3	27	19	2	50.96	52.17	84.75	208	3,552	4.8	105.1	5	4.9	2.5	13.1	10.1	3
Swift Bay - Davidsons Point (A)	2	1	-	60.29	97.92	-	75	156	< 0.1	3.2	2	1	-	3	1	-	1	-	-	87.33	-	-	55	61	< 0.1	1.3	2	-	-	2	-	-
Swift Bay - Davidsons Point (B)	2	1	-	93.13	94.17	-	102	184	< 0.1	4	2.5	1	-	3	1	-	2	1	-	93.67	95.29	-	81	134	< 0.1	2.2	2	1	-	2	1	-
Augereau Island - Combe Hill Point (A)	16	9	-	55.63	61.75	-	86	722	1.2	40.5	4.9	3.1	-	17.1	11.1	-	13	8	-	57.42	61.21	-	84	582	0.9	29.3	4.9	3	-	16.1	8	-
Augereau Island - Combe Hill Point (B)	2	2	-	85.33	85.46	-	250	419	< 0.1	5.8	1.5	1	-	2	1	-	2	2	-	84.75	87.5	-	201	297	< 0.1	5	1.5	1.5	-	2	2	-
Augereau Island - Combe Hill Point (C)	3	2	-	68.33	89.21	-	120	334	< 0.1	4.8	2	1.5	-	3	2	-	2	2	-	86.33	89.71	-	144	291	< 0.1	3.9	1.5	1	-	2	1	-
Cape Wellington - Cape Torrens (A)	2	1	-	88.42	89.46	-	86	204	< 0.1	5.4	4.5	2	-	5	2	-	3	1	-	84.04	89.5	-	75	177	< 0.1	5.3	2.7	3	-	4	3	-
Battery Point - High Bluff (A)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
High Bluff - Cape Wellington (B)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

							ι	Jnmitigate	ed															Mitigat	ted							
Shoreline sector		um prob preline lo (%)			num time l ine accum (days)		Loa sho	d on reline 'm²)	Volum shore (m	eline	s	an lengt shorelin	е		imum len eline con (km)	_		um prok preline lo (%)	•		um time shorelin nulation	e	Load shore (g/n	on eline	Volur	ne on eline 1 ³)		an lengtl line cont (km)			mum ler eline cor (km)	_
	Low	Mod.	High	Low	Mod.	High	Mean	Peak	Mean	Peak	Low	Mod.	High	Low	Mod.	High	Low		High	Low	Mod.	High	Mean	Peak	Mean	Peak	Low	Mod.	High	Low	Mod.	High
Point Usborne - Sir Richard Island (B)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Raft Point - Un-named Promontory (A)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Nares Point - Un-named Peninsular (B)	1	-	-	91.83	-	-	41	41	< 0.1	0.5	1	-	-	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Packer Island - Swan Island (A)	1	-	-	97.21	-	-	39	39	< 0.1	0.5	1	-	-	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Davidsons Point - Cape Bougainville (A)	32	29	1	41.29	41.63	93.25	420	1,003	1.7	12.3	1	1	1	1	1	1	34	27	-	42.21	43.42	-	343	805	1.4	9.9	1	1	-	1	1	-
Davidsons Point - Cape Bougainville (C)	35	26	11	39.75	41.79	63.08	459	1,746	5.7	42.4	2.5	2.9	1.3	3	3	2	37	31	6	39.75	39.88	66.42	399	1,815	5.2	42.2	2.5	2.4	1.2	3	3	2
Davidsons Point - Cape Bougainville (D)	36	29	14	40.5	40.96	58.75	588	3,009	9.6	78.3	3.2	2.9	2.1	4	4	3	31	27	14	41.04	41.13	60.38	668	2,670	9.3	73.3	3.4	3.1	2.1	4	4	3
Augereau Island - Combe Hill Point (D)	27	20	2	50.38	53.08	83.5	204	1,552	6.5	119.8	7.9	7.6	3	13.1	13.1	4	27	20	2	51.63	55.08	83.63	194	1,672	6.2	113.9	7.6	7.4	2.5	13.1	12.1	3
Augereau Island - Davidsons Point	23	19	-	54.92	58.79	-	123	546	2.9	27.7	7.9	5.7	-	14.1	9	-	24	17	-	54.63	55.58	-	113	533	2.7	32.5	7.1	5.7	-	13.1	10.1	-
Cape Wellington - Cape Torrens (C)	9	4	-	71.33	89.13	-	68	164	0.3	8.1	3.2	2	-	7	4	-	7	3	-	66.5	89.38	-	59	112	0.2	5.1	3.9	1	-	7	1	-
Battery Point - High Bluff ©	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Marnebulorgne Community N Point - Battery Point (A)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Marnebulorgne Community N Point - Battery Point (B)	1	-	-	77.42	-	-	48	48	< 0.1	0.6	1	-	-	1	-	-	1	-	-	78.04	-	-	97	97	< 0.1	1.2	1	-	-	1	-	-
Point Usborne																																
Marnebulorgne Community N Point	6	1	-	70.92	96.08	-	66	132	< 0.1	1.7	1.3	1	-	2	1	-	5	5	-	70.54	71.29	-	122	150	0.1	3	1.4	1	-	2	1	-

							L	Inmitigate	ed															Mitigat	ted							
Shoreline sector	Maximum probability Minimum time of shoreline loading shoreline accu (%) (days) Low Mod. High Low Mod.						shor	d on reline m²)	Volun shor (m	eline	s	n lengt horelin tacted (е		imum len eline con (km)	_		um prob reline lo (%)	-	;	um time shorelin nulation	е	Load shore (g/m	line	Volur shor (m	eline		an lengt line con (km)			mum len eline con (km)	_
	Low	Mod.	High	Low	Mod.	High	Mean	Peak	Mean	Peak	Low	Mod.	High	Low	Mod.	High	Low	Mod.	High	Low	Mod.	High	Mean	Peak	Mean	Peak	Low	Mod.	High	Low	Mod.	High
Point Usborne - Nares Point (A)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	-	-	89.92	-	-	42	42	< 0.1	0.5	1	-	-	1	-	-
Point Usborne - Nares Point (B)	2	-	-	90.33	-	-	43	44	< 0.1	0.5	1	-	-	1	-	-	2	2	-	81.75	82.33	-	153	196	< 0.1	2.4	1	1	-	1	1	-
Marnebulorgne Community N Point - Augereau Island (B)	23	20	1	48.54	50.54	91.92	299	2,059	3.1	64.3	3.5	3	3	4	4	3	22	18	1	49.63	50.08	91.88	265	1,863	2.5	50.1	3.2	3	1	4	4	1
Augereau Island - Cape Londonderry	8	1	-	70.25	97.58	-	66	117	0.1	3.4	2.3	2	-	4	2	-	9	-	-	71.42	-	-	49	98	< 0.1	2.4	1.6	-	-	3	-	-
Ashmore Reef	12	3	-	63.13	63.54	-	65	416	0.7	22.2	5.9	7.7	-	18.1	11.1	-	10	3	-	63.54	64	-	66	207	0.7	18.2	7.1	7.4	-	18.1	8	-
Seringapatam Reef	12	7	-	62.13	63.5	-	90	611	1.7	47.6	9.1	6.2	-	25.1	14.1	-	11	5	-	63.25	63.58	-	94	534	1.6	47.5	8.8	8.2	-	23.1	15.1	-
Red Bluff - Chimney Rocks (B)	1	-	-	95.33	-	-	39	39	< 0.1	0.5	1	-	-	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Table 10.7 Summary of oil accumulation on individual shoreline receptors for the unmitigated and mitigated cases. Results are based on a 786,858 m³ surface release of crude oil over 77 days, tracked for 98 days, during transitional conditions. The results were calculated from 100 spill trajectories.

							l	Unmitigate	ed															Mitigat	ted							
Shoreline sector		num pro oreline l (%)	_		num time line accum (days)		sho	ad on reline /m²)	Volum shore (m	eline		an lengt shorelin	е		imum len eline con (km)	J		um prok preline lo (%)			um time shorelin nulation	е	Load shore (g/n	eline	Volur shor (m	eline		an length line cont (km)			mum len eline con (km)	_
	Low	Mod.	High	Low	Mod.	High	Mean	Peak	Mean	Peak	Low	Mod.	High	Low	Mod.	High	Low	Mod.	High	Low	Mod.	High	Mean	Peak	Mean	Peak	Low	Mod.	High	Low	Mod.	High
Adele Island	6	3	-	75.29	84.38	-	172	538	0.3	10	2	2.3	-	3	3	-	7	4	-	64.63	64.71	-	141	462	0.3	9.3	1.9	2.5	-	3	3	-
Ashmore Reef	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Bathurst Island	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Broome	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	-	-	59.04	-	-	56	56	< 0.1	0.7	1	-	-	1	-	-
Browse Island	38	27	7	40.58	47.33	59.71	303	2,053	5.1	57.2	2.8	2.8	1.9	4	4	3	38	23	7	30.88	31.42	59.04	268	1,987	4.4	53.2	2.7	2.8	1.3	4	4	2
Cartier Island	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Clump Island	41	32	-	10.29	24.21	-	171	790	2.8	22.5	3.2	2.1	-	8	5	-	41	30	1	17.71	20.92	92.83	160	1,300	2.6	29.7	2.9	2.1	1	6	4	1
Cox-Finniss	1	1	-	94.63	96.71	-	135	273	< 0.1	5	3	1	-	3	1	-	1	1	-	95.79	96.83	-	86	136	< 0.1	4.2	4	1	-	4	1	-
Daly	9	1	-	63.5	93.17	-	56	209	0.1	4.9	1.6	1	-	5	1	-	10	3	-	61.08	76.21	-	62	122	0.2	3.4	2.1	1	-	4	1	-
Darwin	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Derby - West Kimberely	2	-	-	54.75	-	-	50	58	< 0.1	1.1	1.5	-	-	2	-	-	3	-	-	55.58	-	-	66	82	< 0.1	1	1	-	-	1	-	-
Dorcherty Island	21	13	2	22.96	25.21	72.08	187	1,061	2.4	23.3	4.5	3.9	1	7	6	1	20	14	1	24.21	30.42	68.83	196	1,130	2.4	23.6	4.5	4.1	1	8	6	1
Hibernia Reef	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Litchfield	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Melville Island	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_	-
Minjilang	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_	-
New Year Island	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Oxley Island	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Peron Island North	2	2	-	92.08	92.54	-	160	496	0.2	17.6	5	3	-	6	5	-	2	2	-	92.04	92.54	-	219	627	0.3	22.2	4	4	-	6	6	-
Peron Island South	1	-	-	93.17	-	-	73	73	< 0.1	0.9	1	-	-	1	-	-	2	1	-	92.63	92.67	-	145	340	< 0.1	8.3	2	2	-	3	2	-
Quoin Island	42	40	1	18.38	19.92	86.04	148	1,067	6.3	45.1	8.4	4.6	1	16.1	10.1	1	43	41	-	16.21	17.75	-	147	979	6.6	42.4	8.4	4.6	-	18.1	11.1	-
Sandy Islet	1	-	-	66.88	-	-	51	51	< 0.1	0.6	1	-	-	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Scott Reef North	1	-	-	66.25	-	-	52	52	< 0.1	1.3	2	-	-	2	-	-	4	-	-	46.21	-	-	49	64	< 0.1	1.3	1.3	-	-	2	-	-
Scott Reef South	3	2	-	43.33	44.42	-	59	130	< 0.1	4.8	4.4	1	-	6	1	-	3	1	-	43.5	45.42	-	58	129	< 0.1	4.5	3	1	-	5	1	-
Seringapatam Reef	4	1	-	68.63	94.21	-	51	156	< 0.1	3.4	3	1	-	6	1	-	4	1	-	67.25	89.13	-	49	123	< 0.1	4.2	3.3	1	-	6	1	-
South Alligator	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Thamarrurr	45	41	21	15.67	22.79	29.75	222	4,062	28.1	164.9	21.5	13.6	2	47.2	27.1	4	45	40	20	17.54	21.67	29.33	211	3,445	26.2	150.4	21.4	13.7	1.9	48.3	27.1	4
Turtle Point	31	24	-	22.75	24.63	-	142	745	2.2	20.1	3.7	2.8	-	7	6	-	33	25	-	16.67	24.71	-	143	658	2.3	24.1	3.6	2.7	-	8	5	-
Vernon Islands	1	1	-	97.13	97.5	-	117	191	< 0.1	7.2	5	3	-	5	3	-	1	1	-	96.79	97.25	-	131	196	< 0.1	8.1	5	3	-	5	3	-
Victoria Daly	48	40	14	12.33	15.79	26.25	197	6,068	32.2	228.8	24.3	15	3.1	49.3	28.1	6	47	43	14	15.38	15.83	27.25	188	5,982	30.2	237.7	25.3	13.7	2.9	54.3	28.1	5
Whale Flat	36	29	-	26.88	30.83	-	146	697	2.5	22.8	3.7	2.3	-	6	5	-	39	32	-	20.21	31.33	-	130	750	2.4	28.9	3.8	2.5	-	8	5	-
Wyndham - East Kimberley	83	79	30	11.83	12.79	25.29	182	4,373	100.9	408.2	55.3	30.9	4.4	165.9	100.5	9	84	78	31	10.88	10.92	25.63	178	5,781	95.6	342.8	53	30.1	3.9	149.8	90.5	8

							ι	Jnmitigate	d															Mitigat	ed							
Shoreline sector		num prob oreline lo (%)			num time ine accum (days)		shoi	d on reline 'm²)	Volun shore (m	eline	S	an lengt shorelin tacted (е		imum len eline con (km)	•		um prob preline lo (%)		;	um time shorelin nulation	е	Load shore (g/m	line	Volun shore (m	eline		an length line cont (km)			mum ler eline cor (km)	_
	Low	Mod.	High	Low	Mod.	High	Mean	Peak	Mean	Peak	Low	Mod.	High	Low	Mod.	High	Low	Mod.	High	Low	Mod.	High	Mean	Peak	Mean	Peak	Low	Mod.	High	Low	Mod.	High
East Cape Domett - WA- NT Border (A)	34	23	7	24.92	30.29	72.21	194	2,333	8.2	105.5	7.1	6.7	1.9	16.1	13.1	3	35	24	7	28.13	34.25	72.17	168	2,143	7.5	91.8	7.5	6.2	1.9	16.1	14.1	2
East Cape Domett - WA- NT Border (B)	33	27	-	26.79	39.71	-	121	852	3	22.5	6.2	3.1	-	11.1	7	-	34	25	-	29.33	33.17	-	113	686	2.6	22.1	5.6	3.3	_	10.1	8	-
East Cape Domett - WA- NT Border (C)	42	33	2	11.83	12.79	51.54	117	1,588	6.2	63	10	5.5	1	33.2	20.1	1	42	33	3	10.88	10.92	53.5	122	1,411	6	58.5	9.5	5.4	1	34.2	17.1	1
Bare Hill - East Cape Domett (A)	13	2	-	36.04	83.71	-	67	200	0.2	3.7	1.4	1	-	3	1	-	17	4	-	25.75	38.33	-	77	229	0.3	4.5	1.5	1.5	-	3	2	-
Bare Hill - East Cape Domett (B)	33	18	-	23.79	35.04	-	94	530	1.8	14.9	4.8	2.3	-	17.1	5	-	34	21	-	16.58	32.04	-	86	645	1.6	16.3	4.4	2.2	-	13.1	6	-
Bare Hill - East Cape Domett (E)	38	30	-	17.29	17.29	-	123	729	3.6	24.2	6.4	3.4	-	14.1	9	-	36	28	-	16.92	21.13	-	120	591	3.2	23.9	6.1	3.7	-	12.1	8	-
Aunty Islet - Thurburn Bluff	48	38	1	16.25	17	88.88	157	1,880	7.1	73.3	6.7	4.7	2	17.1	13.1	2	48	32	1	16.42	19.21	89.83	139	1,178	5.6	60.1	6.1	4.5	1	17.1	11.1	1
Cape Bernier - Elsie Island N	42	37	11	16.96	21.21	31.71	225	3,488	13	97.9	9.8	6.7	1.1	24.1	18.1	2	40	32	10	17.17	20.08	31.04	213	5,781	12.2	129	9.4	6.7	1.3	24.1	17.1	3
Cape Rulhieres - Cape Bernier	37	26	-	18	26.33	-	142	954	5.4	33	8.1	5.6	-	21.1	10.1	-	36	24	2	14.17	23.54	48.83	145	1,343	5.8	40.9	8.5	6.3	1	21.1	9	1
Un-named Head - Cape Rulhieres (A)	37	29	20	14.67	15.25	25.29	405	4,373	20.4	177	8.2	7.2	3	15.1	12.1	6	39	29	18	13.75	18.5	25.63	370	3,595	19.3	168.7	8.1	7.6	2.9	17.1	14.1	6
Un-named Head - Cape Rulhieres (B)	33	25	-	18.08	21.25	-	154	926	6.2	51	9.1	6.8	-	20.1	14.1	-	32	26	-	16.25	23.5	-	158	985	5.7	44.4	8.6	6.3	-	19.1	13.1	-
Un-named Head - Cape Rulhieres (C)	45	42	11	12.38	21.79	31.96	245	2,199	9.7	78.3	6.2	4.2	1.4	14.1	10.1	2	41	38	12	19.96	21.71	35.08	251	2,410	9	61.7	6.4	4.4	1.3	13.1	10.1	2
Cape Talbot - Cape Londonderry (A)	29	19	-	21.67	35.13	-	109	522	1.4	13	3.8	2	-	11.1	4	-	32	21	-	20.08	36.08	-	107	348	1.4	15.7	3.5	2	-	11.1	6	-
Cape Talbot - Cape Londonderry (B)	9	7	-	39.54	46.13	-	116	214	0.3	6.3	2.8	1.9	-	6	3	-	7	3	-	44.75	55.71	-	78	189	0.2	5.5	2.4	1.3	-	6	2	-
Low Island Point - Anjo (A)	32	18	1	27.88	37.63	44.83	127	1,351	2.5	56.9	3.8	3.2	1	14.1	11.1	1	34	14	1	27.54	36.54	47.21	119	1,083	2.7	56	3.6	3.7	1	14.1	9	1
Low Island Point - Anjo (B)	23	8	-	37.17	42.13	-	80	256	0.6	9.7	2.4	1.9	-	7	3	-	21	12	-	32.29	39	-	95	285	0.6	6.7	2.2	1.3	_	4	2	-
Cape Bougainville - Low Island Point (A)	36	20	-	33.38	38.29	-	118	846	2.3	27	3.8	2.9	-	11.1	8	-	34	20	-	26.33	33.33	-	112	613	1.9	18.8	3.6	2.7	-	10.1	7	-

							ι	Jnmitigate	ed															Mitigat	ted							
Shoreline sector		num prol oreline lo (%)			num time l ine accum (days)		Loa shoi	d on reline m²)	Volun shore	eline	5	an lengt shorelin	е		imum ler eline cor (km)	_		num prok preline lo (%)			um time shorelin nulation	е	Load shore (g/n	l on eline	Volun shor (m	eline		an length line cont (km)			mum len line con (km)	_
	Low	Mod.	High	Low	Mod.	High	Mean	Peak		Peak		Mod.		Low	Mod.	High	Low	Mod.	High	Low	Mod.	High	Mean	Peak		Peak	Low		High	Low		High
Cape Bougainville - Low Island Point (B)	1	-	-	84.63	-	-	55	55	< 0.1	0.7	1	-	-	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Cape Bougainville - Low Island Point (C)	20	12	-	39.29	56.42	-	83	249	0.5	5.4	2.8	1.1	-	6	2	-	24	13	-	41.25	48.08	-	91	364	0.6	5.2	2.3	1	-	5	1	-
Cape Bougainville - Low Island Point (D)	34	28	1	33.58	35.83	54.04	251	1,507	5.6	50.5	4.5	3.8	1	9	6	1	39	29	5	26.5	28.04	37.17	223	1,401	5.7	45.4	4.3	3.6	1	10.1	7	1
Crystal Head - Cape Bougainville	1	-	-	65.21	-	-	53	53	< 0.1	0.6	1	-	-	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Davidsons Point - Crystal Head (A)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_
Davidsons Point - Crystal Head (C)	13	4	-	41.63	49.75	-	72	193	0.3	6.4	2.2	1.8	-	7	3	-	15	7	-	42.13	42.33	-	90	386	0.4	7.1	2.1	1.6	-	5	3	-
Davidsons Point - Crystal Head (D)	39	30	4	32.67	36.38	54.71	183	2,969	4.8	85.3	3.7	2.9	2.3	11.1	9	3	41	27	4	32.83	35.88	55.21	160	2,675	4.6	80.6	3.7	2.8	2	12.1	11.1	3
Swift Bay - Davidsons Point (A)	2	-	-	68.96	-	-	56	61	< 0.1	0.8	1	-	-	1	-	-	4	-	-	55.79	-	-	58	64	< 0.1	1.3	1.3	-	-	2	-	-
Swift Bay - Davidsons Point (B)	5	2	-	62.63	63.17	-	97	179	< 0.1	3.7	1.2	1.5	-	2	2	-	4	3	-	61.96	68	-	84	123	< 0.1	3.7	1.8	1.3	-	3	2	-
Augereau Island - Combe Hill Point (A)	16	5	-	46.96	55.83	-	85	412	1.4	35.5	5.3	9	-	18.1	12.1	-	10	4	-	50	54.25	-	101	530	1.2	34.7	6.8	10.3	-	16.1	11.1	-
Augereau Island - Combe Hill Point (B)	5	4	-	53.13	53.17	-	108	190	< 0.1	3.1	1.2	1	-	2	1	-	4	4	-	53.33	54.04	-	157	201	< 0.1	2.5	1	1	-	1	1	-
Augereau Island - Combe Hill Point (C)	4	1	-	57.88	62	-	86	178	< 0.1	2.2	1	1	-	1	1	-	6	1	-	60.08	62.67	-	66	121	< 0.1	1.5	1	1	-	1	1	-
Cape Wellington - Cape Torrens (A)	7	4	-	59.63	69.04	-	82	222	0.1	4.7	2	1.3	-	3	2	-	6	4	-	61.29	61.58	-	75	181	0.1	3.3	2.3	1	-	4	1	-
Battery Point - High Bluff (A)	1	-	-	87.79	-	-	43	43	< 0.1	0.5	1	-	-	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
High Bluff - Cape Wellington (B)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	-	-	87.67	-	-	42	42	< 0.1	0.5	1	-	-	1	-	-

							ι	Jnmitigate	ed															Mitigat	ted							
Shoreline sector		um prol preline lo (%)			num time ine accum		Loa shor	d on reline (m²)	Volun shore (m	eline	5	an lengt shorelin	е		imum ler eline cor (km)	_		num prol oreline lo (%)		:	um time shorelin nulation	е	Load shore (g/n	on line	Volur shor (m	eline		an length line cont (km)			mum ler eline cor (km)	_
	Low	Mod.	High	Low	Mod.	High	Mean	Peak				Mod.		Low	Mod.	High	Low	Mod.	High	Low	Mod.	High	Mean	Peak		Peak	Low		High	Low	Mod.	High
Point Usborne - Sir Richard Island (B)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	-	-	55.58	-	-	58	58	< 0.1	0.7	1	-	-	1	-	-
Raft Point - Un-named Promontory (A)	1	-	-	91.29	-	-	41	41	< 0.1	0.5	1	-	-	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Nares Point - Un-named Peninsular (B)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Packer Island - Swan Island (A)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	-	-	59.04	-	-	56	56	< 0.1	0.7	1	-	-	1	-	-
Davidsons Point - Cape Bougainville (A)	45	42	2	21.67	23.67	79.46	435	1,138	2.4	14	1	1	1	1	1	1	44	39	1	20.67	23.17	90.54	396	1,092	2.1	13.4	1	1	1	1	1	1
Davidsons Point - Cape Bougainville (C)	46	41	7	14.92	15	47.04	430	1,969	7	51.1	2.7	2.7	2	3	3	3	49	42	7	11.75	15.21	47.21	417	2,062	7.1	57.3	2.6	2.7	1.3	3	3	2
Davidsons Point - Cape Bougainville (D)	46	41	7	12.88	15.46	43.67	366	2,263	7	65.6	3.1	2.8	2.3	4	4	3	46	41	6	13.29	15.71	39.33	378	2,316	7.5	70.7	3.2	2.9	2.2	4	4	3
Augereau Island - Combe Hill Point (D)	36	28	2	35.33	35.38	58.75	170	1,283	5.7	63	6.4	5.8	1	13.1	13.1	1	39	27	3	36.38	36.38	58.21	155	1,699	5.5	69.1	6.1	5.8	1.3	13.1	12.1	2
Augereau Island - Davidsons Point	32	24	-	38.58	42.63	-	138	875	4.3	40.7	6.8	5.4	-	15.1	11.1	-	31	25	-	26.46	43.54	-	137	701	4	34.9	7	5.1	-	13.1	10.1	-
Cape Wellington - Cape Torrens (C)	15	7	-	61.08	70.46	-	72	192	0.5	6.7	4.2	2	-	8	3	-	16	9	-	55.13	68.13	-	69	290	0.5	7.5	3.8	1.2	-	9	2	-
Battery Point - High Bluff ©	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2	-	-	89.21	-	-	41	42	< 0.1	1	1.5	-	-	2	-	
Marnebulorgne Community N Point - Battery Point (A)	3	-	-	83.5	-	-	44	46	< 0.1	0.6	1	-	-	1	-	-	2	-	-	88.42	-	-	51	58	< 0.1	0.7	1	-	-	1	-	-
Marnebulorgne Community N Point - Battery Point (B)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	-	-	55.21	-	-	61	61	< 0.1	0.7	1	-	-	1	-	-
Point Usborne																																
- Marnebulorgne Community N Point	6	3	-	75.29	84.38	-	172	538	0.3	10	2	2.3	-	3	3	-	7	4	-	64.63	64.71	-	141	462	0.3	9.3	1.9	2.5	-	3	3	-

				Unmitigated											Mitigated Mitigated																	
Shoreline sector	Maximum probability of shoreline loading (%)			Minimum time before shoreline accumulation (days)			Load on shoreline (g/m²)		Volume on shoreline (m³)		S	Mean length of shoreline contacted (km)		Maximum length of shoreline contacted (km)			Maximum probability of shoreline loading (%)						Load on shoreline (g/m²)		Volume on shoreline (m³)		Mean length of shoreline contacted (km)				igth of itacted	
	Low	Mod.	High	Low	Mod.	High	Mean	Peak	Mean	Peak	Low	Mod.	High	Low	Mod.	High	Low	Mod.	High	Low	Mod.	High	Mean	Peak	Mean	Peak	Low	Mod.	High	Low	Mod.	High
Point Usborne - Nares Point (A)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Point Usborne - Nares Point (B)	2	-	-	54.75	-	-	50	58	< 0.1	1.1	1.5	-	-	2	-	-	2	-	-	61.29	-	-	69	82	< 0.1	1	1	-	-	1	-	-
Marnebulorgne Community N Point - Augereau Island (B)	38	27	7	40.58	47.33	59.71	303	2,053	5.1	57.2	2.8	2.8	1.9	4	4	3	38	23	7	30.88	31.42	59.04	268	1,987	4.4	53.2	2.7	2.8	1.3	4	4	2
Augereau Island - Cape Londonderry	4	1	-	68.63	94.21	-	51	156	< 0.1	3.4	3	1	-	6	1	-	4	1	-	67.25	89.13	-	49	123	< 0.1	4.2	3.3	1	-	6	1	-
Ashmore Reef	2	-	-	49.5	-	-	57	61	< 0.1	2.5	2.5	-	-	4	-	-	5	-	-	46.21	-	-	48	64	< 0.1	1.9	1.6	-	-	3	-	-
Seringapatam Reef	3	2	-	43.33	44.42	-	60	130	< 0.1	4.1	3.7	1	-	5	1	-	2	1	-	43.5	45.42	-	65	129	< 0.1	3.7	3	1	-	4	1	-
Red Bluff - Chimney Rocks (B)	1	-	-	73.92	-	-	48	48	< 0.1	0.6	1	-	-	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Table 10.8 Summary of oil accumulation on individual shoreline receptors for the unmitigated and mitigated cases. Results are based on a 786,858 m³ surface release of crude oil over 77 days, tracked for 98 days, during winter conditions. The results were calculated from 100 spill trajectories.

Shoreline sector							ι	Jnmitigate	ed																							
		num probability preline loading (%)		Minimum time before shoreline accumulation (days)			Load on shoreline (g/m²)		Volun shore (m	eline		an lengt shorelin itacted (е		imum len eline con (km)	·		Maximum probability of shoreline loading (%)			Minimum time before shoreline accumulation (days)			l on eline n²)	Volur shor (n	eline	Mean length of shoreline contacted (km)			Maximum le shoreline co (km)		•
	Low	Mod.	High	Low	Mod.	High	Mean	Peak	Mean	Peak	Low	Mod.	High	Low	Mod.	High	Low	Mod.	High	Low	Mod.	High	Mean	Peak	Mean	Peak	Low	Mod.	High	Low	Mod.	High
Adele Island	2	2	-	69.29	70.08	-	231	461	0.1	7.6	2.5	1.5	-	3	2	-	2	2	-	68.83	69.5	-	315	668	0.2	11.3	3	3	-	3	3	-
Ashmore Reef	7	3	-	69.75	80.88	-	55	225	0.3	14.4	6.6	2	-	19.1	3	-	8	2	-	62.13	81.46	-	56	134	0.4	12.9	6.4	1	-	17.1	1	-
Bathurst Island	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Broome	1	-	-	88.83	-	-	41	41	< 0.1	0.5	1	-	-	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Browse Island	22	11	-	37.04	37.92	-	114	444	8.0	14.3	2.1	2.6	-	4	4	-	24	10	-	33.71	35.17	-	111	447	8.0	14.7	2.1	2.4	-	4	4	-
Cartier Island	11	5	-	66.08	67.13	-	73	277	0.4	11.2	3.4	2.2	-	9	3	-	9	4	-	65.79	66	-	76	257	0.4	11.8	4.4	2.5	-	8	4	-
Clump Island	41	31	-	27.54	36.63	-	134	693	1.7	16.9	2.3	1.6	-	5	4	-	39	27	-	27	36.04	-	135	473	1.5	13.3	2.2	1.6	-	5	3	-
Cox-Finniss	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Daly	8	3	-	53	71	-	85	286	0.2	7	1.9	1.3	-	5	2	-	7	2	-	47.96	79.63	-	87	202	0.1	2.5	1.6	1	-	3	1	-
Darwin	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Derby - West Kimberely	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	-	-	89	-	-	81	81	< 0.1	1	1	-	-	1	-	-
Dorcherty Island	26	19	-	38.54	39.54	-	138	936	1.3	22.5	2.7	1.8	-	6	6	-	25	16	-	42.25	42.25	-	121	890	1.1	19.4	2.7	1.4	-	7	3	-
Hibernia Reef	6	3	-	70.63	87.29	-	61	281	0.2	7.8	4.4	1	-	8	1	-	4	2	-	85.04	87.88	-	64	200	0.2	10.9	6	2.5	-	11.1	3	-
Litchfield	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Melville Island	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Minjilang	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
New Year Island	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Oxley Island	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_	-
Peron Island North	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Peron Island South	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Quoin Island	50	43	1	28	31.63	76.17	131	1,232	6.2	38.2	7.3	4.1	1	15.1	11.1	1	49	37	-	25.96	25.96	-	131	990	6	36.2	7.1	4.6	-	15.1	11.1	-
Sandy Islet	1	-	-	92	-	-	48	48	< 0.1	0.6	1	-	-	1	-	-	4	-	-	74.83	-	-	49	51	< 0.1	1.1	1.3	-	-	2	-	-
Scott Reef North	5	-	-	63.79	-	-	43	53	< 0.1	2	2.2	-	-	4	-	-	6	-	-	61.96	-	-	47	54	< 0.1	1.5	1.5	-	-	3	-	-
Scott Reef South	7	-	-	74.75	-	-	53	99	< 0.1	3.5	2.2	-	-	6	-	-	7	-	-	64.13	-	-	45	86	< 0.1	3	2.6	-	-	5	-	-
Seringapatam Reef	2	-	-	56.54	-	-	54	57	< 0.1	0.7	1	-	-	1	-	-	6	-	-	53.75	-	-	53	85	< 0.1	2.1	1.8	-	-	3	-	-
South Alligator	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Thamarrurr	41	35	16	31.17	37.17	56.08	178	3,959	16.9	155.6	16.8	11.2	1.3	46.2	30.2	3	41	35	14	33.04	41.25	56.54	184	3,436	16.3	142.3	16.6	11.3	1.2	43.2	29.2	3
Turtle Point	48	38	-	13.92	14.96	-	140	666	3.2	23.8	3.8	2.7	-	7	5	-	48	35	-	14.38	14.46	-	123	537	2.9	18.3	3.8	2.4	-	8	5	-
Vernon Islands	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Victoria Daly	58	54	17	13.96	14.5	49.88	181	3,492	29.7	160.7	21.5	11.8	2.4	53.3	29.2	4	59	49	14	14.5	15.5	50.83	165	3,253	27	151.8	20.8	11.9	2.3	50.3	25.1	4
Whale Flat	32	18	-	38.58		-	93	359		11.1			_	7	3	-	30	15	-		38.25	-	86	312	1			1.7	-	6	5	-

							Unmitigated																	Mitigated								
Shoreline sector		num prob preline lo (%)					Load on shoreline (g/m²)		Volum shore (m	eline	5	n lengt horeline tacted (е		mum leng eline cont (km)	_		um prob reline lo (%)	•		um time shorelin nulation	е	Load shore (g/n	line	Volun shore (m	eline		an length line cont (km)			num len line con (km)	_
	Low	Mod.	High	Low	Mod.	High	Mean	Peak	Mean	Peak	Low	Mod.	High	Low	Mod.	High	Low	Mod.	High	Low	Mod.	High	Mean	Peak	Mean	Peak	Low	Mod.	High	Low	Mod.	High
Wyndham - East Kimberley	99	93	23	11.25	12.54	27.88	131	2,206	88.1	406.7	58.1	25.9	2.6	164.9	93.5	8	99	94	25	10.5	11.67	30.54	130	2,501	85.1	362.0	56.7	24.7	2.5	146.8	79.4	7
East Cape Domett - WA- NT Border (A)	49	20	-	20.83	30.17	-	79	407	1.7	14.3	3.3	2.2	-	11.1	6	-	43	23	-	31.21	44.75	-	83	508	1.6	17.2	3.6	2	-	10.1	6	-
East Cape Domett - WA- NT Border (B)	38	15	-	33.71	50.46	-	89	494	1.1	14.8	2.4	1.9	-	8	4	-	42	16	-	32.17	59.33	-	82	466	1.2	13.3	2.6	1.6	-	8	4	-
East Cape Domett - WA- NT Border (C)	52	35	1	15.71	26.92	90.67	97	1,008	4.9	47.1	7.8	3.9	1	25.1	11.1	1	56	31	-	20.33	32.92	-	94	864	4.3	43.8	6.4	4	-	20.1	14.1	-
Bare Hill - East Cape Domett (A)	21	7	-	44.29	74.38	-	85	179	0.3	4.4	1.5	1.3	-	3	2	-	21	6	-	39.83	42.42	-	79	199	0.3	3.3	1.6	1	-	3	1	-
Bare Hill - East Cape Domett (B)	48	22	-	34.83	39.96	-	84	732	2.4	19.1	4.4	2.1	-	14.1	5	-	41	26	-	34	41.96	-	96	846	2.3	24.8	4.3	2.3	-	12.1	6	-
Bare Hill - East Cape Domett (E)	60	43	-	17.08	26	-	123	803	6.8	40.2	6.8	5	-	15.1	11.1	-	61	43	-	19.04	24.17	-	120	955	6.3	47.6	6.6	4.5	-	16.1	11.1	-
Aunty Islet - Thurburn Bluff	63	46	4	14.29	15.33	42.5	155	1,497	10.2	79.1	7.1	5.6	1.5	17.1	13.1	2	65	44	6	14.5	15.29	44.46	148	1,505	9.5	76.5	6.6	5.2	1.2	15.1	12.1	2
Cape Bernier - Elsie Island N	84	68	15	11.71	12.54	27.88	184	2,206	25.1	183.8	10.7	7.7	2.3	25.1	21.1	6	84	67	17	11.63	12.79	30.54	178	2,501	25.1	180.8	10.8	7.7	2.1	26.1	20.1	6
Cape Rulhieres - Cape Bernier	80	54	-	11.25	12.58	-	104	870	10.9	55.7	10.1	5.4	-	23.1	13.1	-	81	58	-	10.5	11.67	-	108	876	10.8	55.7	9.9	5.3	-	23.1	15.1	-
Un-named Head - Cape Rulhieres (A)	84	72	9	12.17	14.83	39.46	170	1,344	13	57.9	6.5	4	1.1	13.1	10.1	2	85	67	7	12.04	14.13	44.33	159	1,303	12.3	55.2	6.7	4.1	1.1	14.1	9	2
Un-named Head - Cape Rulhieres (B)	75	49	-	12.54	16.83	-	96	453	4	28.7	4.9	2.2	-	19.1	10.1	-	77	45	-	14.42	16.13	-	89	508	3.9	30.5	4.7	2.4	-	15.1	9	-
Un-named Head - Cape Rulhieres (C)	76	54	3	15.17	16.08	31.5	124	1,477	4.9	44.2	4.4	2.4	1	20.1	7	1	81	55	5	15.71	19.5	31.83	115	1,736	4.7	35.9	4.1	2	1	20.1	6	1
Cape Talbot - Cape Londonderry (A)	35	4	-	16.71	44.75	-	63	144	0.5	5.2	1.7	1	-	5	1	-	32	3	-	20.5	31.21	-	64	130	0.3	2.5	1.3	1	-	3	1	-
Cape Talbot - Cape Londonderry (B)	6	-	-	53.5	-	-	58	66	< 0.1	1.6	1.3	-	-	2	-	-	6	1	-	39.21	54.58	-	66	131	< 0.1	1.6	1.2	1	-	2	1	_
Low Island Point - Anjo (A)	44	17	-	21.71	26.29	-	79	309	1.1	15.3	2.6	1.5	-	8	4		47	14	-	23.92	26.38	-	80	433	1	16	2.1	1.4	-	6	4	<u>-</u>
Low Island Point - Anjo (B)	28	4	-	23.83	37.38	-	69	143	0.4	3.9	1.6	1	-	5	1	-	22	4	-	22.42	29.92	-	77	150	0.3	5.3	1.5	1.5	-	4	2	-
Cape Bougainville -	39	7	-	26.67	30.92	-	76	445	0.9	19.2	1.9	2.9	-	10.1	6	-	32	8	-	30	30.38	-	76	685	0.7	15.4	1.9	2	-	9	4	-

							l	Jnmitigate	ed															Mitiga	ted							
Shoreline sector		num prol preline lo (%)	_		num time I ine accum (days)		Loa shor	d on reline (m²)	Volun shore	eline	S	n lengt horelin tacted (е		mum len eline con (km)	_		um prob reline lo (%)		:	um time shorelin nulation	е	Load shore (g/n	l on eline	Volur shor (m	eline		an length line cont (km)			mum ler eline cor (km)	_
	Low	Mod.	High	Low	Mod.	High	Mean	Peak				Mod.		Low	Mod.	High	Low	Mod.	High			` •	Mean	Peak		Peak	Low	Mod.	High	Low	Mod.	High
Low Island Point (A)																																
Cape Bougainville - Low Island Point (B)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Cape Bougainville - Low Island Point (C)	24	4	-	31	48.5	-	69	253	0.4	6.4	1.8	1.3	-	5	2	-	24	1	-	34.63	57.46	-	64	196	0.3	5.7	1.4	2	-	4	2	-
Cape Bougainville - Low Island Point (D)	61	16	-	23.33	30.17	-	75	694	1.5	24.3	2.3	1.4	-	8	5	-	52	23	-	31.5	31.63	-	81	537	1.4	20.5	2.6	1.5	-	9	5	-
Crystal Head - Cape Bougainville	12	2	-	52.21	68.17	-	62	153	0.1	3.1	1.5	1.5	-	3	2	-	12	1	-	63.96	70	-	53	103	0.1	1.8	1.4	1	-	2	1	-
Davidsons Point - Crystal Head (A)	3	-	-	74.83	-	-	58	89	< 0.1	1.1	1	-	-	1	-	-	4	-	-	88.38	-	-	48	53	< 0.1	0.7	1	-	-	1	-	-
Davidsons Point - Crystal Head (C)	13	1	-	39.92	44.88	-	60	134	0.2	3.2	1.7	1	-	4	1	-	25	5	-	36.96	44.17	-	68	195	0.3	6.3	1.5	1.4	-	4	3	-
Davidsons Point - Crystal Head (D)	47	21	2	28.54	33.75	42.54	100	1,983	2	50.4	2.5	1.8	1	11.1	8	1	43	18	2	33.79	34.71	38.25	100	2,547	1.8	54.2	2.3	1.7	1	10.1	6	1
Swift Bay - Davidsons Point (A)	8	3	-	48.33	51.83	-	69	119	0.1	4.4	1.6	1.7	-	4	3	-	7	2	-	49.21	73.46	-	62	112	0.1	3.3	2.2	1	-	4	1	-
Swift Bay - Davidsons Point (B)	7	3	-	46.42	47.79	-	75	169	< 0.1	2.6	1.6	1	-	2	1	-	6	-	-	43.79	-	-	56	99	< 0.1	2.7	2.5	-	-	4	-	-
Augereau Island - Combe Hill Point (A)	15	2	-	35.38	39.08	-	70	416	0.6	24.2	2.7	7	-	13.1	9	-	11	3	-	34.21	39.96	-	77	462	0.5	23.3	3.3	5.7	-	13.1	10.1	-
Augereau Island - Combe Hill Point (B)	4	1	-	43.92	50.46	-	95	173	< 0.1	2.1	1.3	1	-	2	1	-	3	1	-	42.92	43.04	-	177	430	< 0.1	5.3	1.3	1	-	2	1	-
Augereau Island - Combe Hill Point (C)	2	-	-	44.46	-	-	53	64	< 0.1	1.4	1.5	-	-	2	-	-	1	-	-	54.33	-	-	59	59	< 0.1	0.7	1	-	-	1	-	-
Cape Wellington - Cape Torrens (A)	3	1	-	49.96	61.92	-	63	113	< 0.1	2	1.3	1	-	2	1	-	3	1	-	46.5	47.04	-	81	162	< 0.1	3.3	1.3	2	-	2	2	-
Battery Point - High Bluff (A)	-	-	-	_	-	_	_	-	_	_	_	-	-	-	-	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
High Bluff - Cape Wellington (B)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_

							ι	Jnmitigate	ed															Mitigat	ted							
Shoreline sector		num pro preline le (%)			num time ine accum (days)		Loa shor	d on reline (m²)	Volun shore (m	eline	5	an lengt shorelin stacted (е		imum ler eline cor (km)	_		num prok preline lo (%)	•		um time shorelin nulation	е	Load shore (g/n	line	Volur shor (n	eline		an length line cont (km)			mum ler eline cor (km)	
	Low	Mod.	High	Low	Mod.	High	Mean	Peak			Low	Mod.	High	Low	Mod.	High	Low	Mod.	High	Low	Mod.	High	Mean	Peak		Peak	Low	Mod.	High	Low	Mod.	High
Point Usborne - Sir Richard Island (B)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Raft Point - Un-named Promontory (A)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Nares Point - Un-named Peninsular (B)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Packer Island - Swan Island (A)	1	-	-	88.83	-	-	41	41	< 0.1	0.5	1	-	-	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Davidsons Point - Cape Bougainville (A)	50	34	-	22.21	28.04	-	201	878	1.2	10.8	1	1	-	1	1	-	52	38	1	21.13	22.46	64.88	238	1,042	1.5	12.9	1	1	1	1	1	1
Davidsons Point - Cape Bougainville (C)	64	44	2	21.33	27.08	66.83	191	1,450	3.7	46.7	2.2	1.9	1.5	3	3	2	68	46	3	23.83	29.04	65.38	177	1,891	3.7	44.7	2.2	1.8	1.3	3	3	2
Davidsons Point - Cape Bougainville (D)	60	37	1	24.29	24.38	79.38	132	1,164	2.6	36.4	2.3	1.9	2	4	3	2	62	36	2	22.71	24.29	71.54	146	1,397	2.8	34.6	2.3	2	1	4	4	1
Augereau Island - Combe Hill Point (D)	43	25	2	28.21	35.08	41.46	96	1,580	2.3	55.8	3.5	2.4	1	12.1	11.1	1	43	23	-	27	32.54	-	99	802	2.3	53.5	3.6	2.5	-	12.1	11.1	-
Augereau Island - Davidsons Point	35	13	-	31.08	32.54	-	81	550	1.3	27.8	2.9	3.2	-	13.1	11.1	-	33	12	-	31.67	32.42	-	82	607	1.3	32.9	2.9	2.9	-	13.1	9	-
Cape Wellington - Cape Torrens (C)	5	2	-	45.96	59.71	-	63	172	0.1	4.8	2.6	1	-	5	1	-	6	1	-	35.25	65.04	-	63	115	< 0.1	3	2	1	-	4	1	-
Battery Point - High Bluff ©	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Marnebulorgne Community N Point - Battery Point (A)	1	-	-	96.17	-	-	38	38	< 0.1	0.5	1	-	-	1	-	-	1	-	-	89.88	-	-	49	49	< 0.1	0.6	1	-	-	1	-	-
Marnebulorgne Community N Point - Battery Point (B)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Point Usborne																																
- Marnebulorgne Community N Point	2	2	-	69.29	70.08	-	231	461	0.1	7.6	2.5	1.5	-	3	2	-	2	2	-	68.83	69.5	-	315	668	0.2	11.3	3	3	-	3	3	-

							U	Inmitigat	ed															Mitiga	ted							
Shoreline sector		num prol oreline lo (%)	_		num time k ine accum (days)		Load shor (g/l	eline	Volun shore (m	eline	s	an lengt shorelin stacted	е		imum len eline con (km)	•		um prok reline lo (%)		s	um time shoreling sulation	е	Load shore (g/m	line	Volun shor (m	eline		an lengt line con (km)			mum ler eline cor (km)	_
	Low	Mod.	High	Low	Mod.	High	Mean	Peak	Mean	Peak	Low	Mod.	High	Low	Mod.	High	Low	Mod.	High	Low	Mod.	High	Mean	Peak	Mean	Peak	Low	Mod.	High	Low	Mod.	High
Point Usborne - Nares Point (A)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Point Usborne - Nares Point (B)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	-	-	89	-	-	81	81	< 0.1	1	1	-	-	1	-	-
Marnebulorgne Community N Point - Augereau Island (B)	22	11	-	37.04	37.92	-	114	444	0.8	14.3	2.1	2.6	-	4	4	-	24	10	-	33.71	35.17	-	111	447	0.8	14.7	2.1	2.4	-	4	4	-
Augereau Island - Cape Londonderry	2	-	-	56.54	-	-	54	57	< 0.1	0.7	1	-	-	1	-	-	6	-	-	53.75	-	-	53	85	< 0.1	2.1	1.8	-	-	3	-	-
Ashmore Reef	6	-	-	63.79	-	-	43	53	< 0.1	3	2.7	-	-	6	-	-	7	-	-	61.96	-	-	47	54	< 0.1	2.1	1.7	-	-	4	-	-
Seringapatam Reef	6	-	-	74.75	-	-	55	99	< 0.1	2.5	1.8	-	-	4	-	-	7	-	-	64.13	-	-	46	86	0.1	2.5	2.9	-	-	4	-	-
Red Bluff - Chimney Rocks (B)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

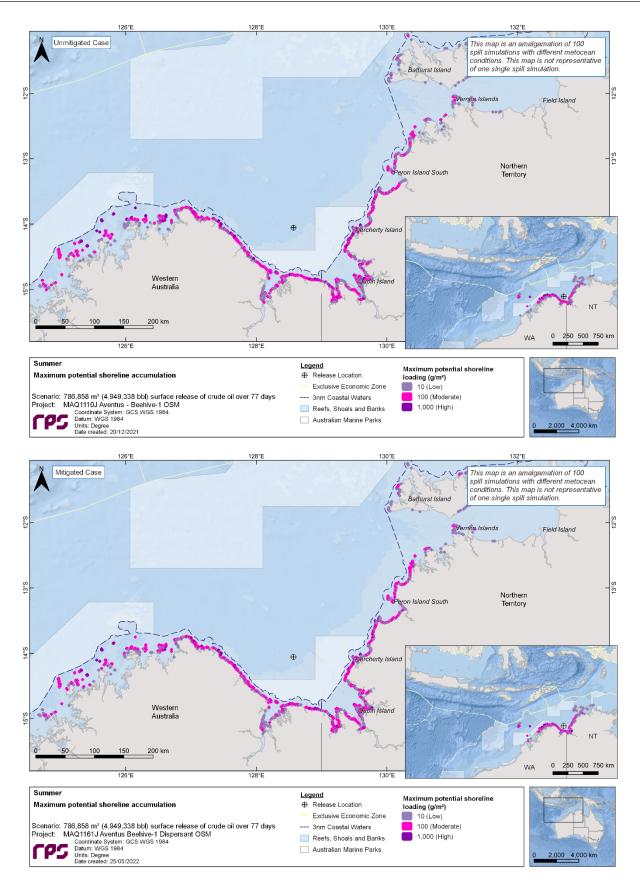


Figure 10.10 Maximum potential shoreline loading for the unmitigated (upper image) and mitigated (lower image) cases, in the event of a 786,858 m³ surface release of crude oil over 77 days, tracked for 98 days during summer conditions. The results were calculated from 100 spill trajectories.

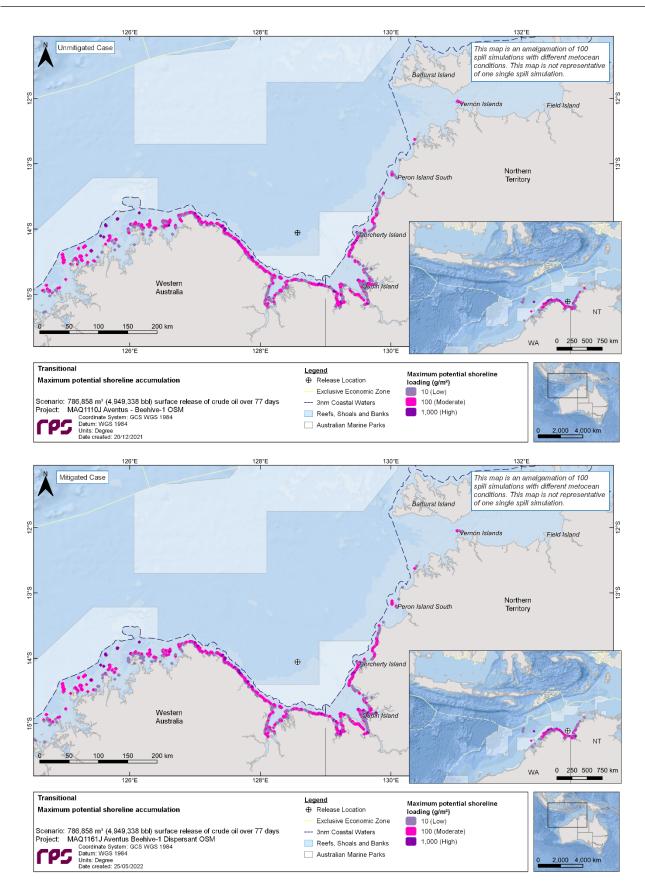


Figure 10.11 Maximum potential shoreline loading for the unmitigated (upper image) and mitigated (lower image) cases, in the event of a 786,858 m³ surface release of crude oil over 77 days, tracked for 98 days during transitional conditions. The results were calculated from 100 spill trajectories.

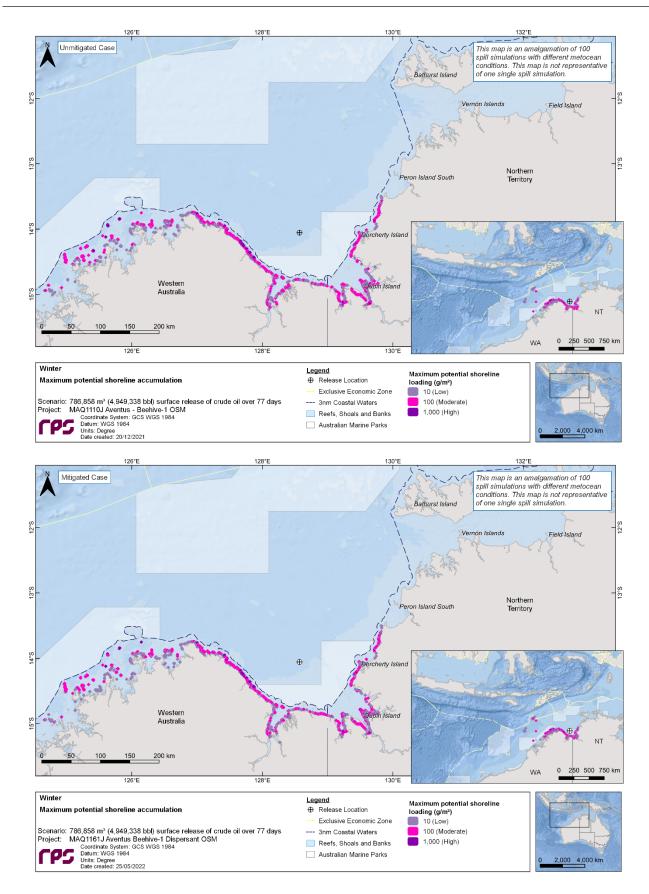


Figure 10.12 Maximum potential shoreline loading for the unmitigated (upper image) and mitigated (lower image) cases, in the event of a 786,858 m³ surface release of crude oil over 77 days, tracked for 98 days during winter conditions. The results were calculated from 100 spill trajectories.

10.1.3 In-water exposure

10.1.3.1 Dissolved Hydrocarbons

Table 10.9 to Table 10.11 summarises the probability of exposure to individual receptors from dissolved hydrocarbons in the 0-10 m depth layer during seasonal conditions for the unmitigated and mitigated cases.

For the unmitigated case, in the surface (0-10 m) depth layer, low, moderate and high exposure to dissolved hydrocarbons was recorded for a range of receptors. The highest dissolved hydrocarbon concentrations were predicted for the Joseph Bonaparte Gulf AMP and the Carbonate bank and terrace system of the Sahul Shelf KEF, followed by the North Kimberley MP and Kimberley AMP during all seasonal conditions. In addition, the nearshore waters of the Thamarrurr, Wyndham-East Kimberley, Dorcherty Island, Clump Island, Quoin Island, Daly, Victoria Daly shorelines and Ord River floodplain (Ramsar) were some of the receptors with the highest entrained hydrocarbons concentrations for all seasonal conditions.

Additionally, for the mitigated case for the surface depth layer the highest dissolved hydrocarbon concentrations were also predicted for the Joseph Bonaparte Gulf AMP and the Carbonate bank and terrace system of the Sahul Shelf KEF, the North Kimberley MP and the Kimberley AMP during the seasonal conditions. As well, the nearshore waters of the Thamarrurr, Wyndham-East Kimberley, Dorcherty Island, Clump Island Quoin, Island, Victoria Daly shorelines and were some of the receptors with the highest entrained hydrocarbons concentrations for all seasonal conditions, coinciding with the same predicted receptors for the unmitigated case.

Figure 10.13 to Figure 10.15 present sorted bar plots of the predicted area of the low, moderate and high zones of dissolved hydrocarbon exposure for the unmitigated and mitigated cases from 100 spill trajectories per season and case.

Figure 10.16 to Figure 10.18 presents the zones of potential dissolved hydrocarbon exposure in the 0-10 m depth layer for the low, moderate and high exposure levels for each season and case.

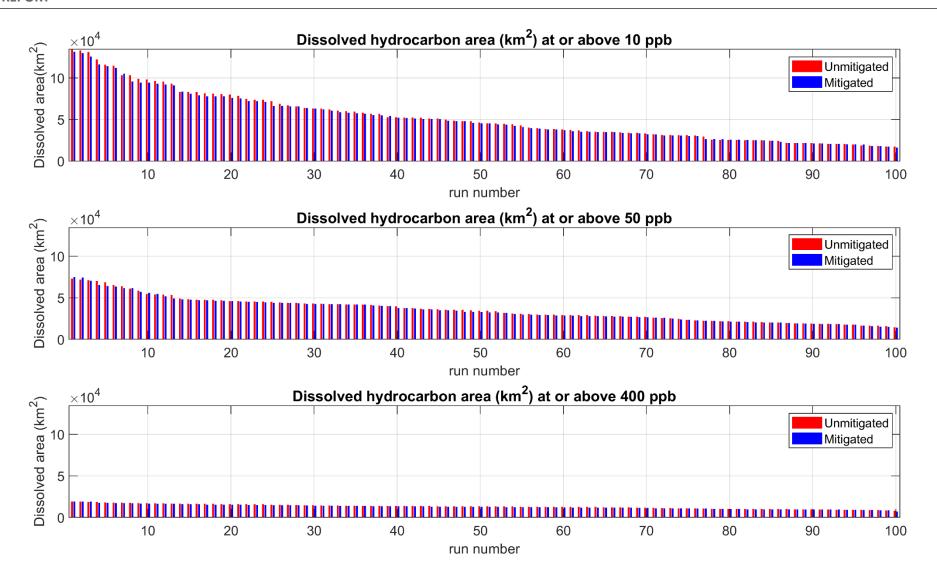


Figure 10.13 Sorted bar plots of the predicted area of the low, moderate and high zones of dissolved hydrocarbon exposure for the unmitigated (red) and mitigated (blue) cases, in the event of a 786,858 m³ of crude oil over 77 days, tracked for 98 days during summer conditions. The results from 100 spill trajectories are presented.

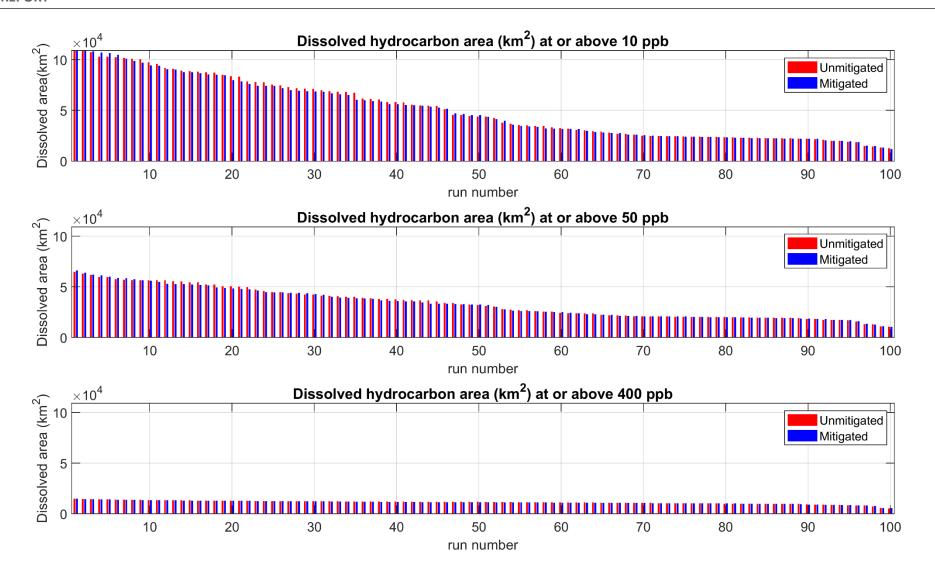


Figure 10.14 Sorted bar plots of the predicted area of the low, moderate and high zones of dissolved hydrocarbon exposure for the unmitigated (red) and mitigated (blue) cases, in the event of a 786,858 m³ of crude oil over 77 days, tracked for 98 days during transitional conditions. The results from 100 spill trajectories are presented.

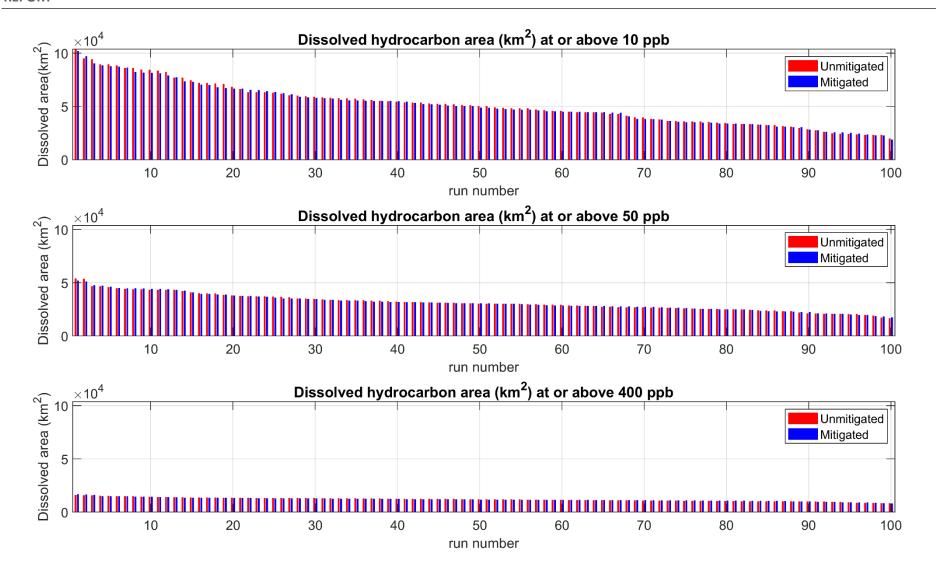


Figure 10.15 Sorted bar plots of the predicted area of the low, moderate and high zones of dissolved hydrocarbon exposure for the unmitigated (red) and mitigated (blue) cases, in the event of a 786,858 m³ of crude oil over 77 days, tracked for 98 days during winter conditions. The results from 100 spill trajectories are presented.

Table 10.9 Probability of exposure to individual receptors from dissolved hydrocarbons in the 0–10 m depth layer, for the unmitigated and mitigated cases. Results are based on a 786,858 m³ surface release of crude oil over 77 days, tracked for 98 days during summer conditions. The results were calculated from 100 spill trajectories per season.

			Unmitig	ated			Mitiga	ited	
Receptor		Maximum instantaneous dissolved		bility of instanted hydrocarbon		Maximum instantaneous dissolved		ability of instan	
		hydrocarbon exposure	Low	Moderate	High	hydrocarbon exposure	Low	Moderate	High
AMP	Arafura	19	1	-	-	35	2	-	-
	Argo-Rowley Terrace	59	3	1	-	73	2	1	-
	Ashmore Reef	-	-	-	-	-	-	-	-
	Cartier Island	-	-	-	-	-	-	-	-
	Joseph Bonaparte Gulf	9,955	100	97	89	12,018	99	96	91
	Kimberley	5,086	49	47	24	5,647	48	45	20
	Mermaid Reef	-	-	-	-	-	-	-	-
	Oceanic Shoals	570	15	12	1	762	16	12	2
EEZ	East Timorian	-	-	-	-	-	-	-	-
	Indonesian	32	1	-	-	26	1	-	-
KEF	Ancient coastline at 125 m depth contour	679	24	16	1	753	23	14	2
	Ashmore Reef and Cartier Island and surrounding Commonwealth waters	-	-	-	-	-	-	-	-
	Canyons linking the Argo Abyssal Plain with the Scott Plateau	-	-	-	-	-	-	-	-
	Carbonate bank and terrace system of the Sahul Shelf	5,161	92	85	63	6,449	91	84	60
	Carbonate bank and terrace system of the Van Diemen Rise	231	14	6	-	366	12	4	-
	Continental Slope Demersal Fish Communities	484	21	8	1	483	19	7	1
	Mermaid Reef and Commonwealth waters surrounding Rowley Shoals	-	-	-	-	-	-	-	-
	Pinnacles of the Bonaparte Basin	524	8	8	1	998	8	8	1

			Unmitig	jated			Mitiga	ited	
Receptor		Maximum instantaneous dissolved		ability of instant ed hydrocarbon		Maximum instantaneous dissolved		ability of instan ed hydrocarbor	
		hydrocarbon exposure	Low	Moderate	High	hydrocarbon exposure	Low	Moderate	High
	Seringapatam Reef and Commonwealth waters in the Scott Reef Complex	107	3	2	-	124	3	1	-
	Shelf break and slope of the Arafura Shelf	-	-	-	-	11	1	-	-
MP	Garig Gunak Barlu	24	1	-	-	-	-	-	-
	Lalang-garram / Camden Sound	89	6	1	-	66	6	2	-
	North Kimberley	4,874	68	55	33	6,449	70	57	34
	North Lalang-garram	353	9	6	-	173	9	5	-
	Rowley Shoals	-	-	-	-	-	-	-	-
NR	Scott Reef	107	3	1	-	63	3	1	-
Ramsar	Ashmore Reef National Nature Reserve	-	-	-	-	-	-	-	-
	Cobourg Peninsula	13	1	-	-	-	-	-	-
	Ord River Floodplain	774	33	18	1	554	31	18	1
RSB	Abbott Shoal	73	4	1	-	75	2	1	-
	Afghan Shoal	85	10	1	-	97	8	2	-
	Albert Reef	144	6	6	-	108	5	3	-
	Ann Shoals	10	1	-	-	-	-	-	-
	Baldwin Bank	418	26	15	1	457	23	14	1
	Barbara Shoal	61	2	1	-	15	1	-	-
	Barcoo Shoal	10	-	-	-	11	1	-	-
	Barracouta Shoal	-	-	-	-	-	-	-	-
	Bass Reef	1,109	15	10	4	707	15	11	1
	Bassett-Smith Shoal	491	29	18	1	616	28	18	1
	Beagle Shoals	129	5	2	-	97	3	1	-
	Beagle and Dingo Reefs	141	7	4	-	74	6	2	-

MAQ1161J | Beehive-1 – Exploration Drilling | Rev1 | 08 June 2022

Receptor		Maximum instantaneous dissolved		gated ability of instant ed hydrocarbon		Maximum instantaneous dissolved		ited ability of instan	
		hydrocarbon exposure	Low	Moderate	High	hydrocarbon exposure	Low	Moderate	High
	Bill Shoal	225	6	4	-	255	5	3	-
	Branch Banks	1,947	45	40	20	1,634	44	38	14
	Brue Reef	21	3	-	-	3	-	-	-
	Christine Reef					10	1	-	-
	Calder Shoal	26	2	-	-	-	-	-	-
	Churchill Reef	101	6	1	-	58	5	1	-
	Clerke Reef	-	-	-	-	-	-	-	-
	Cootamundra Shoal	14	2	-	-	-	-	-	-
	Deep Shoal 1	90	4	4	-	144	4	2	-
	Deep Shoal 2	72	4	1	-	65	4	1	-
	Draytons Reef	752	6	5	2	606	6	5	1
	East Holothuria Reef	1,979	43	38	16	2,854	40	36	14
	Echuca Shoal	564	24	15	1	385	23	14	-
	Elizabeth Reef	693	6	5	2	513	6	5	2
	Elphinstone Reef	12	2	-	-	13	1	-	-
	Emu Reefs	2,932	77	74	35	2,058	77	76	29
	Eugene McDermott Shoal	109	6	1	-	56	5	1	-
	Fantome Shoal	-	-	-	-	-	-	-	-
	Favell Bank	247	14	9	-	224	15	8	-
	Fish Reef	1,458	16	10	5	786	13	9	4
	Fitzpatrick Shoal	15	1	-	-	-	-	-	-
	Flat Top Bank	161	14	4	-	194	15	3	-
	Foelsche Bank	567	18	6	2	444	15	5	1
	Gale Bank	152	14	7	-	219	12	7	-
	Giles Shoal	14	1	-	-	11	1	-	-

Receptor		Maximum instantaneous dissolved		ated ability of instanted ad hydrocarbon		Maximum instantaneous dissolved		ted ability of instan ed hydrocarbor	
		hydrocarbon exposure	Low	Moderate	High	hydrocarbon exposure	Low	Moderate	High
Goe	eree Shoal	-	-	-	-	1	-	-	-
Goo	odrich Bank	64	3	1	-	28	3	-	-
Han	ncox Shoal	392	15	5	-	226	12	5	-
Harr	ris Reef	429	13	4	1	157	10	5	-
Heri	itage Reef	707	27	22	3	495	28	22	3
Hey	wood Shoal	74	9	1	-	99	8	2	-
Hink	kler Patches	13	2	-	-	19	1	-	-
Holo	othuria Banks	3,206	46	40	19	3,136	42	38	16
How	vland Shoals	2,331	75	72	27	1,417	76	71	32
Hun	it Patch	146	6	3	-	96	4	1	-
Impe	erieuse Reef	-	-	-	-	-	-	-	-
Ingra	am Reef	638	28	22	2	492	28	21	3
Jam	nieson Reef	927	31	25	5	875	32	24	3
Johr	nson Bank	-	-	-	-	-	-	-	-
Jone	es Bank	1,020	12	9	4	639	13	9	3
Kelle	eway Reef	467	9	6	3	356	9	7	-
Knig	ght Reef	719	12	5	1	302	10	5	-
Long	g Reef	1,863	42	33	19	1,639	41	31	13
Low	ry Shoal	98	13	3	-	165	11	4	-
Lyne	e Reef	533	14	6	2	416	14	6	1
Mari	rie Shoal	54	3	1	-	45	3	-	-
Mars	sh Shoal	504	16	7	3	396	14	6	-
Mata	aram Shoal	13	1	-	-	10	1	-	-
Mav	vis Reef	108	7	6	-	104	6	3	-
Merr	maid Reef	-	_	-	-	-	_	-	-

Receptor		Maximum instantaneous dissolved		gated ability of instant ed hydrocarbon		Maximum instantaneous dissolved		nted ability of instan ed hydrocarbor	
		hydrocarbon exposure	Low	Moderate	High	hydrocarbon exposure	Low	Moderate	High
	Mermaid Shoal	136	3	3	-	210	4	3	-
	Middle Reef	1,434	12	8	5	600	11	9	3
	Moira Reef	343	12	8	-	362	11	8	-
	Money Shoal					19	1	-	-
	Moresby Shoals	63	11	1	-	161	9	2	-
	Moss Shoal	51	3	1	-	29	3	-	-
	Newby Shoal	73	5	2	-	61	4	1	-
	Oliver Reef	380	16	5	-	193	11	5	-
	Oliver Rock	846	34	27	9	1,062	34	28	8
	Ommaney Shoals	12	1	-	-	16	1	-	-
	Osborn Reefs	46	7	-	-	51	8	1	-
	Otway Bank	1,577	43	38	17	1,339	42	37	15
	Parry Shoal	66	4	2	-	79	6	2	-
	Parsons Bank	17	3	-	-	38	3	-	-
	Penguin Shoal	703	31	24	3	679	26	21	2
	Rainbow Shoals	16	2	-	-	23	3	-	-
	Renard Shoals	84	1	1	-	11	1	-	-
	Robroy Reefs	561	24	21	3	573	23	18	1
	Rothery Reef	1,323	41	33	11	983	42	30	10
	Shepparton Shoal	218	15	9	-	195	16	6	-
	Skottowe Shoal	219	16	6	-	211	13	6	-
	Tait Bank	2,150	42	36	14	1,618	42	39	14
	Taiyun Shoal	147	8	4	-	213	4	3	-
	Taylor Patches	604	6	4	1	337	6	5	-
	The Boxers	13	1	-	-	-	-	-	-

			Unmitig	ated			Mitiga	ited	
Receptor		Maximum instantaneous dissolved		ibility of instant ed hydrocarbon		Maximum instantaneous dissolved		ability of instan	
		hydrocarbon exposure	Low	Moderate	High	hydrocarbon exposure	Low	Moderate	High
	Tregenna Reef	297	10	4	-	160	8	4	-
	Van Cloon Shoal	196	15	8	-	342	16	9	-
	Vee Shoal	-	-	-	-	-	-	-	-
	Victoria Shoal	13	1	-	-	11	1	-	-
	Vulcan Shoal	-	-	-	-	-	-	-	-
	Wells Shoal	17	2	-	-	-	-	-	-
	West Holothuria Reef	871	32	29	3	623	33	26	2
	Wildcat Reefs	19	5	-	-	28	4	-	-
	Woodbine Bank	-	-	-	-	-	-	-	-
Nearshore	Adele Island	82	6	1	-	56	5	1	-
Waters	Ashmore Reef	-	-	-	-	-	-	-	-
	Bathurst Island	88	6	2	-	120	6	2	-
	Browse Island	532	20	11	1	355	20	9	-
	Burford Island	15	1	-	-	-	-	-	-
	Cartier Island	-	-	-	-	-	-	-	-
	Clerke Reef	-	-	-	-	-	-	-	-
	Clump Island	2,404	54	43	18	2,205	57	44	18
	Cox-Finniss	1,025	38	20	5	995	38	20	4
	Cunningham Island	-	-	-	-	-	-	-	-
	Daly	1,186	57	43	5	1,143	58	40	6
	Darwin	497	12	5	1	436	13	5	1
	Dorcherty Island	1,916	74	64	30	2,794	74	62	32
	Hibernia Reef	-	-	-	-	-	-	-	-
	Imperieuse Reef	-	-	-	-	-	-	-	-
	Litchfield	685	13	6	2	547	14	5	1

			Unmitig	gated			Mitiga	ted	
Receptor		Maximum instantaneous dissolved		ability of instant ed hydrocarbon		Maximum instantaneous dissolved		ability of instan ed hydrocarbor	
		hydrocarbon exposure	Low	Moderate	High	hydrocarbon exposure	Low	Moderate	High
	Melville Island	124	7	2	-	141	8	3	-
	Mermaid Reef	-	-	-	-	-	-	-	-
	Peron Island North	769	41	33	4	747	42	34	2
	Peron Island South	338	38	16	-	255	38	20	-
	Quoin Island	2,806	56	42	16	1,859	58	42	15
	Sandy Islet	73	3	1	-	46	2	-	-
	Scott Reef North	72	3	2	-	92	3	1	-
	Scott Reef South	107	3	1	-	124	3	1	-
	Seringapatam Reef	4	-	-	-	2	-	-	-
	South Alligator	543	6	5	2	749	7	5	2
	Thamarrurr	2,327	74	63	34	2,947	76	61	30
	Turtle Point	1,226	61	50	10	1,395	67	50	9
	Vernon Islands	844	16	6	3	473	13	6	1
	Victoria Daly	2,472	59	49	19	2,244	63	51	19
	West Arnhem	18	1	-	-	-	-	-	-
	Whale Flat	1,003	58	48	8	1,111	56	52	6
	Wyndham - East Kimberley	4,819	61	49	27	3,454	58	49	23
State	Northern Territory	4,113	79	72	38	3,727	81	72	36
Waters	Western Australia	4,874	68	55	33	6,449	70	56	34

Table 10.10 Probability of exposure to individual receptors from dissolved hydrocarbons in the 0–10 m depth layer, for the unmitigated and mitigated cases. Results are based on a 786,858 m³ surface release of crude oil over 77 days, tracked for 98 days during transitional conditions. The results were calculated from 100 spill trajectories per season.

			Unmitig	ated			Mitiga	ted	
Receptor		Maximum instantaneous dissolved		ability of instant ed hydrocarbon		Maximum instantaneous dissolved		ability of instan ed hydrocarbor	
		hydrocarbon exposure	Low	Moderate	High	hydrocarbon exposure	Low	Moderate	High
AMP	Arafura	-	-	-	-	-	-	-	-
	Argo-Rowley Terrace	297	7	5	-	280	7	3	-
	Ashmore Reef	-	-	-	-	-	-	-	-
	Cartier Island	-	-	-	-	-	-	-	-
	Joseph Bonaparte Gulf	8,712	90	79	66	9,609	91	79	67
	Kimberley	3,271	62	58	20	3,494	62	59	20
	Mermaid Reef	195	3	2	-	105	2	1	-
	Oceanic Shoals	34	3	-	-	86	5	1	-
EEZ	East Timorian	-	-	-	-	-	-	-	-
	Indonesian	103	7	2	-	88	7	1	-
KEF	Ancient coastline at 125 m depth contour	1,479	45	29	2	834	45	29	4
	Ashmore Reef and Cartier Island and surrounding Commonwealth waters	-	-	-	-	-	-	-	-
	Canyons linking the Argo Abyssal Plain with the Scott Plateau	-	-	-	-	-	-	-	-
	Carbonate bank and terrace system of the Sahul Shelf	7,293	89	86	79	9,949	89	85	75
	Carbonate bank and terrace system of the Van Diemen Rise	-	-	-	-	-	-	-	-
	Continental Slope Demersal Fish Communities	562	28	16	1	401	28	15	1
	Mermaid Reef and Commonwealth waters surrounding Rowley Shoals	195	3	2	-	144	2	1	-
	Pinnacles of the Bonaparte Basin	335	7	5	-	151	8	4	-

Receptor		Maximum instantaneous dissolved		gated ability of instant ed hydrocarbon		Maximum instantaneous dissolved		nted ability of instan ed hydrocarbor	
		hydrocarbon exposure	Low	Moderate	High	hydrocarbon exposure	Low	Moderate	High
	Seringapatam Reef and Commonwealth waters in the Scott Reef Complex	18	1	-	-	24	2	-	-
	Shelf break and slope of the Arafura Shelf	-	-	-	-	-	-	-	-
MP	Garig Gunak Barlu	-	-	-	-				
	Lalang-garram / Camden Sound	127	9	2	-	113	9	3	-
	North Kimberley	6,842	85	78	44	5,747	83	76	44
	North Lalang-garram	260	18	8	-	176	19	8	-
	Rowley Shoals	23	3	-	-	133	1	1	-
NR	Scott Reef	8	-	-	-	8	-	-	-
Ramsar	Ashmore Reef National Nature Reserve	-	-	-	-	-	-	-	-
	Cobourg Peninsula	-	-	-	-	-	-	-	-
	Ord River Floodplain	1,000	36	25	5	1,064	33	28	2
RSB	Abbott Shoal	-	-	-	-	-	-	-	-
	Afghan Shoal	-	-	-	-	-	-	-	-
	Albert Reef	198	6	4	-	183	7	3	-
	Ann Shoals	-	-	-	-	-	-	-	-
	Baldwin Bank	188	10	4	-	236	13	5	-
	Barbara Shoal	-	-	-	-	-	-	-	-
	Barcoo Shoal	37	4	-	-	26	3	-	-
	Barracouta Shoal	-	-	-	-	-	-	-	-
	Bass Reef	809	2	2	1	426	2	2	1
	Bassett-Smith Shoal	877	34	23	6	1,242	31	23	6
	Beagle Shoals	-	-	-	-	-	-	-	-
	Beagle and Dingo Reefs	325	11	4	-	89	9	2	-

MAQ1161J | Beehive-1 – Exploration Drilling | Rev1 | 08 June 2022

Receptor		Maximum instantaneous dissolved		pated ability of instant ad hydrocarbon		Maximum instantaneous dissolved	Mitigated Probability of instantaneous dissolved hydrocarbon exposure		
		hydrocarbon exposure	Low	Moderate	High	hydrocarbon exposure	Low	Moderate	High
	Bill Shoal	-	-	-	-	-	-	-	-
	Branch Banks	2,766	60	57	16	2,119	60	57	15
	Brue Reef	54	4	1	-	25	2	-	-
	Christine Reef					-	-	-	-
	Calder Shoal	-	-	-	-				
	Churchill Reef	205	6	4	-	263	8	4	-
	Clerke Reef	23	3	-	-	67	1	1	-
	Cootamundra Shoal	-	-	-	-	-	-	-	-
	Deep Shoal 1	-	-	-	-	-	-	-	-
	Deep Shoal 2	-	-	-	-	-	-	-	-
	Draytons Reef	1	-	-	-	4	-	-	-
	East Holothuria Reef	1,882	61	56	15	3,354	60	56	12
	Echuca Shoal	523	36	23	1	532	35	24	1
	Elizabeth Reef	1	-	-	-	4	-	-	-
	Elphinstone Reef	-	-	-	-	-	-	-	-
	Emu Reefs	1,237	26	24	6	1,331	27	22	9
	Eugene McDermott Shoal	18	3	-	-	13	1	-	-
	Fantome Shoal	-	-	-	-	-	-	-	-
	Favell Bank	15	2	-	-	43	5	-	-
	Fish Reef	669	2	2	1	1,023	2	2	1
	Fitzpatrick Shoal	-	-	-	-	-	-	-	-
	Flat Top Bank	62	1	1	-	83	1	1	-
	Foelsche Bank	111	1	1	-	75	1	1	-
	Gale Bank	9	-	-	-	21	1	-	-
	Giles Shoal	-	-	-	-	-	_	-	-

Receptor		Maximum instantaneous dissolved		ated bility of instant d hydrocarbon		Maximum instantaneous dissolved	Mitigated Probability of instantaneous dissolved hydrocarbon exposure		
		hydrocarbon exposure	Low	Moderate	High	hydrocarbon exposure	Low	Moderate	High
	Goeree Shoal	2	-	-	-	1	-	-	-
	Goodrich Bank	-	-	-	-	-	-	-	-
	Hancox Shoal	52	1	1	-	57	1	1	-
	Harris Reef	32	1	-	-	21	1	-	-
	Heritage Reef	532	55	39	2	437	52	37	2
	Heywood Shoal	69	13	4	-	103	11	3	-
	Hinkler Patches	-	-	-	-	-	-	-	-
	Holothuria Banks	2,993	60	57	18	3,354	60	57	17
	Howland Shoals	1,306	39	30	9	1,436	36	31	10
	Hunt Patch	-	-	-	-	-	-	-	-
	Imperieuse Reef	15	1	-	-	7	-	-	-
	Ingram Reef	769	56	48	4	596	55	45	3
	Jamieson Reef	785	57	51	7	846	57	52	5
	Johnson Bank	-	-	-	-	-	-	-	-
	Jones Bank	538	2	2	1	730	2	1	1
	Kelleway Reef	117	2	2	-	226	1	1	-
	Knight Reef	88	1	1	-	65	1	1	-
	Long Reef	1,337	59	54	16	1,790	59	52	16
	Lowry Shoal	14	1	-	-	22	1	-	-
	Lyne Reef	90	1	1	-	95	1	1	-
	Marie Shoal	-	-	-	-	-	-	-	-
	Marsh Shoal	86	1	1	-	93	1	1	-
	Mataram Shoal	-	-	-	-	-	-	-	-
	Mavis Reef	146	9	3	-	89	8	3	-
	Mermaid Reef	73	3	2	-	105	2	1	-

Receptor		Maximum instantaneous dissolved		ated bility of instant d hydrocarbon		Maximum instantaneous dissolved	Mitigated Probability of instantaneous dissolved hydrocarbon exposu		
		hydrocarbon exposure	Low	Moderate	High	hydrocarbon exposure	Low	Moderate	High
Mei	ermaid Shoal	-	-	-	-	-	-	-	-
Mid	ddle Reef	309	2	1	-	707	2	2	1
Moi	ira Reef	131	1	1	-	553	1	1	1
Moi	oney Shoal					-	-	-	-
Мог	resby Shoals	4	-	-	-	9	-	-	-
Mos	oss Shoal	-	-	-	-	-	-	-	-
Nev	wby Shoal	-	-	-	-	-	-	-	-
Oliv	ver Reef	43	1	-	-	53	1	1	-
Oliv	ver Rock	784	57	52	10	1,026	58	51	7
Om	nmaney Shoals	-	-	-	-	-	-	-	-
Osk	born Reefs	65	11	1	-	50	11	1	-
Otw	way Bank	1,758	60	57	16	1,403	59	57	11
Par	rry Shoal	-	-	-	-	-	-	-	-
Par	rsons Bank	-	-	-	-	-	-	-	-
Per	nguin Shoal	809	22	18	4	705	20	16	3
Rai	inbow Shoals	17	3	-	-	49	5	-	-
Rer	nard Shoals	-	-	-	-	-	-	-	-
Rok	broy Reefs	415	46	32	1	529	44	31	1
Rot	thery Reef	1,307	59	55	19	957	59	53	14
She	epparton Shoal	-	-	-	-	1	-	-	-
Sko	ottowe Shoal	74	1	1	-	28	1	-	-
Tait	it Bank	1,436	58	47	12	1,313	59	51	14
Tai	iyun Shoal	-	-	-	-	-	-	-	-
Tay	ylor Patches	-	-	-	-	-	-	-	-
The	e Boxers	-	-	-	-	-	_	-	-

		Maximum	Unmitig	ated bility of instant	lanaaya	Maximum	Mitiga	nted ability of instan	4000000
Receptor		instantaneous dissolved		ed hydrocarbon		instantaneous dissolved		ed hydrocarbor	
		hydrocarbon exposure	Low	Moderate	High	hydrocarbon exposure	Low	Moderate	High
	Tregenna Reef	24	1	-	-	18	1	-	-
	Van Cloon Shoal	25	1	-	-	37	2	-	-
	Vee Shoal	-	-	-	-	-	-	-	-
	Victoria Shoal	-	-	-	-	-	-	-	-
	Vulcan Shoal	-	-	-	-	-	-	-	-
	Wells Shoal	-	-	-	-				
	West Holothuria Reef	804	57	39	5	561	56	44	3
	Wildcat Reefs	25	4	-	-	30	4	-	-
	Woodbine Bank	-	-	-	-	-	-	-	-
Nearshore	Adele Island	159	6	4	-	103	8	3	-
Waters	Ashmore Reef	-	-	-	-	-	-	-	-
	Bathurst Island	-	-	-	-	-	-	-	-
	Browse Island	305	30	13	-	204	31	14	-
	Burford Island	-	-	-	-	-	-	-	-
	Cartier Island	-	-	-	-	-	-	-	-
	Clerke Reef	17	3	-	-	66	1	1	-
	Clump Island	2,122	46	42	17	1,806	47	43	18
	Cox-Finniss	727	2	2	1	594	2	2	1
	Cunningham Island	10	1	-	-	3	-	-	-
	Daly	359	16	9	-	196	14	10	-
	Darwin	45	1	-	-	62	1	1	-
	Dorcherty Island	2,443	40	33	23	2,976	40	33	23
	Hibernia Reef	-	-	-	-	-	-	-	-
	Imperieuse Reef	11	1	-	-	4	-	-	-
	Litchfield	81	1	1	-	69	1	1	-

Receptor		Maximum instantaneous dissolved	Unmitigated Probability of instantaneous dissolved hydrocarbon exposure			Maximum instantaneous dissolved	Mitigated Probability of instantaneous dissolved hydrocarbon exposure		
		hydrocarbon exposure	Low	Moderate	High	hydrocarbon exposure	Low	Moderate	High
	Melville Island	2	-	-	-	1	-	-	-
	Mermaid Reef	73	3	2	-	105	1	1	-
	Peron Island North	205	2	1	-	338	2	1	-
	Peron Island South	35	2	-	-	11	1	-	-
	Quoin Island	1,598	47	41	16	1,896	47	42	17
	Sandy Islet	7	-	-	-	9	-	-	-
	Scott Reef North	9	-	-	-	6	-	-	-
	Scott Reef South	14	1	-	-	11	1	-	-
	Seringapatam Reef	5	-	-	-	5	-	-	-
	South Alligator	5	-	-	-	12	1	-	-
	Thamarrurr	2,934	48	46	28	3,776	48	46	29
	Turtle Point	1,115	45	39	8	1,475	46	40	11
	Vernon Islands	123	1	1	-	166	1	1	-
	Victoria Daly	2,274	46	39	18	2,363	47	40	18
	West Arnhem	-	-	-	-	-	-	-	-
	Whale Flat	2,181	46	39	11	1,342	47	39	12
	Wyndham - East Kimberley	3,767	79	68	40	4,711	78	67	42
State	Northern Territory	3,694	58	53	31	5,931	57	53	30
Waters	Western Australia	6,842	85	78	44	5,747	83	76	42

Table 10.11 Probability of exposure to individual receptors from dissolved hydrocarbons in the 0–10 m depth layer, for the unmitigated and mitigated cases. Results are based on a 786,858 m³ surface release of crude oil over 77 days, tracked for 98 days during winter conditions. The results were calculated from 100 spill trajectories per season.

			Unmitig	jated			Mitiga	ted	
Receptor		Maximum instantaneous dissolved		ability of instant ed hydrocarbon		Maximum instantaneous dissolved		ability of instan	
		hydrocarbon exposure	Low	Moderate	High	hydrocarbon exposure	Low	Moderate	High
AMP	Arafura	-	-	-	-	-	-	-	-
	Argo-Rowley Terrace	66	2	1	-	71	2	1	-
	Ashmore Reef	49	5	-	-	37	4	-	-
	Cartier Island	37	4	-	-	35	6	-	-
	Joseph Bonaparte Gulf	6,659	98	95	73	8,888	97	95	73
	Kimberley	1,705	84	67	15	1,862	84	70	15
	Mermaid Reef	46	2	-	-	27	2	-	-
	Oceanic Shoals	798	34	21	2	825	33	19	3
EEZ	East Timorian	28	2	-	-	27	2	-	-
	Indonesian	141	11	2	-	127	9	1	-
KEF	Ancient coastline at 125 m depth contour	496	21	9	1	538	23	11	1
	Ashmore Reef and Cartier Island and surrounding Commonwealth waters	69	5	1	-	48	6	-	-
	Canyons linking the Argo Abyssal Plain with the Scott Plateau	14	1	-	-	-	-	-	-
	Carbonate bank and terrace system of the Sahul Shelf	7,462	100	98	95	9,374	100	99	95
	Carbonate bank and terrace system of the Van Diemen Rise	23	1	-	-	5	-	-	-
	Continental Slope Demersal Fish Communities	237	13	5	-	252	11	8	-
	Mermaid Reef and Commonwealth waters surrounding Rowley Shoals	56	2	1	-	45	2	-	-
	Pinnacles of the Bonaparte Basin	1,187	16	8	3	941	16	9	2

Receptor		Maximum instantaneous dissolved		nated ability of instant ad hydrocarbon		Maximum instantaneous dissolved	Mitigated Probability of instantaneous dissolved hydrocarbon exposure		
		hydrocarbon exposure	Low	Moderate	High	hydrocarbon exposure	Low	Moderate	High
	Seringapatam Reef and Commonwealth waters in the Scott Reef Complex	66	4	1	-	48	4	-	-
	Shelf break and slope of the Arafura Shelf	-	-	-	-	-	-	-	-
MP	Garig Gunak Barlu	-	-	-	-	-	-	-	-
	Lalang-garram / Camden Sound	67	3	1	-	69	3	1	-
	North Kimberley	6,741	97	96	88	5,816	97	97	90
	North Lalang-garram	129	5	2	-	217	6	2	-
	Rowley Shoals	56	2	1	-	30	2	-	-
NR	Scott Reef	10	-	-	-	33	3	-	-
Ramsar	Ashmore Reef National Nature Reserve	49	5	-	-	37	4	-	-
	Cobourg Peninsula	-	-	-	-	-	-	-	-
	Ord River Floodplain	689	50	27	2	1,238	52	26	6
RSB	Abbott Shoal	-	-	-	-	-	-	-	-
	Afghan Shoal	-	-	-	-	-	-	-	-
	Albert Reef	180	5	3	-	111	3	2	-
	Ann Shoals	-	-	-	-	-	-	-	-
	Baldwin Bank	496	31	12	1	298	29	14	-
	Barbara Shoal	-	-	-	-	-	-	-	-
	Barcoo Shoal	99	2	1	-	49	2	-	-
	Barracouta Shoal	50	8	-	-	49	7	-	-
	Bass Reef	-	-	-	-	-	-	-	-
	Bassett-Smith Shoal	568	38	21	1	643	35	21	2
	Beagle Shoals	-	-	-	-	-	-	-	-
	Beagle and Dingo Reefs	140	5	3	-	111	3	3	-

MAQ1161J | Beehive-1 – Exploration Drilling | Rev1 | 08 June 2022

Receptor		Maximum instantaneous dissolved		pated ability of instanted ad hydrocarbon		Maximum instantaneous dissolved	Proba	Mitigated Probability of instantaneous dissolved hydrocarbon exposure		
		hydrocarbon exposure	Low	Moderate	High	hydrocarbon exposure	Low	Moderate	High	
	Bill Shoal	-	-	-	-	-	-	-	-	
	Branch Banks	1,461	80	59	6	1,082	78	61	8	
	Brue Reef	95	2	1	-	103	2	1	-	
	Christine Reef	-	-	-	-	-	-	-	-	
	Calder Shoal	-	-	-	-					
	Churchill Reef	150	5	3	-	209	4	3	-	
	Clerke Reef	54	1	1	-	25	2	-	-	
	Cootamundra Shoal	-	-	-	-					
	Deep Shoal 1	170	16	6	-	164	13	5	-	
	Deep Shoal 2	92	8	2	-	56	8	1	-	
	Draytons Reef	-	-	-	-	-	-	-	-	
	East Holothuria Reef	1,111	74	54	7	1,217	75	48	9	
	Echuca Shoal	267	16	6	-	180	16	6	-	
	Elizabeth Reef	-	-	-	-	-	-	-	-	
	Elphinstone Reef	-	-	-	-	-	-	-	-	
	Emu Reefs	1,403	23	19	3	1,116	22	20	2	
	Eugene McDermott Shoal	140	17	6	-	192	16	5	-	
	Fantome Shoal	28	2	-	-	28	1	-	-	
	Favell Bank	294	18	10	-	281	19	10	-	
	Fish Reef	-	-	-	-	-	-	-	-	
	Fitzpatrick Shoal	-	-	-	-	-	-	-	-	
	Flat Top Bank	3	-	-	-	1	-	-	-	
	Foelsche Bank	-	-	-	-	-	-	-	-	
	Gale Bank	214	16	7	-	410	15	6	1	
	Giles Shoal	-	-	-	-	-	-	-	-	

			Unmitig	jated			Mitiga	ited	
Receptor		Maximum instantaneous dissolved		ability of instant ed hydrocarbon		Maximum instantaneous dissolved		ability of instan	
		hydrocarbon exposure	Low	Moderate	High	hydrocarbon exposure	Low	Moderate	High
	Goeree Shoal	98	8	2	-	123	9	2	-
	Goodrich Bank	-	-	-	-	-	-	-	-
	Hancox Shoal	-	-	-	-	-	-	-	-
	Harris Reef	-	-	-	-	-	-	-	-
	Heritage Reef	575	44	15	1	631	42	19	1
	Heywood Shoal	108	15	2	-	190	13	3	-
	Hinkler Patches	-	-	-	-	-	-	-	-
	Holothuria Banks	1,529	78	55	8	1,689	77	53	12
	Howland Shoals	1,205	24	24	9	1,443	24	21	5
	Hunt Patch	-	-	-	-	-	-	-	-
	Imperieuse Reef	26	1	-	-	27	2	-	-
	Ingram Reef	383	48	25	-	654	45	25	1
	Jamieson Reef	804	56	30	3	796	56	32	2
	Johnson Bank	24	3	-	-	26	3	-	-
	Jones Bank	-	-	-	-	-	-	-	-
	Kelleway Reef	-	-	-	-	-	-	-	-
	Knight Reef	-	-	-	-	-	-	-	-
	Long Reef	1,223	72	50	5	1,656	72	51	4
	Lowry Shoal	-	-	-	-	-	-	-	-
	Lyne Reef	-	-	-	-	-	-	-	-
	Marie Shoal	-	-	-	-	-	-	-	-
	Marsh Shoal	-	-	-	-	-	-	-	-
	Mataram Shoal	-	-	-	-	-	-	-	-
	Mavis Reef	115	5	2	-	93	4	2	-
	Mermaid Reef	46	2	-	-	14	2	-	-

eceptor	Maximum instantaneous dissolved		ated bility of instant d hydrocarbon		Maximum instantaneous dissolved	Mitigated Probability of instantaneous dissolved hydrocarbon exposure		
	hydrocarbon exposure	Low	Moderate	High	hydrocarbon exposure	Low	Moderate	High
Mermaid Shoal	-	-	-	-	-	-	-	-
Middle Reef	-	-	-	-	-	-	-	-
Moira Reef	-	-	-	-	-	-	-	-
Money Shoal					-	-	-	-
Moresby Shoals	-	-	-	-	-	-	-	-
Moss Shoal	-	-	-	-	-	-	-	-
Newby Shoal	1	-	-	-	-	-	-	-
Oliver Reef	-	-	-	-	-	-	-	-
Oliver Rock	541	61	43	3	614	63	39	1
Ommaney Shoals	-	-	-	-	-	-	-	-
Osborn Reefs	47	4	-	-	39	4	-	-
Otway Bank	931	77	53	6	814	77	49	6
Parry Shoal	-	-	-	-	-	-	-	-
Parsons Bank	-	-	-	-	-	-	-	-
Penguin Shoal	617	34	16	1	483	34	20	1
Rainbow Shoals	26	2	-	-	22	2	-	-
Renard Shoals	-	-	-	-	-	-	-	-
Robroy Reefs	657	29	10	1	522	30	10	1
Rothery Reef	901	68	45	6	621	70	44	4
Shepparton Shoal	-	-	-	-	-	-	-	-
Skottowe Shoal	-	-	-	-	-	-	-	-
Tait Bank	1,355	83	62	8	1,421	82	69	6
Taiyun Shoal	-	-	-	-	-	-	-	-
Taylor Patches	-	-	-	-	-	-	-	-
The Boxers	2	-	-	-	-	-	-	-

Receptor		Maximum instantaneous dissolved		ated ability of instant ad hydrocarbon		Maximum instantaneous dissolved	ntaneous dissolved hydrocarbon solved		
		hydrocarbon exposure	Low	Moderate	High	hydrocarbon exposure	Low	Moderate	High
	Tregenna Reef	-	-	-	-	-	-	-	-
	Van Cloon Shoal	545	26	14	1	579	24	14	1
	Vee Shoal	32	3	-	-	34	1	-	-
	Victoria Shoal	-	-	-	-	-	-	-	-
	Vulcan Shoal	115	9	3	-	187	8	2	-
	Wells Shoal	-	-	-	-	-	-	-	-
	West Holothuria Reef	1,114	46	24	2	748	45	21	1
	Wildcat Reefs	18	3	-	-	39	3	-	-
	Woodbine Bank	33	3	-	-	23	2	-	-
	Adele Island	99	3	2	-	123	3	2	-
Waters	Ashmore Reef	38	5	-	-	30	3	-	-
	Bathurst Island	-	-	-	-	-	-	-	-
	Browse Island	311	13	5	-	151	12	4	-
	Burford Island	-	-	-	-	-	-	-	-
	Cartier Island	22	3	-	-	29	4	-	-
	Clerke Reef	27	1	-	-	14	2	-	-
	Clump Island	1,656	45	35	13	1,625	44	35	14
	Cox-Finniss	-	-	-	-	1	-	-	-
	Cunningham Island	15	1	-	-	19	2	-	-
	Daly	153	9	3	-	79	7	1	-
	Darwin	-	-	-	-	-	-	-	-
	Dorcherty Island	2,207	27	24	20	2,770	27	25	19
	Hibernia Reef	24	2	-	-	23	1	-	-
	Imperieuse Reef	12	1	-	-	17	2	-	-
	Litchfield	-	-	-	-	-	-	-	-

Receptor		Maximum instantaneous dissolved		gated ability of instant ed hydrocarbon		Maximum instantaneous dissolved	Mitigated Probability of instantaneous dissolved hydrocarbon exposure		
		hydrocarbon exposure	Low	Moderate	High	hydrocarbon exposure	Low	Moderate	High
	Melville Island	-	-	-	-	-	-	-	-
	Mermaid Reef	26	1	-	-	7	-	-	-
	Peron Island North	-	-	-	-	3	-	-	-
	Peron Island South	-	-	-	-	2	-	-	-
	Quoin Island	1,963	46	37	14	1,887	47	37	14
	Sandy Islet	14	1	-	-	27	3	-	-
	Scott Reef North	31	3	-	-	17	2	-	-
	Scott Reef South	15	1	-	-	39	3	-	-
	Seringapatam Reef	26	3	-	-	19	2	-	-
	South Alligator	-	-	-	-	-	-	-	-
	Thamarrurr	2,363	49	41	21	2,879	46	35	21
	Turtle Point	1,736	52	41	13	1,766	53	42	15
	Vernon Islands	-	-	-	-	-	-	-	-
	Victoria Daly	3,922	50	42	21	4,024	50	41	22
	West Arnhem	-	-	-	-	-	-	-	-
	Whale Flat	893	41	30	6	905	39	32	5
	Wyndham - East Kimberley	4,223	97	95	82	4,467	97	96	79
State	Northern Territory	3,922	61	56	28	4,957	61	58	25
Waters	Western Australia	6,741	97	96	88	5,816	97	97	90

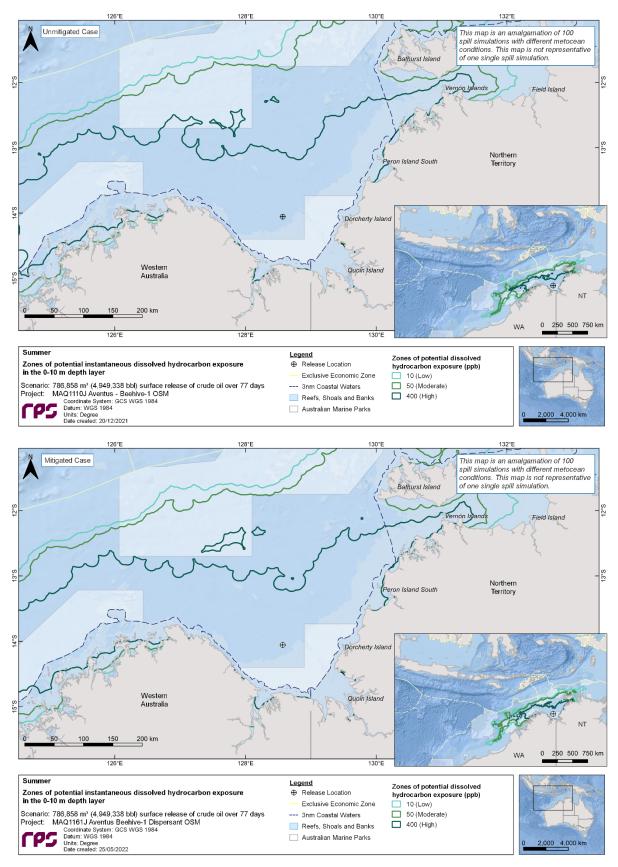


Figure 10.16 Zones of potential dissolved hydrocarbon exposure at 0-10 m below the sea surface for the unmitigated (upper image) and mitigated (lower image) cases, in the event of a 786,858 m³ surface release of crude oil over 77 days, tracked for 98 days, during summer conditions. The results were calculated from 100 spill trajectories.

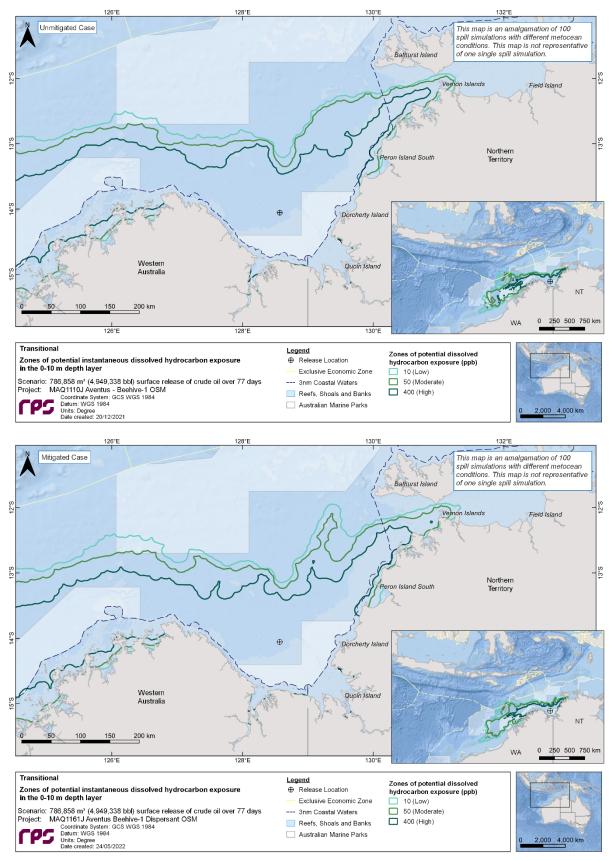


Figure 10.17 Zones of potential dissolved hydrocarbon exposure at 0-10 m below the sea surface for the unmitigated (upper image) and mitigated (lower image) cases, in the event of a 786,858 m³ surface release of crude oil over 77 days, tracked for 98 days, during transitional conditions. The results were calculated from 100 spill trajectories.

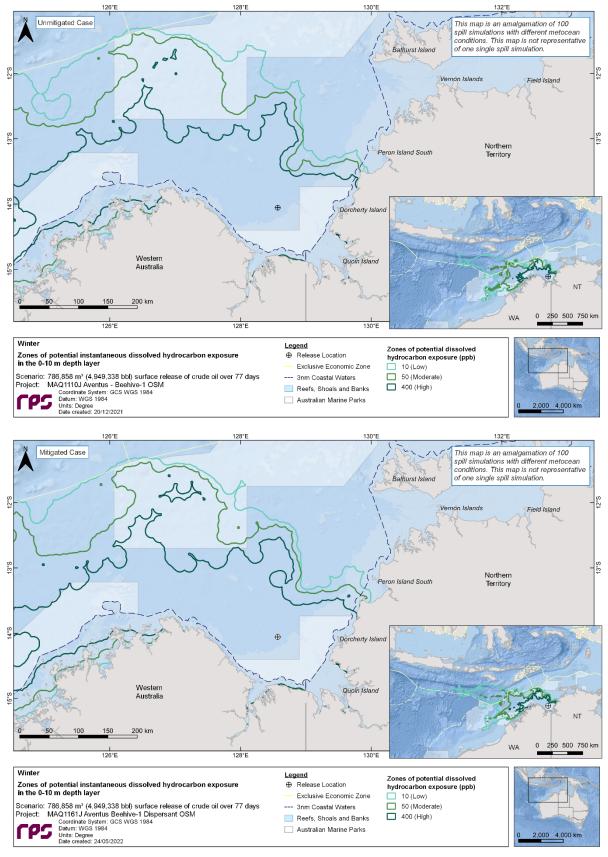


Figure 10.18 Zones of potential dissolved hydrocarbon exposure at 0-10 m below the sea surface for the unmitigated (upper image) and mitigated (lower image) cases, in the event of a 786,858 m³ surface release of crude oil over 77 days, tracked for 98 days, during winter conditions. The results were calculated from 100 spill trajectories.

10.1.3.2 Entrained Hydrocarbons

Table 10.12 to Table 10.14 presents the probability of exposure to individual receptors from entrained hydrocarbons at the low (10-100 ppb) and high (≥ 100 ppb) exposure levels in the 0-10 m depth layers for all seasonal conditions for the unmitigated and mitigated cases.

For the unmitigated case, in the surface (0-10 m) depth layer, low and high exposure by entrained hydrocarbons was predicted for a large range of receptors. The Carbonate bank and terrace system of the Sahul Shelf KEF, Joseph Bonaparte Gulf AMP, Kimberley AMP, North Kimberley MP and nearshore waters of the Thamarrurr, Wyndham - East Kimberley, Dorcherty Island, Clump Island, Quoin Island, Daly, Victoria Daly shorelines and Ord River floodplain (Ramsar) were some of the receptors predicted with the highest entrained hydrocarbons concentrations for all three seasons.

Similar to the unmitigated case, the surface (0-10 m) depth layer model results for the mitigated case demonstrated low and high exposure by entrained hydrocarbons was predicted for a large range of receptors. Furthermore, the identified receptors with the highest predicted entrained hydrocarbons concentrations for the mitigated case for all three seasons (e.g. Carbonate bank and terrace system of the Sahul Shelf KEF, Joseph Bonaparte Gulf AMP, Kimberley AMP, North Kimberley MP and nearshore waters of the Thamarrurr, Wyndham - East Kimberley, Dorcherty Island, Clump Island, Quoin Island, Victoria Daly shorelines and RSB receptors, Bassett-Smith Shoal, Branch Banks, East Holothuria Reef, Emu Reefs, Holothuria Banks, Howland Shoals, Otway Bank and Tait Bank) were very similar between the mitigated and unmitigated cases.

Figure 10.19 to Figure 10.21present sorted bar plots of the predicted area of the low and high zones of entrained hydrocarbon exposure for the unmitigated and mitigated cases from 100 spill trajectories per season and case.

Figure 10.22 to Figure 10.24 illustrate the zones of potential entrained hydrocarbon exposure for the 0-10 m depth layers at the low and high exposure levels, for each season and case.

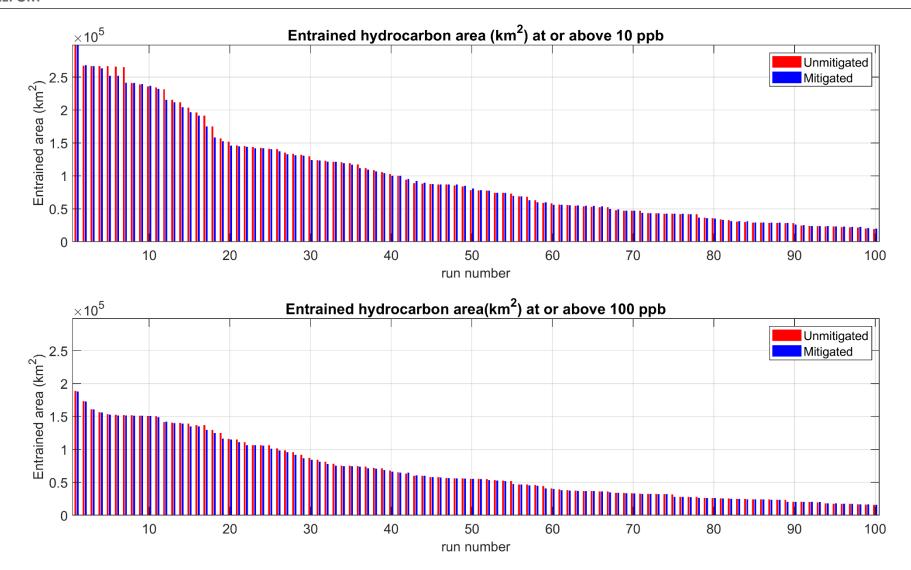


Figure 10.19 Sorted bar plots of the predicted area of the low and high zones of entrained hydrocarbon exposure for the unmitigated (red) and mitigated (blue) cases, in the event of a 786,858 m³ of crude oil over 77 days, tracked for 98 days during summer conditions. The results from 100 spill trajectories are presented.

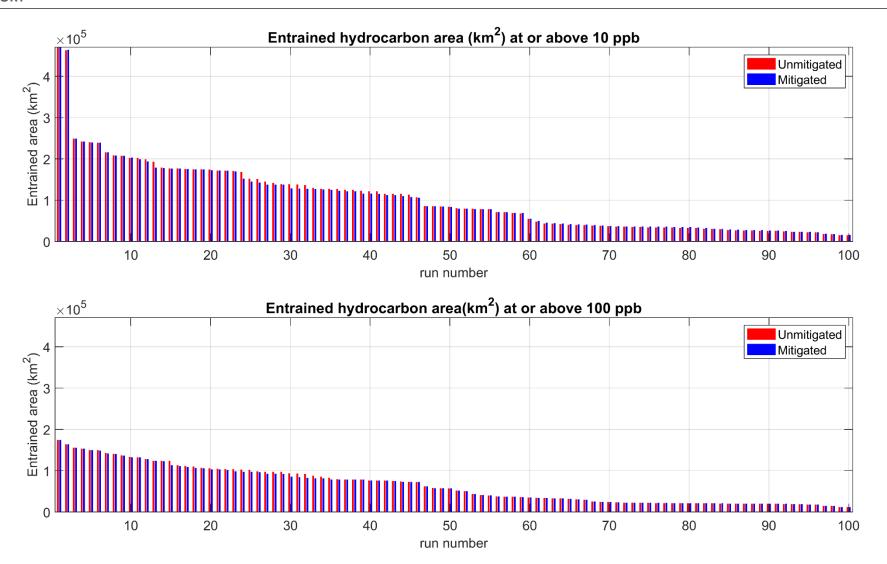


Figure 10.20 Sorted bar plots of the predicted area of the low and high zones of entrained hydrocarbon exposure for the unmitigated (red) and mitigated (blue) cases, in the event of a 786,858 m³ of crude oil over 77 days, tracked for 98 days during transitional conditions. The results from 100 spill trajectories are presented.

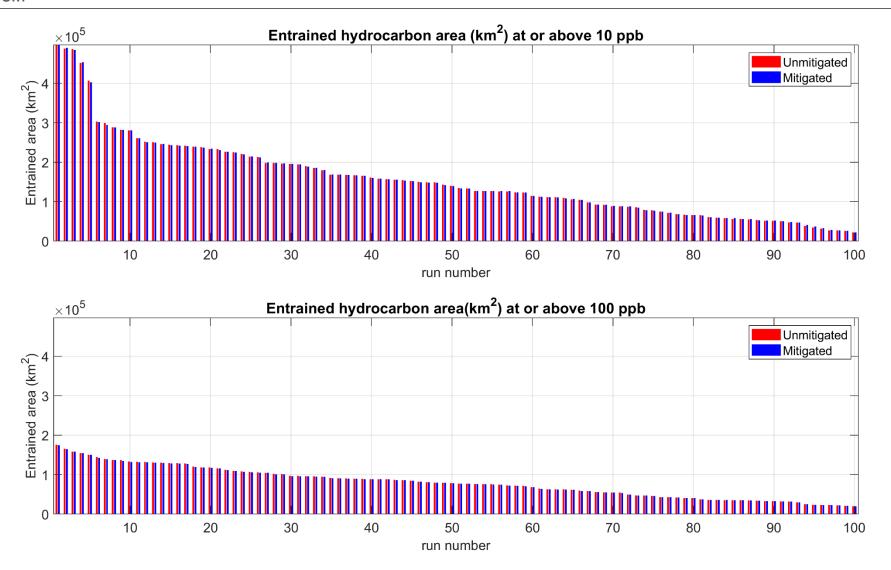


Figure 10.21 Sorted bar plots of the predicted area of the low and high zones of entrained hydrocarbon exposure for the unmitigated (red) and mitigated (blue) cases, in the event of a 786,858 m³ of crude oil over 77 days, tracked for 98 days during winter conditions. The results from 100 spill trajectories are presented.

Table 10.12 Probability of entrained hydrocarbons exposure to marine based receptors in the 0–10 m depth layer, for the unmitigated and mitigated cases. Results are based on a 786,858 m³ surface release of crude oil over 77 days, tracked for 98 days, during summer conditions. The results were calculated from 100 spill trajectories per season.

		l de la companya de	Unmitigated		Mitigated			
Receptor		Maximum instantaneous entrained	Probability of instantaneous entrained hydrocarbon exposure		Maximum instantaneous entrained	Probability of instantaneous entrained hydrocarbon exposure		
		hydrocarbon exposure	Low	High	hydrocarbon exposure	Low	High	
AMP	Arafura	167	8	3	161	8	3	
	Argo-Rowley Terrace	335	10	9	320	9	8	
	Arnhem	36	6	-	33	6	-	
	Ashmore Reef	-	-	-	-	-	-	
	Cartier Island	-	-	-	4	-	-	
	Joseph Bonaparte Gulf	19,580	100	100	18,822	100	100	
	Kimberley	8,810	56	48	8,553	55	47	
	Mermaid Reef	62	7	-	55	6	-	
	Montebello	-	-	-	-	-	-	
	Oceanic Shoals	2,144	35	21	2,094	34	19	
	Christmas Island	-	-	-	-	-	-	
	East Timorian	8	-	-	9	-	-	
EEZ	Indonesian	359	6	1	348	5	1	
KEF	Ancient coastline at 125 m depth contour	3,866	27	26	3,786	26	25	
	Ashmore Reef and Cartier Island and surrounding Commonwealth waters	1	-	-	6	-	-	
	Canyons linking the Argo Abyssal Plain with the Scott Plateau	37	7	-	30	6	-	
	Carbonate bank and terrace system of the Sahul Shelf	22,011	99	87	21,630	100	87	
	Carbonate bank and terrace system of the Van Diemen Rise	1,729	28	20	1,690	28	20	
	Continental Slope Demersal Fish Communities	3,341	24	24	3,187	23	23	

			Unmitigated			Mitigated	
Receptor		Maximum instantaneous entrained hydrocarbon	Probability of instantaneous entrained hydrocarbon exposure		Maximum instantaneous entrained hydrocarbon	Probability of instantaneous entrained hydrocarbon exposure	
		exposure	Low	High	exposure	Low	High
	Glomar Shoals	-	-	-	-	-	-
	Mermaid Reef and Commonwealth waters surrounding Rowley Shoals	65	7	-	64	6	-
	Pinnacles of the Bonaparte Basin	4,399	24	14	4,334	26	14
	Seringapatam Reef and Commonwealth waters in the Scott Reef Complex	857	13	4	826	12	4
	Shelf break and slope of the Arafura Shelf	32	7	-	35	7	-
	Tributary Canyons of the Arafura Depression	81	5	-	83	6	-
MP	Garig Gunak Barlu	335	18	9	294	18	9
	Lalang-garram / Camden Sound	454	17	9	435	17	8
	Lalang-garram / Horizontal Falls	56	2	-	55	2	-
	North Kimberley	14,706	86	71	14,370	88	72
	North Lalang-garram	923	23	14	948	22	13
	Rowley Shoals	26	7	-	25	6	-
NR	Scott Reef	628	13	3	548	12	3
Ramsar	Ashmore Reef National Nature Reserve	-	-	-	-	-	-
	Cobourg Peninsula	278	18	6	259	17	6
	Kakadu National Park	88	6	-	76	6	-
	Ord River Floodplain	2,197	67	37	2,210	69	37
RSB	Abbott Shoal	640	23	13	611	23	13
	Afghan Shoal	1,126	28	18	1,048	28	18
	Albert Reef	613	9	9	593	8	8
	Ann Shoals	246	7	6	238	7	5
	Baldwin Bank	2,630	39	33	2,494	38	31
	Barbara Shoal	531	18	9	499	18	9
	Barcoo Shoal	268	11	9	261	11	8

			Jnmitigated		Mitigated			
Receptor		Maximum instantaneous entrained hydrocarbon	Probability of in entrained hy expos	drocarbon	Maximum instantaneous entrained hydrocarbon	Probability of instantaneous entrained hydrocarbon exposure		
		exposure	Low	High	exposure	Low	High	
	Barracouta Shoal	-	-	-	-	-	-	
	Bass Reef	3,607	36	30	3,514	37	29	
	Bassett-Smith Shoal	4,942	35	30	4,591	35	29	
	Beagle Shoals	499	26	20	478	25	20	
	Beagle and Dingo Reefs	765	13	11	707	12	10	
	Beatrice Reef	174	7	5	166	8	5	
	Big Bank Shoals	-	-	-	-	-	-	
	Bill Shoal	1,110	23	15	1,129	22	14	
	Branch Banks	5,863	46	43	5,537	45	43	
	Britomart Shoal	47	8	-	57	8	-	
	Brue Reef	264	9	9	242	8	7	
	Calder Shoal	58	9	-	51	10	-	
	Campbell Reef				11	1	-	
	Christine Reef	284	16	7	307	15	7	
	Churchill Reef	569	10	9	493	11	8	
	Clerke Reef	21	7	-	21	6	-	
	Cockell and Nicolle Reefs	32	9	-	38	8	-	
	Cootamundra Shoal	38	10	-	46	9	-	
	Deep Shoal 1	660	18	4	636	17	4	
	Deep Shoal 2	536	6	4	550	6	4	
	Draytons Reef	2,523	24	15	2,442	24	14	
	East Holothuria Reef	6,890	44	43	6,819	43	43	
	Echo Shoals	-	-	-	-	-	-	
	Echuca Shoal	3,814	24	24	3,640	23	23	
	Elizabeth Reef	2,547	27	15	2,518	26	16	

		l	Jnmitigated			Mitigated	
Receptor		Maximum instantaneous entrained hydrocarbon	Probability of instantaneous entrained hydrocarbon exposure		Maximum instantaneous entrained hydrocarbon	Probability of instantaneous entrained hydrocarbon exposure	
	<u></u>	exposure	Low	High	exposure	Low	High
	Elphinstone Reef	87	11	-	88	11	-
	Emu Reefs	9,285	84	81	8,835	86	82
	Eugene McDermott Shoal	1,046	21	15	966	20	13
	Evans Shoal				11	1	-
	Fantome Shoal	-	-	-	-	-	-
	Favell Bank	1,835	32	20	1,773	33	18
	Fish Reef	3,144	33	29	3,140	33	29
	Fitzpatrick Shoal	231	18	9	238	18	8
	Flat Top Bank	1,053	29	14	1,023	30	15
	Foelsche Bank	2,472	28	24	2,348	28	24
	Gale Bank	1,105	24	17	1,068	22	15
	Giles Shoal	452	19	11	426	19	10
	Glomar Shoal	-	-	-	-	-	-
	Goeree Shoal	47	13	-	51	12	-
	Goodrich Bank	133	13	3	125	13	3
	Hancox Shoal	1,743	28	24	1,665	28	24
	Harris Reef	1,442	28	24	1,396	28	23
	Heritage Reef	2,234	36	30	2,207	36	32
	Heywood Shoal	1,084	23	21	1,103	21	20
	Hinkler Patches	181	21	7	194	21	7
	Holothuria Banks	8,579	51	45	8,553	51	44
	Howland Shoals	7,657	83	76	7,844	84	77
	Hunt Patch	489	26	20	517	26	20
	Imperieuse Reef	16	4	-	18	3	-
	Ingram Reef	2,165	38	33	2,146	38	33

			Jnmitigated		Mitigated			
Receptor		Maximum instantaneous entrained	Probability of in entrained hy expos	drocarbon	instantaneous instanta entrained hydroc		Probability of taneous entrained ocarbon exposure	
		hydrocarbon exposure	Low	High	hydrocarbon exposure	Low	High	
	Jabiru Shoals	-	-	-	-	-	-	
	Jamieson Reef	2,734	38	35	2,543	38	35	
	Johnson Bank	-	-	-	1	-	-	
	Jones Bank	3,316	33	29	3,332	34	29	
	Jones Shoal	59	11	-	60	11	-	
	Kelleway Reef	1,442	29	26	1,398	29	26	
	Knight Reef	2,305	28	24	2,308	28	24	
	Long Reef	3,767	43	43	3,727	43	43	
	Lowry Shoal	700	29	22	701	29	22	
	Lyne Reef	2,762	28	24	2,681	28	24	
	Lynedoch Bank	22	3	-	22	3	-	
	Mangola Shoal	-	-	-	-	-	-	
	Margaret Shoal	154	7	2	138	7	2	
	Marie Shoal	204	14	6	205	15	5	
	Marsh Shoal	2,445	28	24	2,360	28	24	
	Mataram Shoal	392	17	9	371	17	9	
	Mavis Reef	519	11	10	478	10	8	
	Mermaid Reef	45	6	-	38	6	-	
	Mermaid Shoal	262	15	9	253	16	9	
	Middle Reef	1,984	31	27	1,918	32	27	
	Moira Reef	1,395	31	26	1,423	32	26	
	Money Shoal	118	6	2	109	6	2	
	Moresby Shoals	733	29	22	728	29	22	
	Moss Shoal	234	16	9	232	16	9	
	Newby Shoal	467	12	7	461	12	7	

			Jnmitigated		Mitigated			
Receptor		Maximum instantaneous entrained hydrocarbon	Probability of in entrained hy expos	drocarbon	Maximum instantaneous entrained hydrocarbon	Probability of instantaneous entrained hydrocarbon exposure		
		exposure	Low	High	exposure	Low	High	
	Oliver Reef	2,213	28	24	2,258	28	24	
	Oliver Rock	2,585	39	37	2,442	39	37	
	Ommaney Shoals	197	21	10	191	21	10	
	Orontes Reef	53	11	-	52	11	-	
	Osborn Reefs	537	19	8	464	18	6	
	Otway Bank	6,204	43	43	6,184	43	43	
	Parry Shoal	251	15	8	247	16	7	
	Parsons Bank	347	28	16	307	28	15	
	Penguin Shoal	4,426	40	29	4,386	40	27	
	Rainbow Shoals	188	14	7	224	13	6	
	Rankin Bank	-	-	-	-	-	-	
	Renard Shoals	202	22	11	197	23	10	
	Robroy Reefs	2,091	33	27	2,004	33	26	
	Rothery Reef	3,203	43	43	3,145	43	43	
	Shepparton Shoal	1,377	30	21	1,389	30	21	
	Skottowe Shoal	908	29	24	904	29	23	
	Tait Bank	5,389	50	43	5,064	50	43	
	Taiyun Shoal	753	25	20	737	24	20	
	Taylor Patches	1,892	24	18	1,895	24	18	
	The Boxers	123	3	3	114	3	3	
	Tregenna Reef	1,286	28	22	1,164	28	20	
	Van Cloon Shoal	1,839	35	18	1,797	34	16	
	Vee Shoal	-	-	-	-	-	-	
	Victoria Shoal	261	11	6	277	12	6	
	Vulcan Shoal	23	13	_	28	10	_	

		The state of the s	Unmitigated			Mitigated	
Receptor		Maximum instantaneous entrained hydrocarbon	Probability of instantaneous entrained hydrocarbon exposure		Maximum instantaneous entrained hydrocarbon	Probability of instantaneous entrained hydrocarbon exposure	
		exposure	Low	High	exposure	Low	High
	Wells Shoal	520	20	11	504	20	11
	West Holothuria Reef	2,670	44	34	2,578	43	34
	Wildcat Reefs	289	15	8	283	13	7
	Woodbine Bank	-	-	-	1	-	-
Nearshore	Adele Island	431	11	9	433	11	8
Waters	Ashmore Reef	-	-	-	-	-	-
	Bathurst Island	413	20	12	413	20	12
	Broome	35	2	-	35	2	-
	Browse Island	3,042	24	24	2,997	23	22
	Burford Island	290	13	7	257	13	8
	Cartier Island	-	-	-	2	-	-
	Clerke Reef	20	7	-	20	6	-
	Clump Island	9,454	75	70	9,054	76	71
	Cox-Finniss	4,105	57	44	3,909	56	45
	Cunningham Island	14	4	-	15	3	-
	Daly	5,442	73	64	5,416	74	64
	Darwin	1,354	28	22	1,275	28	21
	Derby - West Kimberely	93	8	-	89	7	-
	Dorcherty Island	9,502	82	79	9,438	84	80
	Field Island	104	7	1	93	7	-
	Grant Island	17	4	-	19	4	-
	Greenhill Island	311	10	6	278	10	6
	Hibernia Reef	-	-	-	-	-	-
	Imperieuse Reef	16	4	-	16	3	-
	King Leopold Ranges				13	1	-

		ι	Jnmitigated		Mitigated			
Receptor		Maximum instantaneous entrained hydrocarbon	Probability of instantaneous entrained hydrocarbon exposure Low High		Maximum instantaneous entrained hydrocarbon	Probability of instantaneous entrained hydrocarbon exposure		
	Kingfisher Islands	exposure 33	2	-	exposure 34	2		
	Lacepede Islands	27	<u>-</u> 1		23	1	_	
	Lawson Island	30	6	_	31	7	_	
	Litchfield	2,345	28	24	2,176	28	24	
	McCluer Island	28	7	_	25	7	-	
	Melville Island	308	28	19	302	28	19	
	Mermaid Reef	41	6	-	37	5	-	
	Minjilang	53	8	-	39	8	-	
	Mogogout Island	155	6	1	136	6	2	
	Morse Island	156	7	2	151	7	2	
	New Year Island	39	6	-	46	7	-	
	Oxley Island	49	8	-	39	8	-	
	Peron Island North	3,934	59	49	3,867	59	49	
	Peron Island South	2,769	58	45	2,787	57	45	
	Quoin Island	9,021	75	70	8,741	76	71	
	Sandy Islet	279	10	3	280	7	3	
	Scott Reef North	428	13	3	424	12	3	
	Scott Reef South	688	13	3	674	12	3	
	Seringapatam Reef	72	12	-	66	11	-	
	South Alligator	2,496	28	19	2,503	28	18	
	Thamarrurr	13,795	82	77	13,378	83	78	
	Turtle Point	3,687	77	66	3,564	79	67	
	Vernon Islands	3,139	28	24	3,011	28	24	
	Victoria Daly	9,021	80	70	9,081	82	71	
	West Arnhem	234	18	7	230	18	7	

			Unmitigated				
Receptor		Maximum instantaneous entrained hydrocarbon exposure	Probability of instantaneous entrained hydrocarbon exposure		Maximum instantaneous entrained	Probability of instantaneous entrained hydrocarbon exposure	
			Low	High	hydrocarbon exposure	Low	High
	Whale Flat	4,419	74	70	4,540	75	71
	Wunmiyi Island	103	7	1	112	7	1
	Wyndham - East Kimberley	13,432	82	62	13,040	81	63
State Waters	Northern Territory	13,975	85	81	13,590	88	80
	Western Australia	14,706	86	71	14,370	88	72
MNP - Timor	KKPN Laut Sawu	1	-	-	3	-	-

Table 10.13 Probability of entrained hydrocarbons exposure to marine based receptors in the 0–10 m depth layer, for the unmitigated and mitigated cases. Results are based on a 786,858 m³ surface release of crude oil over 77 days, tracked for 98 days, during transitional conditions. The results were calculated from 100 spill trajectories per season.

		l l	Unmitigated			Mitigated	
Receptor		Maximum instantaneous entrained hydrocarbon	Probability of instantaneous entrained hydrocarbon exposure		Maximum instantaneous entrained hydrocarbon	Probability of instantaneous entrained hydrocarbon exposure	
		exposure	Low	High	exposure	Low	High
AMP	Arafura	-	-	-	5	-	-
	Argo-Rowley Terrace	629	17	10	615	17	8
	Arnhem	-	-	-	-	-	-
	Ashmore Reef	4	-	-	3	-	-
	Cartier Island	4	-	-	4	-	-
	Joseph Bonaparte Gulf	17,299	94	83	17,291	94	83
	Kimberley	9,414	74	62	9,230	75	62
	Mermaid Reef	200	11	5	189	10	4
	Montebello	26	1	-	26	1	-
	Oceanic Shoals	969	18	11	978	18	11
	Christmas Island	-	-	-	-	-	-
	East Timorian	-	-	-	5	-	-
EEZ	Indonesian	378	15	8	368	14	8
KEF	Ancient coastline at 125 m depth contour	3,763	54	47	3,715	54	47
	Ashmore Reef and Cartier Island and surrounding Commonwealth waters	4	-	-	5	-	-
	Canyons linking the Argo Abyssal Plain with the Scott Plateau	56	1	-	55	1	-
	Carbonate bank and terrace system of the Sahul Shelf	23,413	94	92	23,904	96	92
	Carbonate bank and terrace system of the Van Diemen Rise	14	1	-	11	1	-
	Continental Slope Demersal Fish Communities	1,819	52	44	1,773	53	44

			Unmitigated			Mitigated	
Receptor		Maximum instantaneous entrained hydrocarbon	Probability of in entrained hy expos	drocarbon	Maximum instantaneous entrained hydrocarbon	Probability of instantaneous entrained hydrocarbon exposure	
		exposure	Low	High	exposure	Low	High
	Glomar Shoals	35	1	-	31	1	-
	Mermaid Reef and Commonwealth waters surrounding Rowley Shoals	209	15	5	211	13	4
	Pinnacles of the Bonaparte Basin	1,891	18	8	1,822	18	8
	Seringapatam Reef and Commonwealth waters in the Scott Reef Complex	280	8	3	271	8	3
	Shelf break and slope of the Arafura Shelf	5	-	-	2	-	-
	Tributary Canyons of the Arafura Depression	-	-	-	-	-	-
MP	Garig Gunak Barlu	2	-	-	-	-	-
	Lalang-garram / Camden Sound	653	36	15	635	37	16
	Lalang-garram / Horizontal Falls	19	3	-	20	3	-
	North Kimberley	15,425	86	81	14,727	86	84
	North Lalang-garram	1,037	41	19	978	42	20
	Rowley Shoals	180	10	4	162	9	2
NR	Scott Reef	189	5	1	237	5	1
Ramsar	Ashmore Reef National Nature Reserve	4	-	-	3	-	-
	Cobourg Peninsula	1	-	-	-	-	-
	Kakadu National Park	-	-	-	-	-	-
	Ord River Floodplain	2,812	45	39	2,785	47	38
RSB	Abbott Shoal	3	-	-	2	-	-
	Afghan Shoal	6	-	-	8	-	-
	Albert Reef	834	34	12	830	34	13
	Ann Shoals	1	-	-	-	-	-
	Baldwin Bank	1,068	32	25	1,130	31	24
	Barbara Shoal	3	-	-	3	-	-
	Barcoo Shoal	646	27	12	595	27	13

		· · · · · · · · · · · · · · · · · · ·	Unmitigated		Mitigated			
Receptor		Maximum instantaneous entrained hydrocarbon	Probability of in entrained hy expos	drocarbon	Maximum instantaneous entrained hydrocarbon	Probability of instantaneous entrained hydrocarbon exposure		
		exposure	Low	High	exposure	Low	High	
	Barracouta Shoal	-	-	-	3	-	-	
	Bass Reef	2,681	3	2	2,530	2	2	
	Bassett-Smith Shoal	5,043	62	47	4,657	62	48	
	Beagle Shoals	3	-	-	3	-	-	
	Beagle and Dingo Reefs	804	41	18	799	41	19	
	Beatrice Reef	1	-	-	-	-	-	
	Big Bank Shoals	-	-	-	-	-	-	
	Bill Shoal	9	-	-	11	1	-	
	Branch Banks	6,299	66	60	6,266	69	60	
	Britomart Shoal	-	-	-	-	-	-	
	Brue Reef	474	18	9	468	18	9	
	Calder Shoal	-	-	-	2	-	-	
	Campbell Reef				-	-	-	
	Christine Reef	3	-	-	-	-	-	
	Churchill Reef	1,129	35	11	1,083	35	12	
	Clerke Reef	171	10	4	155	9	2	
	Cockell and Nicolle Reefs	30	11	-	32	11	-	
	Cootamundra Shoal	-	-	-	1	-	-	
	Deep Shoal 1	44	1	-	46	1	-	
	Deep Shoal 2	3	-	-	3	-	-	
	Draytons Reef	104	1	1	95	1	-	
	East Holothuria Reef	7,620	63	59	7,309	64	59	
	Echo Shoals	-	-	-	-	-	-	
	Echuca Shoal	2,091	51	47	1,899	51	47	
	Elizabeth Reef	125	1	1	121	1	1	

			Unmitigated		Mitigated			
Receptor		Maximum instantaneous entrained	Probability of in entrained hy expos	drocarbon	Maximum instantaneous entrained	Probability of instantaneous entrained hydrocarbon exposure		
		hydrocarbon exposure	Low	High	hydrocarbon exposure	Low	High	
	Elphinstone Reef	-	-	-	1	-	-	
	Emu Reefs	6,442	53	35	6,260	53	33	
	Eugene McDermott Shoal	743	21	9	715	20	8	
	Evans Shoal				-	-	-	
	Fantome Shoal	-	-	-	-	-	-	
	Favell Bank	852	18	11	842	18	11	
	Fish Reef	2,098	3	2	2,109	3	2	
	Fitzpatrick Shoal	1	-	-	-	-	-	
	Flat Top Bank	15	1	-	19	2	-	
	Foelsche Bank	1,098	1	1	1,011	2	1	
	Gale Bank	250	8	3	234	9	3	
	Giles Shoal	2	-	-	1	-	-	
	Glomar Shoal	12	1	-	11	1	-	
	Goeree Shoal	185	4	1	193	3	1	
	Goodrich Bank	2	-	-	5	-	-	
	Hancox Shoal	646	1	1	649	1	1	
	Harris Reef	481	1	1	455	2	1	
	Heritage Reef	2,223	60	57	2,233	60	57	
	Heywood Shoal	888	30	19	815	28	18	
	Hinkler Patches	-	-	-	-	-	-	
	Holothuria Banks	9,350	68	60	9,230	72	60	
	Howland Shoals	6,081	51	47	5,934	54	47	
	Hunt Patch	4	-	-	5	-	_	
	Imperieuse Reef	108	9	1	104	8	1	
	Ingram Reef	2,929	60	59	2,899	60	59	

		· · · · · · · · · · · · · · · · · · ·	Jnmitigated		Mitigated			
Receptor		Maximum instantaneous entrained hydrocarbon	Probability of in entrained hy expos	drocarbon	Maximum instantaneous entrained hydrocarbon	Probability of instantaneous entrained hydrocarbon exposure		
		exposure	Low	High	exposure	Low	High	
	Jabiru Shoals	-	-	-	-	-	-	
	Jamieson Reef	3,804	60	59	3,693	60	59	
	Johnson Bank	2	-	-	3	-	-	
	Jones Bank	2,339	2	2	2,374	2	2	
	Jones Shoal	-	-	-	-	-	-	
	Kelleway Reef	969	2	2	969	2	2	
	Knight Reef	794	1	1	752	1	1	
	Long Reef	3,891	60	60	3,891	60	60	
	Lowry Shoal	240	1	1	218	2	1	
	Lyne Reef	1,113	1	1	1,106	1	1	
	Lynedoch Bank	4	-	-	-	-	-	
	Mangola Shoal	-	-	-	-	-	-	
	Margaret Shoal	-	-	-	-	-	-	
	Marie Shoal	3	-	-	2	-	-	
	Marsh Shoal	1,022	1	1	1,023	1	1	
	Mataram Shoal	3	-	-	-	-	-	
	Mavis Reef	709	35	15	680	36	16	
	Mermaid Reef	184	10	5	169	9	4	
	Mermaid Shoal	10	-	-	7	-	-	
	Middle Reef	1,363	2	2	1,257	2	2	
	Moira Reef	1,020	2	2	968	2	2	
	Money Shoal	-	-	-	2	-	-	
	Moresby Shoals	92	1	-	80	1	-	
	Moss Shoal	2	-	-	6	-	-	
	Newby Shoal	6	_	_	5	_	-	

		The state of the s	Jnmitigated			Mitigated	
Receptor		Maximum instantaneous entrained hydrocarbon	Probability of in entrained hy expos	drocarbon	Maximum instantaneous entrained hydrocarbon	Probability of instantaneous entrained hydrocarbon exposure	
		exposure	Low	High	exposure	Low	High
	Oliver Reef	765	1	1	716	1	1
	Oliver Rock	3,801	60	58	3,659	60	60
	Ommaney Shoals	-	-	-	1	-	-
	Orontes Reef	-	-	-	-	-	-
	Osborn Reefs	659	39	15	619	40	16
	Otway Bank	6,715	62	59	6,379	63	59
	Parry Shoal	4	-	-	9	-	-
	Parsons Bank	31	1	-	23	1	-
	Penguin Shoal	3,852	55	31	3,837	55	31
	Rainbow Shoals	265	25	15	234	27	15
	Rankin Bank	27	2	-	18	1	-
	Renard Shoals	1	-	-	2	-	-
	Robroy Reefs	2,099	60	56	2,045	60	56
	Rothery Reef	4,433	60	59	4,252	61	60
	Shepparton Shoal	16	1	-	20	1	-
	Skottowe Shoal	393	2	1	368	2	1
	Tait Bank	5,573	68	60	5,612	71	60
	Taiyun Shoal	4	-	-	5	-	_
	Taylor Patches	94	1	-	75	1	-
	The Boxers	-	-	-	-	-	-
	Tregenna Reef	342	1	1	335	1	1
	Van Cloon Shoal	828	18	3	880	18	3
	Vee Shoal	-	-	-	-	-	-
	Victoria Shoal	3	-	-	-	-	-
	Vulcan Shoal	28	2	_	29	2	_

		· ·	Jnmitigated			Mitigated	
Nearshore Waters		Maximum instantaneous entrained hydrocarbon	Probability of instantaneous entrained hydrocarbon exposure		instantaneous instantar entrained hydroca		ility of is entrained n exposure
		exposure	Low	High	hydrocarbon exposure	Low	High
	Wells Shoal	2	-	-	2	-	-
	West Holothuria Reef	3,036	63	59	3,002	62	58
	Wildcat Reefs	370	35	15	350	35	16
	Woodbine Bank	-	-	-	1	-	-
	Adele Island	997	29	11	932	29	12
Vaters	Ashmore Reef	2	-	-	3	-	-
	Bathurst Island	8	-	-	7	-	-
	Broome	65	7	-	58	7	-
	Browse Island	1,542	52	46	1,467	53	46
	Burford Island	2	-	-	-	-	-
	Cartier Island	2	-	-	3	-	-
	Clerke Reef	166	10	4	160	9	2
	Clump Island	9,459	48	46	9,327	49	46
	Cox-Finniss	2,527	4	3	2,622	4	3
	Cunningham Island	92	9	-	88	7	-
	Daly	3,227	23	18	3,206	24	18
	Darwin	583	1	1	593	2	1
	Derby - West Kimberely	101	13	1	108	15	1
	Dorcherty Island	11,379	52	45	11,078	53	45
	Field Island	-	-	-	-	-	-
	Grant Island	-	-	-	-	-	-
	Greenhill Island	1	-	-	-	-	-
	Hibernia Reef	-	-	-	-	-	-
	Imperieuse Reef	108	7	1	104	7	1
	King Leopold Ranges				7	_	_

		· ·	Jnmitigated			Mitigated	
Receptor		Maximum instantaneous entrained hydrocarbon	Probability of in entrained hy expos	drocarbon sure	Maximum instantaneous entrained hydrocarbon	Probability of instantaneous entrained hydrocarbon exposure	
	<u></u>	exposure	Low	High	exposure	Low	High
	Kingfisher Islands	19	2	-	14	2	-
	Lacepede Islands	12	2	-	13	1	-
	Lawson Island	-	-	-	-	-	-
	Litchfield	867	1	1	864	1	1
	McCluer Island	-	-	-	-	-	-
	Melville Island	101	1	1	106	1	1
	Mermaid Reef	184	10	4	151	9	3
	Minjilang	-	-	-	-	-	-
	Mogogout Island	-	-	-	-	-	-
	Morse Island	-	-	-	-	-	-
	New Year Island	-	-	-	-	-	-
	Oxley Island	-	-	-	-	-	-
	Peron Island North	1,333	5	4	1,291	6	4
	Peron Island South	1,261	4	3	1,307	4	4
	Quoin Island	8,841	49	47	8,438	48	47
	Sandy Islet	103	5	1	124	5	1
	Scott Reef North	151	6	1	180	6	1
	Scott Reef South	238	6	1	251	5	1
	Seringapatam Reef	145	8	3	146	8	2
	South Alligator	243	1	1	165	1	1
	Thamarrurr	16,021	57	51	15,624	57	51
	Turtle Point	3,766	51	41	3,466	53	41
	Vernon Islands	1,074	2	1	1,064	2	1
	Victoria Daly	9,459	53	46	9,139	53	46
	West Arnhem	1	-		<u> </u>		

			Unmitigated				
Receptor		Maximum instantaneous entrained hydrocarbon exposure	Probability of instantaneous entrained hydrocarbon exposure		Maximum instantaneous entrained	Probability of instantaneous entrained hydrocarbon exposure	
			Low	High	hydrocarbon exposure	Low	High
	Whale Flat	4,431	47	46	4,345	47	46
	Wunmiyi Island	-	-	-	-	-	-
	Wyndham - East Kimberley	13,506	86	72	13,399	86	71
State Waters	Northern Territory	16,670	62	57	16,445	62	56
	Western Australia	15,425	86	81	14,727	86	84
MNP - Timor	KKPN Laut Sawu	-	-	-	-	-	-

Table 10.14 Probability of entrained hydrocarbons exposure to marine based receptors in the 0–10 m depth layer, for the unmitigated and mitigated cases. Results are based on a 786,858 m³ surface release of crude oil over 77 days, tracked for 98 days, during winter conditions. The results were calculated from 100 spill trajectories per season.

		· ·	Unmitigated			Mitigated	
Receptor		Maximum instantaneous entrained	Probability of in entrained hy expos	drocarbon	Maximum instantaneous entrained	Probability of instantaneous entrained hydrocarbon exposure	
		hydrocarbon exposure	Low	High	hydrocarbon exposure	Low	High
AMP	Arafura	-	-	-	-	-	-
	Argo-Rowley Terrace	395	12	3	383	12	4
	Arnhem	-	-	-	-	-	-
	Ashmore Reef	643	25	14	637	26	14
	Cartier Island	289	32	15	278	33	15
	Joseph Bonaparte Gulf	17,429	100	98	17,080	100	97
	Kimberley	8,870	93	88	8,537	93	88
	Mermaid Reef	137	2	2	137	2	2
	Montebello	-	-	-	-	-	-
	Oceanic Shoals	2,810	71	49	2,807	71	50
	Christmas Island	61	4	-	63	4	-
	East Timorian	132	16	5	123	17	5
EEZ	Indonesian	719	39	18	715	39	18
KEF	Ancient coastline at 125 m depth contour	4,013	61	46	3,980	60	44
	Ashmore Reef and Cartier Island and surrounding Commonwealth waters	643	33	15	637	33	15
	Canyons linking the Argo Abyssal Plain with the Scott Plateau	123	9	1	132	10	1
	Carbonate bank and terrace system of the Sahul Shelf	22,864	100	100	22,405	100	100
	Carbonate bank and terrace system of the Van Diemen Rise	99	13	-	106	14	1
	Continental Slope Demersal Fish Communities	1,900	48	32	1,870	48	32

		l	Jnmitigated			Mitigated	
Receptor		Maximum instantaneous entrained hydrocarbon	Probability of instantaneous entrained hydrocarbon exposure		Maximum instantaneous entrained hydrocarbon	Probability of instantaneous entrained hydrocarbon exposure	
ΜР		exposure	Low	High	exposure	Low	High
	Glomar Shoals	-	-	-	-	-	-
	Mermaid Reef and Commonwealth waters surrounding Rowley Shoals	141	2	2	137	2	2
	Pinnacles of the Bonaparte Basin	5,563	52	37	5,643	52	37
	Seringapatam Reef and Commonwealth waters in the Scott Reef Complex	313	21	8	305	21	8
	Shelf break and slope of the Arafura Shelf	-	-	-	-	-	-
	Tributary Canyons of the Arafura Depression	-	-	-	-	-	-
MP	Garig Gunak Barlu	-	-	-	-	-	-
	Lalang-garram / Camden Sound	626	19	5	613	18	5
	Lalang-garram / Horizontal Falls	9	-	-	8	-	-
	North Kimberley	17,327	98	97	17,141	99	97
	North Lalang-garram	988	27	7	931	27	8
	Rowley Shoals	135	2	2	135	2	2
NR	Scott Reef	175	15	6	178	15	6
Ramsar	Ashmore Reef National Nature Reserve	643	25	14	637	26	14
	Cobourg Peninsula	-	-	-	-	-	-
	Kakadu National Park	-	-	-	-	-	-
	Ord River Floodplain	2,570	68	64	2,644	68	65
RSB	Abbott Shoal	-	-	-	-	-	-
	Afghan Shoal	-	-	-	-	-	-
	Albert Reef	831	11	5	834	11	5
	Ann Shoals	-	-	-	-	-	-
	Baldwin Bank	2,453	67	46	2,292	67	47
	Barbara Shoal		-	-	-	-	-
	Barcoo Shoal	613	9	2	582	9	2

			Jnmitigated		Mitigated			
Receptor		Maximum instantaneous entrained hydrocarbon	Probability of in entrained hy expos	drocarbon sure	Maximum instantaneous entrained hydrocarbon	Probability of instantaneous entrained hydrocarbon exposure		
		exposure	Low	High	exposure	Low	High	
	Barracouta Shoal	431	29	19	457	29	18	
	Bass Reef	2	-	-	2	-	-	
	Bassett-Smith Shoal	3,057	76	59	3,124	77	58	
	Beagle Shoals	-	-	-	-	-	-	
	Beagle and Dingo Reefs	772	14	6	800	15	6	
	Beatrice Reef	-	-	-	-	-	-	
	Big Bank Shoals	15	2	-	13	2	-	
	Bill Shoal	-	-	-	-	-	-	
	Branch Banks	5,610	90	84	5,349	91	84	
	Britomart Shoal	-	-	-	-	-	-	
	Brue Reef	466	10	2	474	10	2	
	Calder Shoal	-	-	-	-	-	-	
	Campbell Reef				-	-	-	
	Christine Reef	-	-	-	-	-	-	
	Churchill Reef	1,136	12	5	1,133	12	5	
	Clerke Reef	125	2	2	135	2	1	
	Cockell and Nicolle Reefs	121	4	1	93	4	-	
	Cootamundra Shoal	-	-	-	-	-	-	
	Deep Shoal 1	1,045	42	17	994	42	20	
	Deep Shoal 2	889	23	11	876	22	11	
	Draytons Reef	-	-	-	-	-	-	
	East Holothuria Reef	5,564	87	77	5,438	88	76	
	Echo Shoals	15	1	-	13	1	-	
	Echuca Shoal	1,196	50	35	1,156	51	35	
	Elizabeth Reef	-	-	-	-	-	-	

		U	Jnmitigated		Mitigated			
Receptor		Maximum instantaneous entrained hydrocarbon	Probability of i entrained hy expos	/drocarbon	Maximum instantaneous entrained	Probability of instantaneous entrained hydrocarbon exposure		
		exposure	Low	High	hydrocarbon exposure	Low	High	
	Elphinstone Reef	-	-	-	-	-	-	
	Emu Reefs	4,607	34	23	4,490	34	23	
	Eugene McDermott Shoal	829	56	33	820	54	32	
	Evans Shoal				-	-	-	
	Fantome Shoal	167	8	4	157	7	3	
	Favell Bank	1,119	57	29	1,111	57	28	
	Fish Reef	1	-	-	2	-	-	
	Fitzpatrick Shoal	-	-	-	-	-	-	
	Flat Top Bank	41	8	-	46	10	-	
	Foelsche Bank	-	-	-	1	-	-	
	Gale Bank	1,082	44	24	1,033	45	24	
	Giles Shoal	-	-	-	-	-	-	
	Glomar Shoal	-	-	-	-	-	-	
	Goeree Shoal	466	43	26	435	43	26	
	Goodrich Bank	-	-	-	-	-	-	
	Hancox Shoal	-	-	-	1	-	-	
	Harris Reef	-	-	-	-	-	-	
	Heritage Reef	1,760	69	59	1,701	70	59	
	Heywood Shoal	954	49	38	989	48	38	
	Hinkler Patches	-	-	-	-	-	-	
	Holothuria Banks	6,061	90	83	5,912	91	82	
	Howland Shoals	5,588	40	27	5,750	36	26	
	Hunt Patch	-	-	-	-	-	-	
	Imperieuse Reef	65	2	-	60	2	-	
	Ingram Reef	3,002	71	64	3,021	72	64	

			Jnmitigated		Mitigated			
Receptor		Maximum instantaneous entrained hydrocarbon	Probability of in entrained hy expos	drocarbon	Maximum instantaneous entrained hydrocarbon	Probability of instantaneous entrained hydrocarbon exposure		
		exposure	Low	High	exposure	Low	High	
	Jabiru Shoals	20	1	-	19	1	-	
	Jamieson Reef	3,724	74	67	3,794	74	66	
	Johnson Bank	264	27	9	274	28	9	
	Jones Bank	1	-	-	1	-	-	
	Jones Shoal	-	-	-	-	-	-	
	Kelleway Reef	-	-	-	1	-	-	
	Knight Reef	-	-	-	-	-	-	
	Long Reef	3,939	87	78	3,857	87	79	
	Lowry Shoal	-	-	-	2	-	-	
	Lyne Reef	-	-	-	-	-	-	
	Lynedoch Bank	-	-	-	-	-	-	
	Mangola Shoal	14	1	-	12	1	-	
	Margaret Shoal	-	-	-	-	-	-	
	Marie Shoal	-	-	-	-	-	-	
	Marsh Shoal	-	-	-	1	-	-	
	Mataram Shoal	-	-	-	-	-	-	
	Mavis Reef	722	11	6	684	12	6	
	Mermaid Reef	136	2	2	125	2	2	
	Mermaid Shoal	-	-	-	-	-	-	
	Middle Reef	1	-	-	1	-	-	
	Moira Reef	-	-	-	1	-	-	
	Money Shoal	-	-	-	-	-	-	
	Moresby Shoals	-	-	-	2	-	-	
	Moss Shoal	-	-	-	-	-	-	
	Newby Shoal	11	1	-	9	_	_	

			Jnmitigated			Mitigated	
Receptor		Maximum instantaneous entrained	Probability of instantaneous entrained hydrocarbon exposure		Maximum instantaneous entrained	Probability of instantaneous entrained hydrocarbon exposure	
		hydrocarbon exposure	Low	High	hydrocarbon exposure	Low	High
	Oliver Reef	-	-	-	-	-	-
	Oliver Rock	3,758	82	70	3,811	82	70
	Ommaney Shoals	-	-	-	-	-	-
	Orontes Reef	-	-	-	-	-	-
	Osborn Reefs	708	16	6	634	16	6
	Otway Bank	5,603	88	82	5,349	87	83
	Parry Shoal	-	-	-	-	-	-
	Parsons Bank	-	-	-	-	-	-
	Penguin Shoal	4,060	71	50	4,151	72	50
	Rainbow Shoals	532	15	4	500	14	4
	Rankin Bank	-	-	-	-	-	-
	Renard Shoals	-	-	-	-	-	-
	Robroy Reefs	2,163	66	46	2,208	66	46
	Rothery Reef	4,377	85	75	4,178	84	75
	Shepparton Shoal	1	-	-	6	-	-
	Skottowe Shoal	-	-	-	2	-	-
	Tait Bank	6,143	93	88	6,063	93	88
	Taiyun Shoal	-	-	-	-	-	-
	Taylor Patches	-	-	-	-	-	-
	The Boxers	14	2	-	16	3	-
	Tregenna Reef	-	-	-	-	-	-
	Van Cloon Shoal	2,204	63	44	2,152	62	44
	Vee Shoal	175	9	4	183	10	4
	Victoria Shoal	-	-	-	-	-	-
	Vulcan Shoal	357	40	22	338	41	23

		· ·	Jnmitigated			Mitigated	
Receptor		Maximum instantaneous entrained	Probability of in entrained hy expos	drocarbon	Maximum instantaneous entrained	Probability of instantaneous entrained hydrocarbon exposure	
		hydrocarbon exposure	Low	High	hydrocarbon exposure	Low	High
	Wells Shoal	-	-	-	-	-	-
	West Holothuria Reef	2,860	77	63	2,743	78	66
	Wildcat Reefs	602	12	5	603	12	5
	Woodbine Bank	178	28	9	160	28	9
Nearshore	Adele Island	975	11	4	948	10	4
Waters	Ashmore Reef	643	25	14	637	26	13
	Bathurst Island	-	-	-	-	-	-
	Broome	30	1	-	23	1	-
	Browse Island	954	45	32	933	44	32
	Burford Island	-	-	-	-	-	-
	Cartier Island	266	31	13	261	31	13
	Clerke Reef	125	2	2	119	2	1
	Clump Island	7,823	56	50	7,472	56	50
	Cox-Finniss	6	-	-	8	-	-
	Cunningham Island	60	2	-	56	2	-
	Daly	739	21	8	797	20	8
	Darwin	-	-	-	1	-	-
	Derby - West Kimberely	42	5	-	47	6	-
	Dorcherty Island	11,284	41	31	11,005	40	31
	Field Island	-	-	-	-	-	-
	Grant Island	-	-	-	-	-	-
	Greenhill Island	-	-	-	-	-	-
	Hibernia Reef	196	19	5	183	18	5
	Imperieuse Reef	60	2	-	60	2	-
	King Leopold Ranges				6	-	-

			Jnmitigated		Mitigated			
Receptor		Maximum instantaneous entrained hydrocarbon	Probability of instantaneous entrained hydrocarbon exposure		Maximum instantaneous entrained hydrocarbon	Probability of instantaneous entrained hydrocarbon exposure		
		exposure	Low	High	exposure	Low	High	
	Kingfisher Islands	6	-	-	6	-	-	
	Lacepede Islands	1	-	-	1	-	-	
	Lawson Island	-	-	-	-	-	-	
	Litchfield	-	-	-	-	-	-	
	McCluer Island	-	-	-	-	-	-	
	Melville Island	-	-	-	-	-	-	
	Mermaid Reef	125	2	2	125	2	2	
	Minjilang	-	-	-	-	-	-	
	Mogogout Island	-	-	-	-	-	-	
	Morse Island	-	-	-	-	-	-	
	New Year Island	-	-	-	-	-	-	
	Oxley Island	-	-	-	-	-	-	
	Peron Island North	10	1	-	12	2	-	
	Peron Island South	6	-	-	8	-	-	
	Quoin Island	8,554	58	51	8,089	58	51	
	Sandy Islet	181	13	6	177	13	6	
	Scott Reef North	206	12	6	231	12	6	
	Scott Reef South	196	17	6	187	17	6	
	Seringapatam Reef	313	20	7	305	20	7	
	South Alligator	-	-	-	-	-	-	
	Thamarrurr	15,790	59	52	15,374	59	52	
	Turtle Point	4,962	60	59	4,595	60	59	
	Vernon Islands	-	-	-	-	-	_	
	Victoria Daly	9,153	60	59	8,801	60	59	
	West Arnhem	<u> </u>	_					

			Unmitigated	Mitigated			
Receptor		Maximum instantaneous entrained	Probability of instantaneous entrained hydrocarbon exposure		Maximum instantaneous entrained	Probability of instantaneous entrained hydrocarbon exposure	
		hydrocarbon exposure	Low High		hydrocarbon exposure	Low	High
	Whale Flat	4,196	52	49	4,079	52	48
	Wunmiyi Island	-	-	-	-	-	-
	Wyndham - East Kimberley	16,868	97	97	16,878	97	97
State Waters	Northern Territory	16,710	65	61	16,069	66	61
	Western Australia	17,327	98	97	17,141	99	97
MNP - Timor	KKPN Laut Sawu	34	2	-	36	2	-

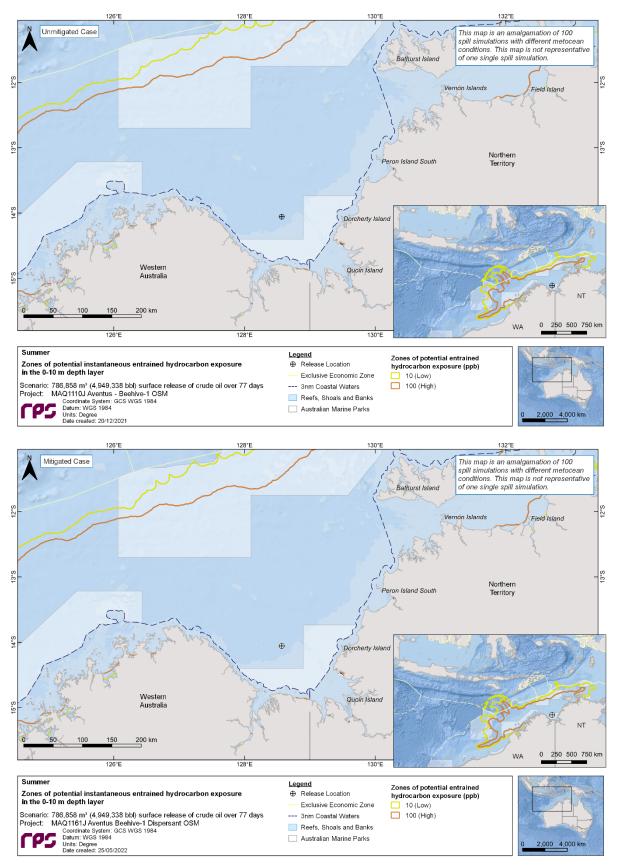


Figure 10.22 Zones of potential entrained hydrocarbon exposure at 0-10 m below the sea surface for the unmitigated (upper image) and mitigated (lower image) cases, in the event of a 786,858 m³ surface release of crude oil over 77 days, tracked for 98 days, during summer conditions. The results were calculated from 100 spill trajectories.

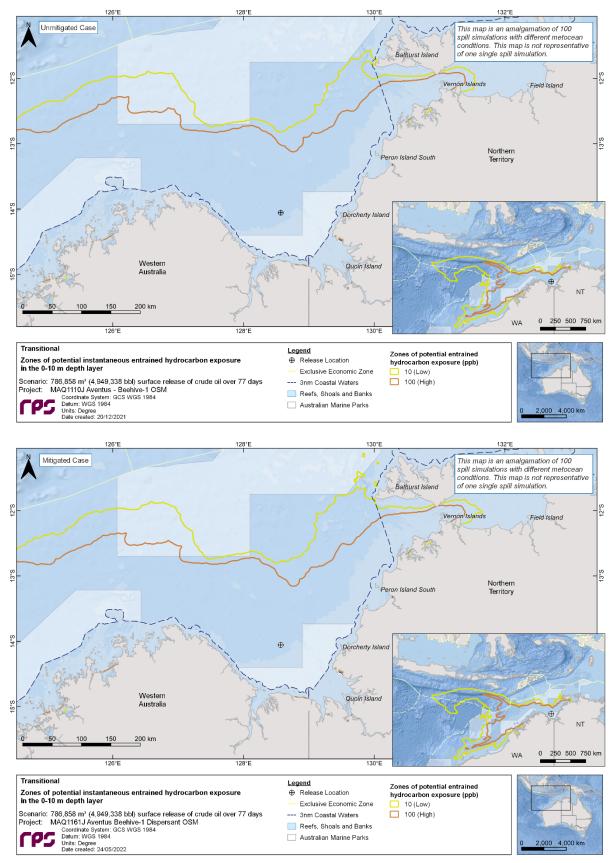


Figure 10.23 Zones of potential entrained hydrocarbon exposure at 0-10 m below the sea surface for the unmitigated (upper image) and mitigated (lower image) cases, in the event of a 786,858 m³ surface release of crude oil over 77 days, tracked for 98 days, during transitional conditions. The results were calculated from 100 spill trajectories.

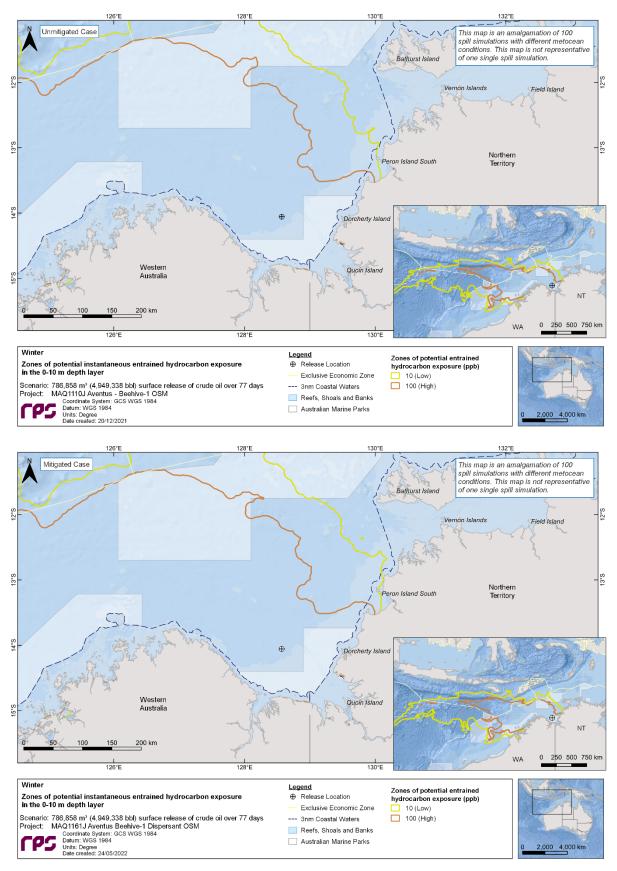


Figure 10.24 Zones of potential entrained hydrocarbon exposure at 0-10 m below the sea surface for the unmitigated (upper image) and mitigated (lower image) cases, in the event of a 786,858 m³ surface release of crude oil over 77 days, tracked for 98 days, during winter conditions. The results were calculated from 100 spill trajectories.

10.2 Deterministic Analysis

The stochastic modelling results were assessed for the unmitigated case, and the "worst case" deterministic runs were identified and presented below. The deterministic analysis assessed the largest swept area of floating oil above 1 g/m^2 (see Section 10.2.1), the minimum time before shoreline accumulation above 10 g/m^2 (see Section 10.2.2), the largest volume of oil ashore (see Section 10.2.3), the longest length of shoreline accumulation above 10 g/m^2 (see Section 10.2.4), the largest area of entrained hydrocarbons above 10 ppb (see Section 10.2.5), and the largest area of dissolved hydrocarbons above 10 ppb (see Section 10.2.6).

Table 10.15 presents a summary of all deterministic analysis criteria, the corresponding floating oil, shoreline accumulation, entrained hydrocarbon and dissolved hydrocarbon values at the assessed thresholds used and the seasonal model simulations used for comparison between the unmitigated and mitigated model results for the individual deterministic analysis runs.

Table 10.15 Summary of the deterministic analysis for the unmitigated and mitigated cases. Results are based on a 786,858 m³ surface release of crude oil over 77 days, tracked for 98 days, during seasonal conditions and both cases.

	Threshold	Deterministic Analysis Criteria											
Variable		Largest swept a	•	Minimum time baccumulation	pefore shoreline above 10 g/m²	Largest volum	e of oil ashore		th of shoreline above 10 g/m²	Largest area hydrocarb 10 p	ons above	•	of dissolved above 10 ppb
Season		Sumi	mer	Trans	itional	Sum	mer	Sun	nmer	Wir	nter	Sum	nmer
Run Number		79		88		17		33		1		7	
Case		Unmitigated	Mitigated	Unmitigated	Mitigated	Unmitigated	Mitigated	Unmitigated	Mitigated	Unmitigated	Mitigated	Unmitigated	Mitigated
	1 g/m ²	32,881	30,804	26,229	6,874	13,839	24,424	16,086	16,241	6,331	5,767	16,851	15,4890
Floating Oil Coverage (km²)	10 g/m ²	1,524	1,513	1,740	1,179	1,879	1,625	1,514	1,467	734	711	1,480	1,438
	50 g/m ²	886	880	1,047	755	883	1,043	855	852	446	440	890	853
	10 g/m ²	90	92	212	134	186	205	225	203	37	39	198	218
Shoreline Length (km)	100 g/m ²	48	46	124	63	115	121	86	82	17	16	72	69
	1,000 g/m ²	1	-	16	3	10	15	-	-	-	0	-	-
	10 g/m ²	34.79	19.88	25.13	22.13	19.83	25.21	26.83	33.50	35.63	25.67	30.50	30.79
Minimum Time (days)	100 g/m ²	54.17	53.46	25.21	24.25	26.83	25.63	33.58	34.13	50.71	48.25	31.33	31.17
	1,000 g/m ²	91.79	-	46.13	69.38	45.21	46.33	-	-	-	-	-	-
Maximum Volume (m³)		168	164	261	217	705	612	232	226	54	63	212	207
	10 ppb	141,066	142,158	83,846	27,525	30,291	84,813	235,748	239,405	497,484	497,757	238,868	241,079
Entrained Area (km²)	100 ppb	110,929	110,929	59,978	21,476	24,455	60,490	150,742	151,325	132,528	131,781	152,077	151,464
	10 ppb	96,182	90,750	56,884	23,902	21,430	55,016	132,870	125,482	57,316	62,421	134,488	131,231
Dissolved Area (km²)	50 ppb	61,042	61,638	46,082	21,355	19,147	44,111	73,065	74,386	25,871	26,750	70,991	74,581
	400 ppb	16,893	19,054	16,397	13,804	9,980	14,874	15,731	15,097	9,955	10,722	14,580	13,236
Start Date		16 th Jai		23 rd Septe	mber 2016	19 th Dec 20		25 th No 20	vember 013	8 th J		27 th No 20	

10.2.1 Deterministic Case: Largest swept area of floating oil above 1 g/m²

The unmitigated deterministic trajectory that resulted in the largest swept area of floating oil above 1 g/m² (low threshold and visible floating oil) was identified during summer conditions as run number 79 which started on 16th January 2011 (map illustrated in Figure 10.25).

Figure 10.26 displays the time series of the swept area of low (1 g/m²), moderate (10 g/m²) and high (50 g/m²) floating oil over the 98-day simulation, for the unmitigated and mitigated cases. For the unmitigated case, the maximum area of coverage of visible oil on the sea surface was predicted to occur 63 days after the spill started and covered approximately 400 km² (compared to 380 km², for the mitigated case). Floating oil above the moderate threshold (or actionable surface oil threshold) was predicted to spread across a maximum area of 215 km² (unmitigated case) and 210 km² (mitigated case). The total extent of actionable surface oil was predicted at 1,524 km² for the unmitigated case versus 1,513 km² (mitigated case) (refer to Table 10.15).

Figure 10.27 presents the fates and weathering graph for the corresponding single spill trajectory and Table 10.16 summarises the mass balance at the end of the simulation for the unmitigated and mitigated cases.

Table 10.16 Summary of the mass balance at day 98 for the trajectory that resulted in the largest swept area of floating oil above 1 g/m² for the unmitigated and mitigated cases. Results are based on a 786,858 m³ surface release of crude oil over 77 days, tracked for 98 days.

Firm a come Matrice	End of the simulation (day 98)					
Exposure Metrics	Unmitigated	Mitigated				
Surface/Floating Oil (m³)	0	0				
Entrained (m ³)	140,659	140,318				
Dissolved (m ³)	419	421				
Evaporated (m ³)	296,775	297,162				
Decay (m³)	348,045	348,000				
Ashore/Shoreline (m³)	166	164				
Sediment (m³)	794	793				

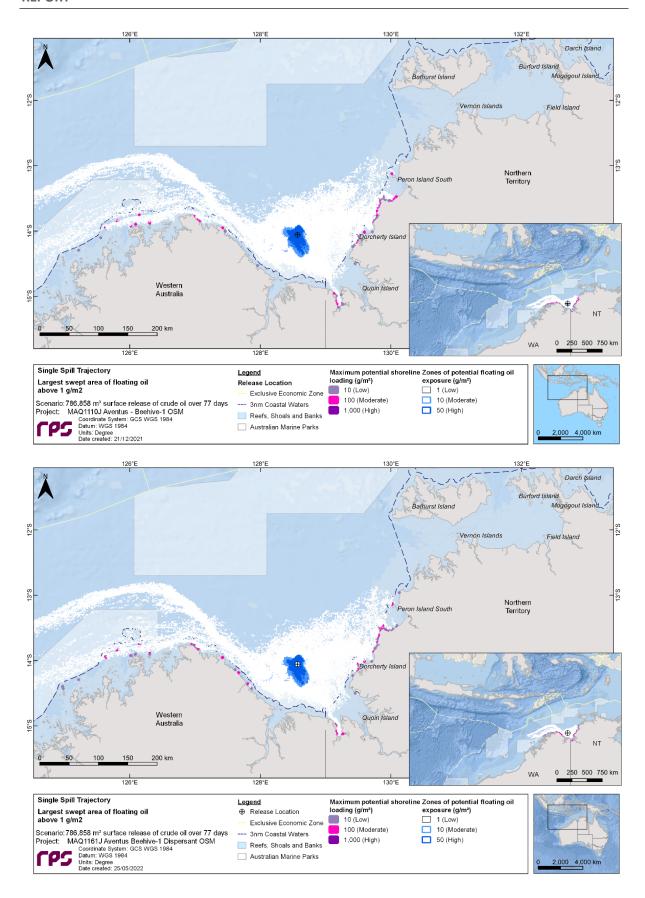


Figure 10.25 Zones of potential floating oil exposure and shoreline accumulation, for the trajectory with the largest swept area of floating oil above 1 g/m² for the unmitigated (upper image) and mitigated (lower image) cases. Results are based on a 786,858 m³ surface release of crude oil over 77 days, tracked for 98 days.

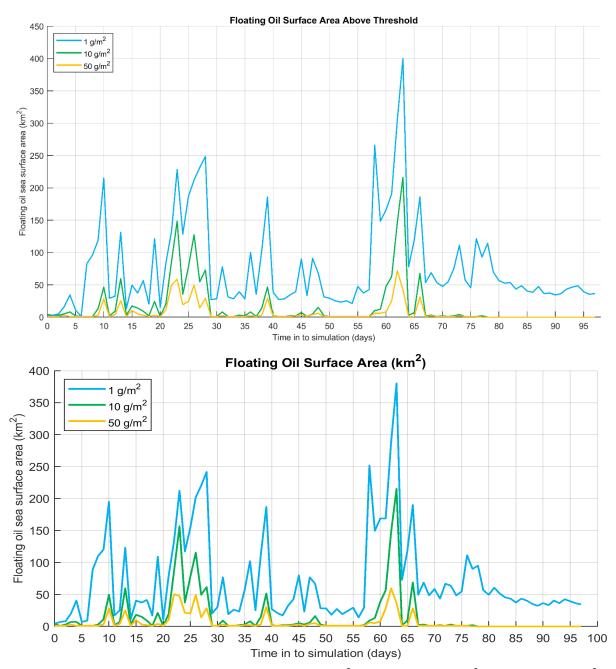
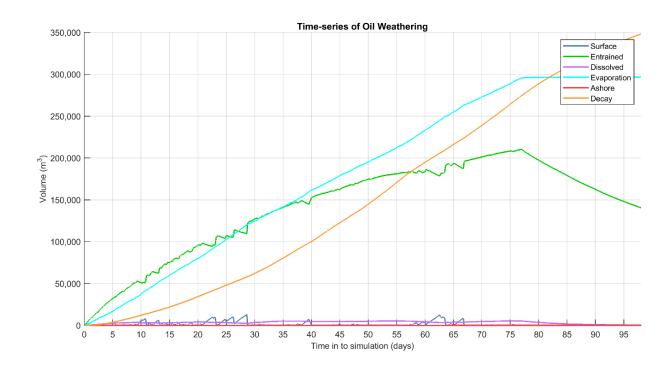



Figure 10.26 Time series of the area of low (1 g/m²), moderate (10 g/m²) and high (50 g/m²) floating oil for the trajectory with the largest swept area of floating oil above 1 g/m² for the unmitigated (upper image) and mitigated (lower image) cases. Results are based on a 786,858 m³ surface release of crude oil over 77 days, tracked for 98 days.

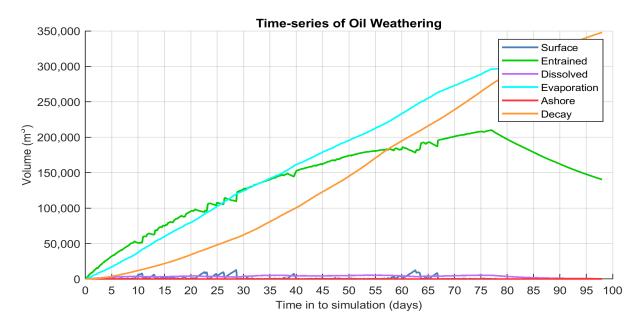


Figure 10.27 Predicted weathering and fates graph for the trajectory with the largest swept area of floating oil above 1 g/m² for the unmitigated (upper image) and mitigated (lower image) cases. Results are based on a 786,858 m³ surface release of crude oil over 77 days, tracked for 98 days.

10.2.2 Deterministic Case: Minimum time before shoreline accumulation above 10 g/m²

The unmitigated deterministic trajectory that resulted in the minimum time before shoreline accumulation above the low threshold (10 g/m^2) was identified during transitional conditions as run number 88 which started on the 23^{rd} September 2016 (map illustrated in Figure 10.28).

The maximum shoreline length contacted by oil above the low, moderate and high thresholds predicted for the unmitigated case was 212 km, 124 km and 16 km, versus 134 km, 63 km and 3 km for the mitigated case. Surface oil was predicted to arrive to the shoreline after 603 hours (unmitigated) and 531 hours (mitigated). The total volume of oil ashore was predicted to reduce from 261 m³ (unmitigated) to 217 m³ (mitigated) (refer to Table 10.15).

Figure 10.29 presents the fates and weathering graph for the corresponding single spill trajectory and Table 10.17 summarises the mass balance at the end of the 98-day simulation for the unmitigated and mitigated cases.

Table 10.17 Summary of the mass balance at day 98 for the trajectory that resulted in the minimum time before shoreline accumulation above the low threshold (10 g/m²) for the unmitigated and mitigated cases. Results are based on a 786,858 m³ surface release of crude oil over 77 days, tracked for 98 days.

Empression Matrices	End of the simulation (day 98)						
Exposure Metrics	Unmitigated	Mitigated					
Surface/Floating Oil (m³)	0	0					
Entrained (m³)	144,203	143,495					
Dissolved (m ³)	401	387					
Evaporated (m ³)	317,482	316,357					
Decay (m³)	323,707	325,590					
Ashore/Shoreline (m³)	271	235					
Sediment (m³)	794	794					

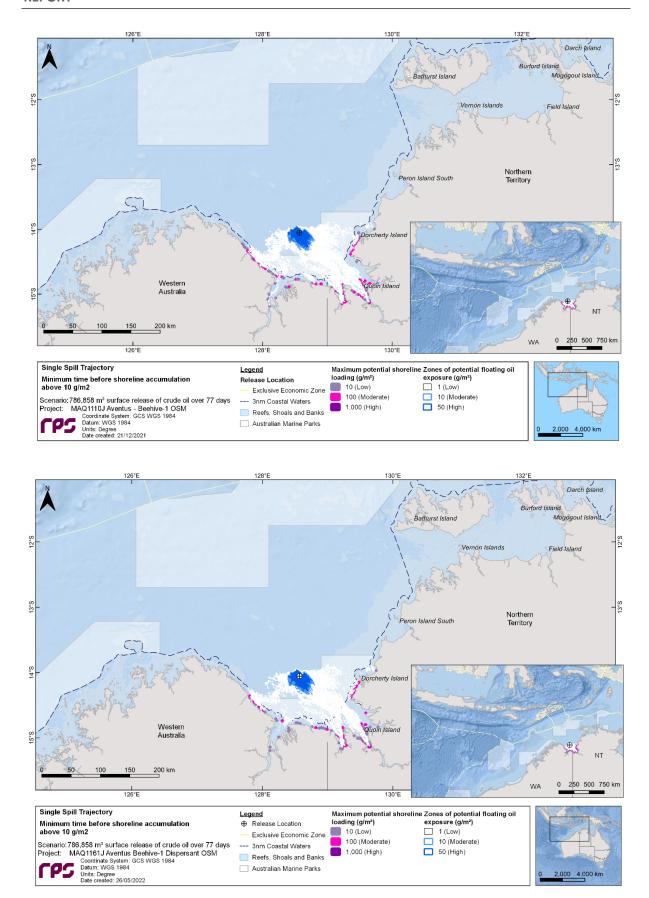


Figure 10.28 Zones of potential floating oil exposure and shoreline accumulation, for the trajectory with the minimum time before shoreline accumulation above 10 g/m² for the unmitigated (upper image) and mitigated (lower image) cases. Results are based on a 786,858 m³ surface release of crude oil over 77 days, tracked for 98 days.

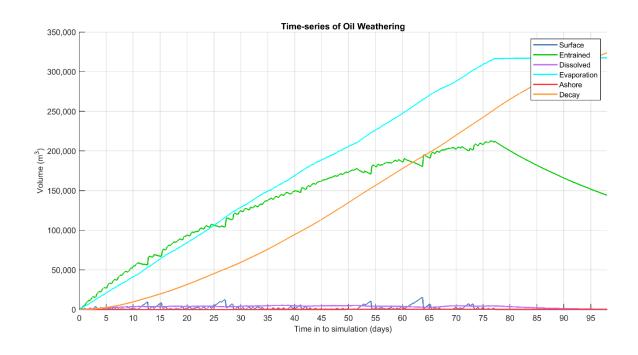


Figure 10.29 Predicted weathering and fates graph for the trajectory with the minimum time before shoreline accumulation above 10 g/m² for the unmitigated (upper image) and mitigated (lower image) cases. Results are based on a 786,858 m³ surface release of crude oil over 77 days, tracked for 98 days.

10.2.3 Deterministic Case: Largest volume of oil ashore

The unmitigated deterministic trajectory that resulted in the largest volume of oil ashore was identified during summer conditions as run number 17 which started on the 19th December 2011 (map illustrated in Figure 10.30).

Figure 10.31 displays the time series of the volume of oil accumulating on shorelines at the low (10 g/m^2) , moderate (100 g/m^2) and high $(1,000 \text{ g/m}^2)$ thresholds over the 98-day simulation, for the unmitigated and mitigated cases. The maximum shoreline length contacted by oil above the low, moderate and high thresholds predicted for the unmitigated case was 186 km, 115 km and 10 km, versus 205 km, 121 km and 15 km for the mitigated case, however the total volume of oil ashore was predicted to reduce from 705 m³ (unmitigated) to 612 m³ (mitigated) (refer to Table 10.15).

Figure 10.32 presents the fates and weathering graph for the corresponding single spill trajectory and Table 10.18 summarises the mass balance at the end of the simulation for the unmitigated and mitigated cases.

Table 10.18 Summary of the mass balance at day 98 for the trajectory that resulted in the largest volume of oil ashore for the unmitigated and mitigated cases. Results are based on a 786,858 m³ surface release of crude oil over 77 days, tracked for 98 days.

F Market	End of the simu	End of the simulation (day 98)						
Exposure Metrics	Unmitigated	Mitigated						
Surface/Floating Oil (m³)	0	0						
Entrained (m ³)	141,875	141,329						
Dissolved (m ³)	830	874						
Evaporated (m ³)	325,596	324,426						
Decay (m ³)	317,102	319,036						
Ashore/Shoreline (m³)	659	579						
Sediment (m³)	794	614						

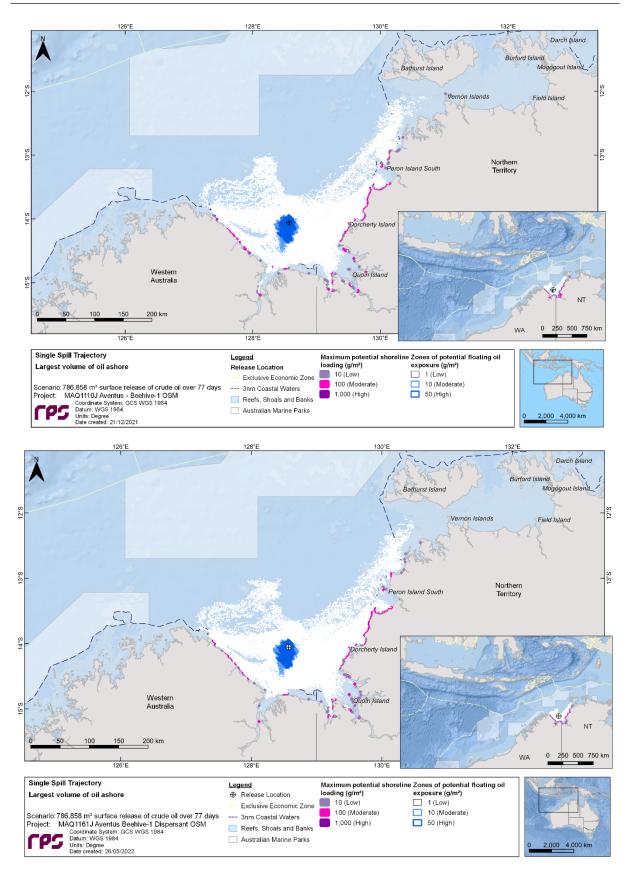


Figure 10.30 Zones of potential floating oil exposure and shoreline accumulation, for the trajectory with the largest volume of oil ashore for the unmitigated (upper image) and mitigated (lower image) cases. Results are based on a 786,858 m³ surface release of crude oil over 77 days, tracked for 98 days.

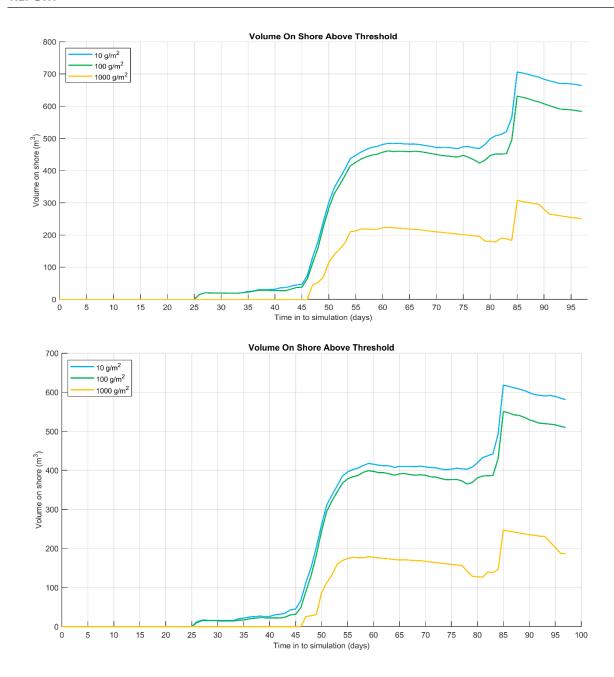
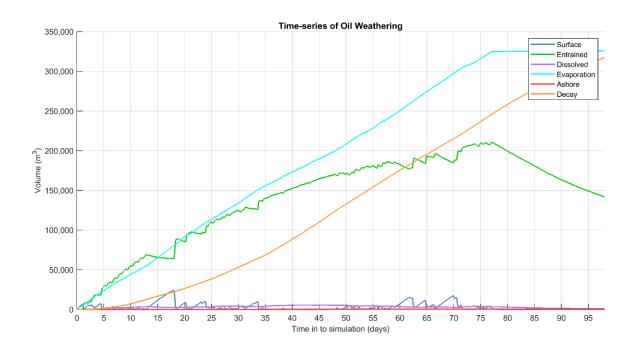



Figure 10.31 Time series of the volume of oil accumulating on shorelines at the low (10 g/m²), moderate (100 g/m²) and high (1,000 g/m²) thresholds for the trajectory with the largest volume of oil ashore for the unmitigated (upper image) and mitigated (lower image) cases. Results are based on a 786,858 m3 surface release of crude oil over 77 days, tracked for 98 days.

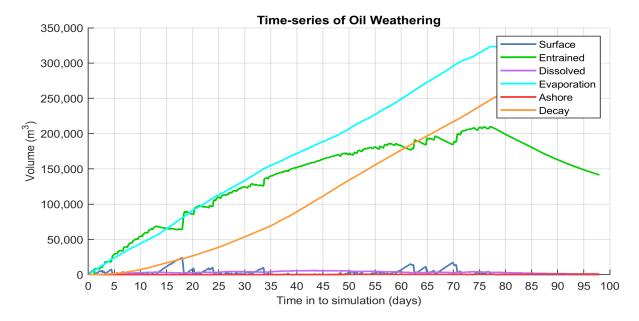


Figure 10.32 Predicted weathering and fates graph for the trajectory with the largest volume of oil ashore for the unmitigated (upper image) and mitigated (lower image) cases. Results are based on a 786,858 m³ surface release of crude oil over 77 days, tracked for 98 days.

10.2.4 Deterministic Case: Longest length of shoreline accumulation above 10 g/m²

The unmitigated deterministic trajectory that resulted in the longest length of shoreline accumulation above 100 g/m² was identified during summer conditions as run number 33 which started on the 25th November 2013 (map illustrated in Figure 10.33).

Figure 10.34 displays the time series of the length of oil accumulation on shorelines at the low $(10~g/m^2)$, moderate $(100~g/m^2)$ and high $(1,000~g/m^2)$ thresholds over the 98-day simulation, for the unmitigated and mitigated cases. The maximum shoreline length contacted by oil above the low and moderate thresholds predicted for the unmitigated case was 225 km and 86 km, versus 205 km, and 82 km for the mitigated case. The total volume of oil ashore was predicted to reduce from 232 m³ (unmitigated) to 226 m³ (mitigated) (refer to Table 10.15).

Figure 10.35 presents the fates and weathering graph for the corresponding single spill trajectory and Table 10.19 summarises the mass balance at the end of the simulation for the unmitigated and mitigated cases.

Table 10.19 Summary of the mass balance at day 98 for the trajectory that resulted in the longest length of shoreline accumulation above 10 g/m² for the unmitigated and mitigated cases. Results are based on a 786,858 m³ surface release of crude oil over 77 days, tracked for 98 days.

F	End of the simulation (day 98)						
Exposure Metrics	Unmitigated	Mitigated					
Surface/Floating Oil (m³)	0	0					
Entrained (m³)	140,158	140,222					
Dissolved (m ³)	491	459					
Evaporated (m³)	315,572	315,077					
Decay (m³)	329,599	330,076					
Ashore/Shoreline (m³)	245	230					
Sediment (m³)	794	794					

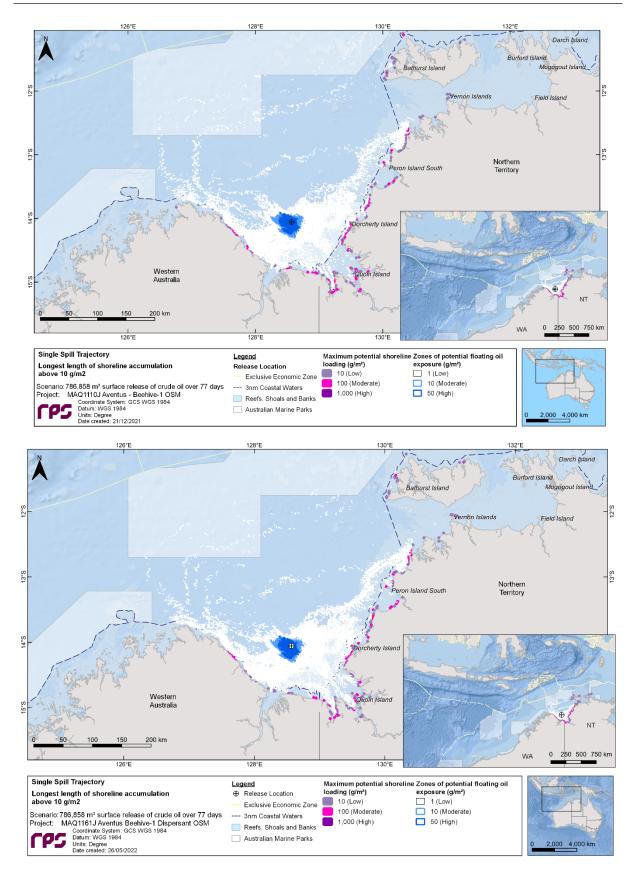


Figure 10.33 Zones of potential floating oil exposure and shoreline accumulation, for the trajectory with the longest length of shoreline accumulation above 10 g/m² for the unmitigated (upper image) and mitigated (lower image) cases. Results are based on a 786,858 m³ surface release of crude oil over 77 days, tracked for 98 days.

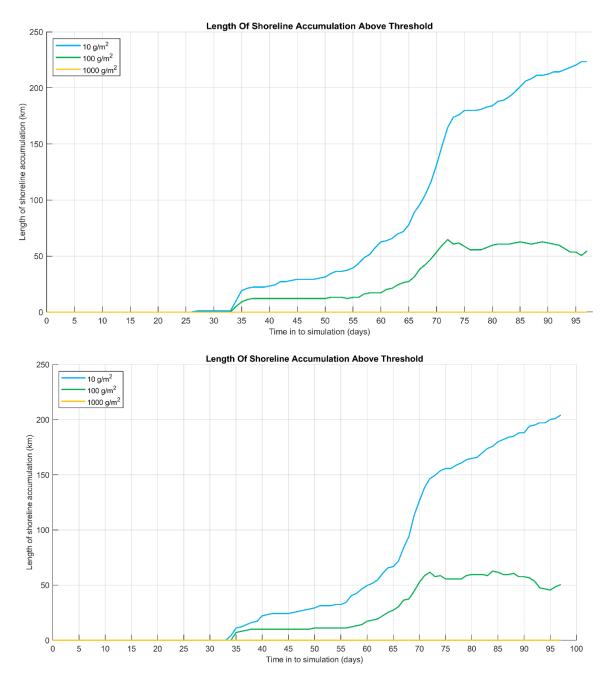
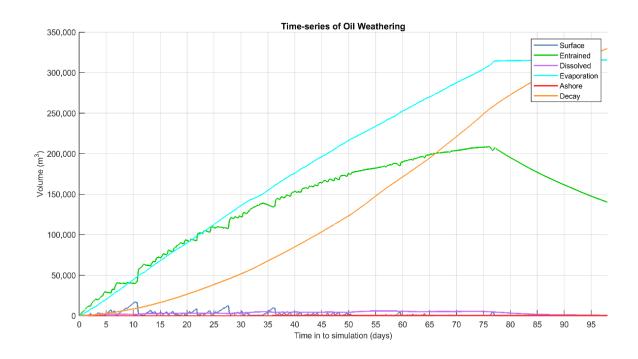



Figure 10.34 Time series of the length of shoreline at the low (10 g/m²), moderate (100 g/m²) and high (1,000 g/m²) thresholds for the trajectory with the longest length of shoreline accumulation above 10 g/m² for the unmitigated (upper image) and mitigated (lower image) cases. Results are based on a 786,858 m³ surface release of crude oil over 77 days, tracked for 98 days.

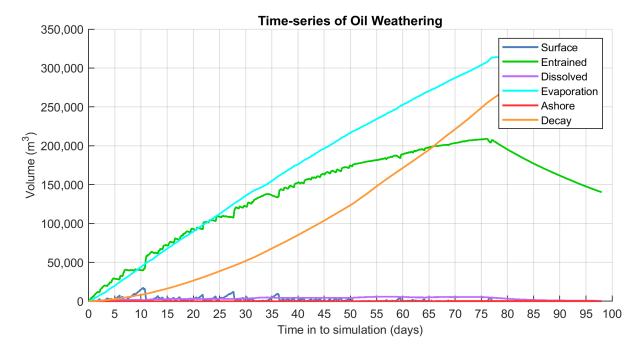


Figure 10.35 Predicted weathering and fates graph for the trajectory with the longest length of shoreline accumulation above 10 g/m² for the unmitigated (upper image) and mitigated (lower image) cases. Results are based on a 786,858 m³ surface release of crude oil over 77 days, tracked for 98 days.

10.2.5 Deterministic Case: Largest area of entrained hydrocarbons above 10 ppb

The unmitigated deterministic trajectory that resulted in the largest area of entrained hydrocarbons above 10 ppb (low threshold) was identified during winter conditions as run number 1 which started on the 8th June 2011 (map illustrated in Figure 10.36).

Figure 10.37 displays the time series of the area of entrained hydrocarbons at the low (10 ppb) and moderate (100 ppb) thresholds over the 98-day simulation, for the unmitigated and mitigated cases. The maximum shoreline length contacted by oil above the low and moderate thresholds predicted for the unmitigated case was 37 km and 17 km, versus 39 km, and 16 km for the mitigated case. The total volume of oil ashore was predicted to increase from 54 m³ (unmitigated) to 63 m³ (mitigated) (refer to Table 10.15).

Figure 10.38 presents the fates and weathering graph for the corresponding single spill trajectory and Table 10.20 summarises the mass balance at the end of the simulation for the unmitigated and mitigated cases.

Table 10.20 Summary of the mass balance at day 98 for the trajectory that resulted in the largest area of entrained hydrocarbons above 10 ppb for the unmitigated and mitigated cases. Results are based on 786,858 m³ surface release of crude oil over 77 days, tracked for 98 days.

Emperor Metrico	End of the simu	lation (day 98)
Exposure Metrics	Unmitigated	Mitigated
Surface/Floating Oil (m³)	0	0
Entrained (m ³)	142,358	142,324
Dissolved (m ³)	562	546
Evaporated (m ³)	291,765	291,653
Decay (m ³)	351,324	351,483
Ashore/Shoreline (m³)	55	58
Sediment (m³)	794	794

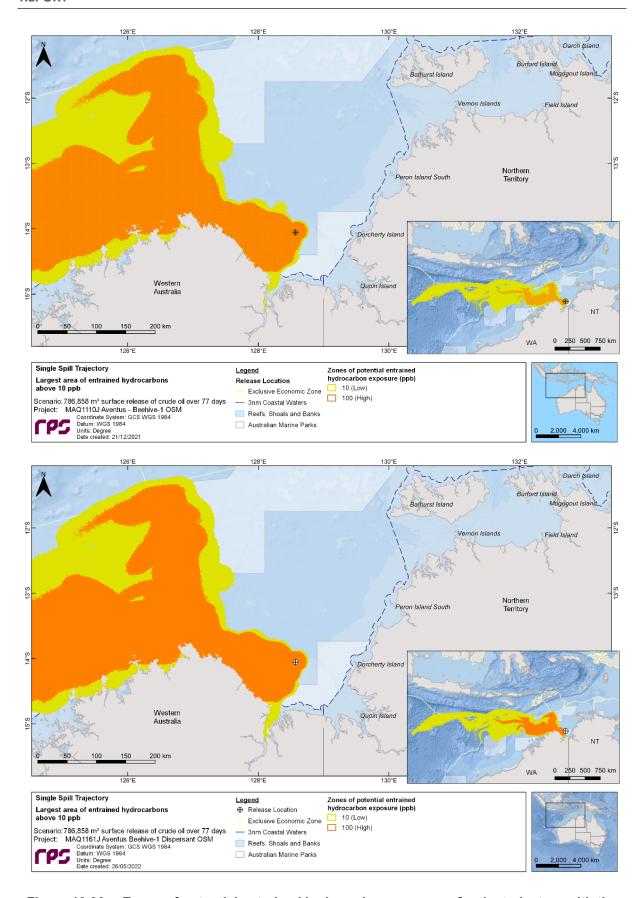
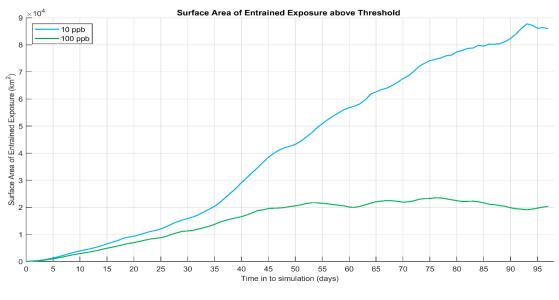



Figure 10.36 Zones of potential entrained hydrocarbon exposure, for the trajectory with the largest area of entrained hydrocarbons above 10 ppb for the unmitigated (upper image) and mitigated (lower image) cases. Results are based on a 786,858 m³ surface release of crude oil over 77 days, tracked for 98 days.

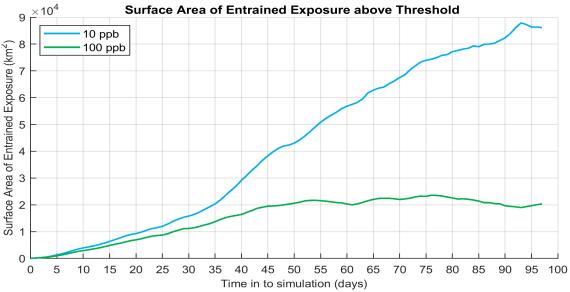
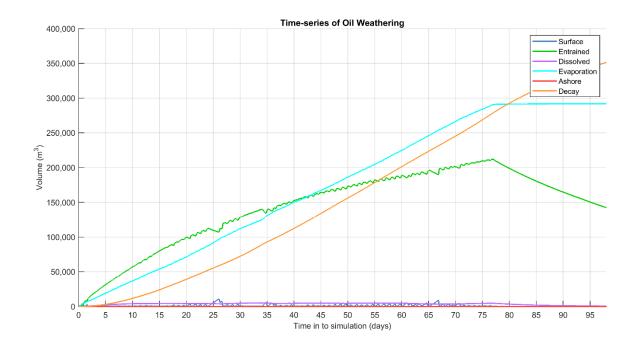



Figure 10.37 Time series of the area of low (10 ppb) and moderate (100 ppb) entrained hydrocarbons for the trajectory with the largest area of entrained hydrocarbons above 10 ppb for the unmitigated (upper image) and mitigated (lower image) cases. Results are based on a 786,858 m³ surface release of crude oil over 77 days, tracked for 98 days.

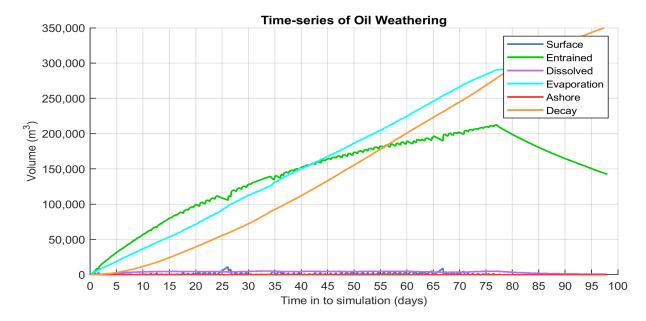


Figure 10.38 Predicted weathering and fates graph for the trajectory with the largest area of entrained hydrocarbons above 10 ppb for the unmitigated (upper image) and mitigated (lower image) cases. Results are based on a 786,858 m³ surface release of crude oil over 77 days, tracked for 98 days.

10.2.6 Deterministic Case: Largest area of dissolved hydrocarbons above 10 ppb

The unmitigated deterministic trajectory that resulted in the largest area of dissolved hydrocarbons above 10 ppb (low threshold) was identified during summer conditions as run number 7 which started on the 27th November 2013 (map illustrated in Figure 10.39).

Figure 10.40 displays the time series of the area of dissolved hydrocarbons at the low (10 ppb), moderate (50 ppb) and high (400 g/m²) thresholds over the 98-day simulation, for the unmitigated and mitigated cases. The maximum shoreline length contacted by oil above the low and moderate thresholds predicted for the unmitigated case was 198 km and 72 km, versus 218 km, and 69 km for the mitigated case. The total volume of oil ashore was predicted to increase from 212 m³ (unmitigated) to 207 m³ (mitigated) (refer to Table 10.15).

Figure 10.41 presents the fates and weathering graph for the corresponding single spill trajectory and Table 10.21 summarises the mass balance at the end of the simulation for the unmitigated and mitigated cases.

Table 10.21 Summary of the mass balance at day 98 for the trajectory that resulted in the largest area of dissolved hydrocarbons above 10 ppb for the unmitigated and mitigated cases. Results are based on a 786,858 m³ surface release of crude oil over 77 days, tracked for 98 days.

Function Matrice	End of the simulation (day 98)						
Exposure Metrics	Unmitigated	Mitigated					
Surface/Floating Oil (m³)	0	0					
Entrained (m³)	140,338	139,869					
Dissolved (m ³)	505	514					
Evaporated (m³)	315,546	315,385					
Decay (m³)	329,456	330,087					
Ashore/Shoreline (m³)	219	209					
Sediment (m³)	794	794					

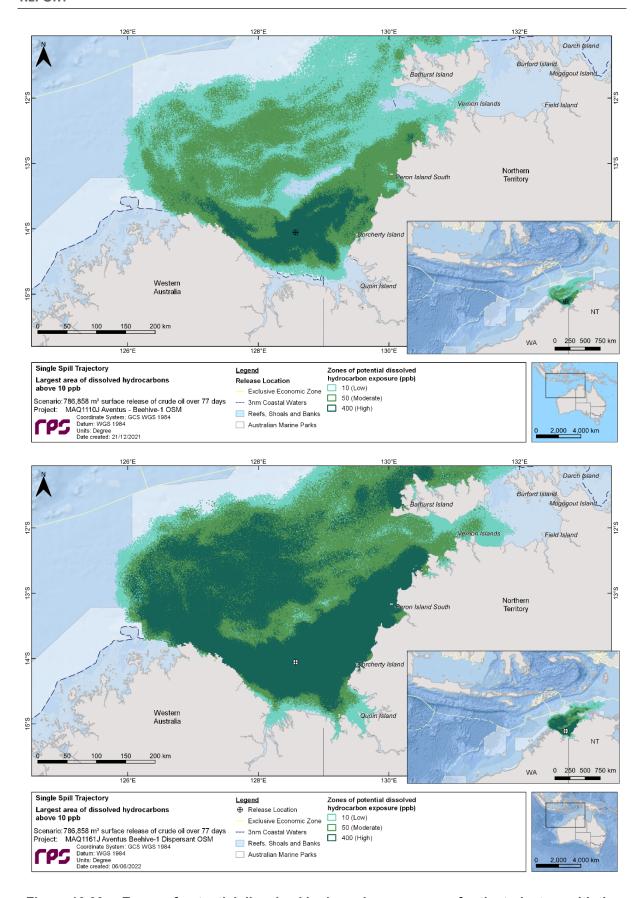
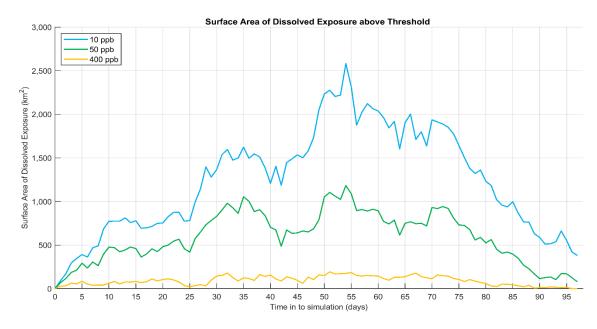



Figure 10.39 Zones of potential dissolved hydrocarbon exposure, for the trajectory with the largest area of dissolved hydrocarbons above 10 ppb for the unmitigated (upper image) and mitigated (lower image) cases. Results are based on a 786,858 m³ surface release of crude oil over 77 days, tracked for 98 days.

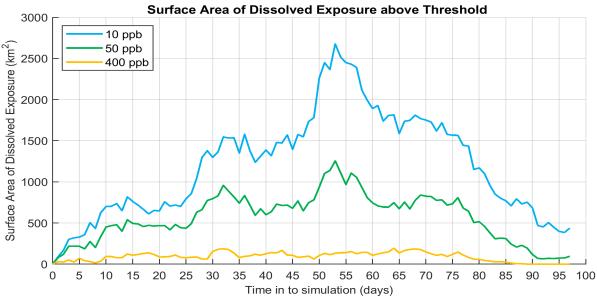
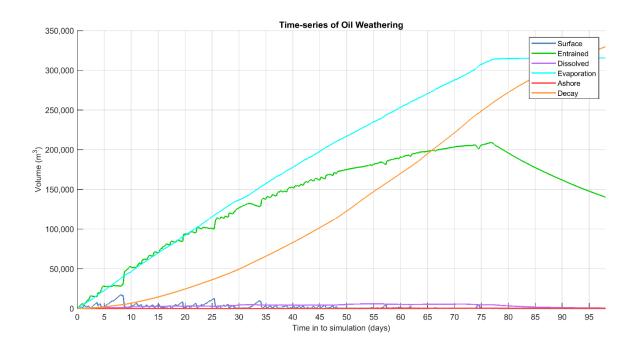



Figure 10.40 Time series of the area of low (10 ppb), moderate (50 ppb) and high (400 ppb) dissolved hydrocarbons for the trajectory with the largest area of dissolved hydrocarbons above 10 ppb for the unmitigated (upper image) and mitigated (lower image) cases. Results are based on a 786,858 m³ surface release of crude oil over 77 days, tracked for 98 days.

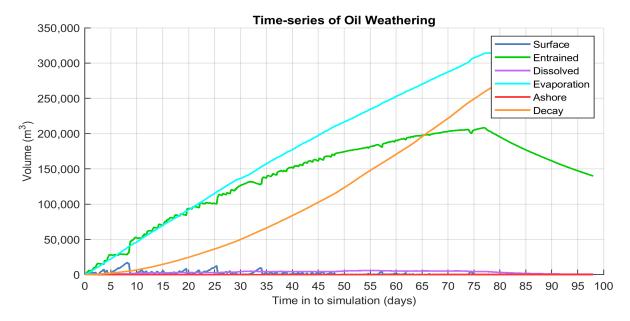


Figure 10.41 Predicted weathering and fates graph for the trajectory with the largest area of dissolved hydrocarbons above 10 ppb for the unmitigated (upper image) and mitigated (lower image) cases. Results are based on a 786,858 m³ surface release of crude oil over 77 days, tracked for 98 days.

11 REFERENCES

- American Society for Testing and Materials (ASTM) 2013. F2067-13 Standard Practice for Development and Use of Oil-Spill Trajectory Models, ASTM International, West Conshohocken (PA).
- Andersen, OB 1995, 'Global ocean tides from ERS 1 and TOPEX/POSEIDON altimetry', Journal of Geophysical Research: Oceans, vol. 100, no. C12, pp. 25249–25259.
- Anderson JW, Neff JM, Cox BA, Tatem HE & Hightower GM 1974, 'Characteristics of dispersions and water-soluble extracts of crude and refined oils and their toxicity to estuarine crustaceans and fish', Marine Biology, vol. 27, no. 1, pp. 75–88.
- Anderson JW, Riley R, Kiesser S & Gurtisen J 1987, 'Toxicity of dispersed and undispersed Prudhoe Bay crude oil fractions to shrimp and fish', Proceedings of the 1987 International Oil Spill Conference, American Petroleum Institute, pp. 235–240.
- Asia-Pacific ASA, 2010. Montara well release monitoring study S7.2. Oil fate and effects assessment: modelling of chemical dispersant operation. Prepared for PTTEP Australasia.
- Australian Maritime Safety Authority (AMSA) 2014, 'Identification of oil on water: Aerial observations and identification guide', viewed 4 June 2020, https://www.amsa.gov.au/sites/default/files/2014-01-mp-amsa22-identification-oil-on-water.pdf
- Australian Maritime Safety Authority (AMSA) 2015, 'Australian Maritime Safety Authority Technical Guideline for the Preparation of Marine Pollution Contingency Plans for Marine and Coastal Facilities Australian Maritime Safety Authority', viewed 20 June 2017, https://www.amsa.gov.au/forms-and-publications/Publications/AMSA413_Contingency_Planning_Guidelines.pdf
- Australian and New Zealand Environment and Conservation Council (ANZECC) & Australian and New Zealand Environment and Conservation Council, Agriculture and Resource Management Council of Australia and New Zealand (ARMCANZ) 2000, 'Australian and New Zealand guidelines for fresh and marine water quality Volume 1, The guidelines (National water quality management strategy; no.4)', Australian and New Zealand Environment and Conservation Council, Agriculture and Resource Management Council of Australia and New Zealand.
- Becker, JJ, Sandwell, DT, Smith, WHF, Braud, J, Binder, B, Depner, J, Fabre, D, Factor, J, Ingalls, S, Kim, S-H, Ladner, R, Marks, K, Nelson, S, Pharaoh, A, Trimmer, R, Von Rosenberg, J, Wallace, G & Weatherall, P 2009, 'Global bathymetry and evaluation data at 30 arc seconds resolution: SRTM30_PLUS', Marine Geodesy, vol. 32, no. 4, pp. 355–371.
- Blum DJ & Speece RE 1990, 'Determining chemical toxicity to aquatic species', Environmental Science & Technology, vol. 24, no. 3, pp. 284–293.
- Bonn Agreement 2009, 'Bonn Agreement aerial operations handbook, 2009 Publication of the Bonn Agreement', viewed 13 January 2015, http://www.bonnagreement.org/site/assets/files/3947/ba-aoh_revision_2_april_2012.pdf

- Carls, MG, Holland, L, Larsen, M., Collier, TK, Scholz, NL & Incardona, JP 2008, 'Fish embryos are damaged by dissolved PAHs, not oil particles', Aquatic toxicology, vol. 88, no. 2, 121–127.
- Chassignet, EP, Hurlburt, HE, Smedstad, OM, Halliwell, GR, Hogan, PJ, Wallcraft, AJ, Baraille, R & Bleck, R 2007, 'The HYCOM (hybrid coordinate ocean model) data assimilative system', Journal of Marine Systems, vol. 65, no. 1, pp. 60–83.
- Chassignet, E, Hurlburt, H, Metzger, E, Smedstad, O, Cummings, J & Halliwell, G 2009, 'U.S. GODAE: Global Ocean Prediction with the HYbrid Coordinate Ocean Model (HYCOM)', Oceanography, vol. 22, no. 2, pp. 64–75.
- Davies, AM 1977a, 'The numerical solutions of the three-dimensional hydrodynamic equations using a B-spline representation of the vertical current profile', in JC Nihoul (ed), Bottom Turbulence: Proceedings of the 8th Liège Colloquium on Ocean Hydrodynamics, Elsevier Scientific, Amsterdam, pp. 1–25.
- Davies, AM 1977b, 'Three-dimensional model with depth-varying eddy viscosity', in JC Nihoul (ed), Bottom Turbulence: Proceedings of the 8th Liège Colloquium on Ocean Hydrodynamics, Elsevier Scientific, Amsterdam, pp. 27–48.
- French, D, Reed, M, Jayko, K, Feng, S, Rines, H, Pavignano, S, Isaji, T, Puckett, S, Keller, A, French III, FW, Gifford, D, McCue, J, Brown, G, MacDonald, E, Quirk, J, Natzke, S, Bishop, R, Welsh, M, Phillips, M & Ingram, BS 1996, 'The CERCLA Type A natural resource damage assessment model for coastal and marine environments (NRDAM/CME), Technical Documentation, Volume I Model Description, Final Report,' Office of Environmental Policy and Compliance, U.S. Department of the Interior, Washington DC.
- French, D, Schuttenberg, H & Isaji, T 1999, 'Probabilities of oil exceeding thresholds of concern: examples from an evaluation for Florida Power and Light', Proceedings of the 22nd Arctic and Marine Oil Spill Program (AMOP) Technical Seminar, Environment Canada, Alberta, pp. 243–270.
- French-McCay, DP 2002, 'Development and application of an oil toxicity and exposure model, OilToxEx', Environmental Toxicology and Chemistry, vol. 21, no. 10, pp. 2080–2094.
- French-McCay, DP 2003, 'Development and application of damage assessment modelling: example assessment for the North Cape oil spill', Marine Pollution Bulletin, vol. 47, no. 9, pp. 9–12.
- French-McCay, DP 2004, 'Spill impact modelling: development and validation', Environmental Toxicology and Chemistry, vol. 23, no.10, pp. 2441–2456.
- French-McCay, DP 2009, 'State-of-the-art and research needs for oil spill impact assessment modelling', Proceedings of the 32nd Arctic and Marine Oil Spill Program (AMOP) Technical Seminar, Environment Canada, Ottawa, pp. 601–653.
- French-McCay, D, Rowe, JJ, Whittier, N, Sankaranarayanan, S, & Etkin, DS 2004, 'Estimate of potential impacts and natural resource damages of oil', Journal of Hazardous Materials, vol. 107, no. 1, pp. 11–25.

- French-McCay, D, Whittier, N, Dalton, C, Rowe, J, Sankaranarayanan, S & Aurand, D 2005a, 'Modeling the fates of hypothetical oil spills in Delaware, Florida, Texas, California, and Alaska waters, varying response options including use of dispersants', Proceedings of the International Oil Spill Conference 2005, American Petroleum Institute, Washington DC, paper 399.
- French-McCay, D, Whittier, N, Rowe, J, Sankaranarayanan, S, Kim, H-S & Aurand, D 2005b, 'Use of probabilistic trajectory and impact modeling to assess consequences of oil spills with various response strategies,' Proceedings of the 28th Arctic and Marine Oil Spill Program (AMOP) Technical Seminar, Environment Canada, Ottawa, pp. 253–271.
- French-McCay, D, Reich, D, Rowe, J, Schroeder, M & Graham, E 2011, 'Oil spill modeling input to the offshore environmental cost model (OECM) for US-BOEMRE's spill risk and costs evaluations', Proceedings of the 34th Arctic and Marine Oil Spill Program (AMOP) Technical Siminar, Environment Canada, Ottawa.
- French-McCay, D, Reich, D, Michel, J, Etkin, DS, Symons, L, Helton, D, & Wagner J 2012, 'Oil spill consequence analysis of potentially-polluting shipwrecks', Proceedings of the 35th Arctic and Marine Oil Spill Program (AMOP) Technical Seminar, Environment Canada, Ottawa.
- French-McCay, D, Jayko, K, Li, Z, Horn, M, Kim, Y, Isaji, T, Crowley, D, Spaulding, M, Decker, L, Turner, C, Zamorski, S, Fontenault, J, Schmmkler, R & Rowe, J 2015, 'Technical Reports for Deepwater Horizon Water Column Injury Assessment: WC_TR.14: Modeling Oil Fate and Exposure Concentrations in the Deepwater Plume and Rising Oil Resulting from the Deepwater Horizon Oil Spill' RPS ASA, South Kingston, Rhode Island.
- Gordon, R 1982, 'Wind driven circulation in Narragansett Bay' PhD thesis, Department of Ocean Engineering, University of Rhode Island.
- Grant, DL, Clarke, PJ & Allaway, WG 1993, 'The response of grey mangrove (*Avicennia marina* (Forsk.) Vierh) seedlings to spills of crude oil,' The Journal of Experimental Marine Biological Ecology, vol. 171, no. 2, pp. 273–295.
- International Tankers Owners Pollution Federation (ITOPF) 2014, 'Technical Information Paper 2 Fate of Marine Oil Spills', International Tankers Owners Pollution Federation td, UK.
- Isaji, T & Spaulding, M 1984, 'A model of the tidally induced residual circulation in the Gulf of Maine and Georges Bank', Journal of Physical Oceanography, vol. 14, no. 6, pp. 1119–1126.
- Isaji, T, Howlett, E, Dalton C, & Anderson, E 2001, 'Stepwise-continuous-variable-rectangular grid hydrodynamics model', Proceedings of the 24th Arctic and Marine Oil spill Program (AMOP) Technical Seminar (including 18th TSOCS and 3rd PHYTO), Environment Canada, Edmonton, pp. 597–610.
- Koops, W, Jak, RG & van der Veen, DPC 2004, 'Use of dispersants in oil spill response to minimise environmental damage to birds and aquatic organisms', Proceedings of the Interspill 2004: Conference and Exhibition on Oil Spill Technology, Trondheim, presentation 429.

- Kostianoy, AG, Ginzburg, AI, Lebedev, SA, Frankignoulle, M & Delille, B 2003, 'Fronts and mesoscale variability in the southern Indian Ocean as inferred from the TOPEX/POSEIDON and ERS-2 Altimetry data', Oceanology, vol. 43, no. 5, pp. 632–642.
- Levitus, S, Antonov, JI, Baranova, OK, Boyer, TP, Coleman, CL, Garcia, HE, Grodsky, AI, Johnson, DR, Locarnini, RA, Mishonov, AV, Reagan, JR, Sazama, CL, Seidov, D, Smolyar, I, Yarosh, ES & Zweng, MM 2013, 'The World Ocean Database', Data Science Journal, vol.12, no. 0, pp. WDS229–WDS234.
- Lin, Q & Mendelssohn, IA 1996, 'A comparative investigation of the effects of south Louisiana crude oil on the vegetation of fresh, brackish and Salt Marshes', Marine Pollution Bulletin, vol. 32, no. 2, pp. 202–209.
- Ludicone, D, Santoleri, R, Marullo, S & Gerosa, P 1998, 'Sea level variability and surface eddy statistics in the Mediterranean Sea from TOPEX/POSEIDON data. Journal of Geophysical Researchl, vol. 103, no. C2, pp. 2995–3011.
- Malins DC & Hodgins HO 1981, 'Petroleum and marine fishes: a review of uptake, disposition, and effects', Environmental Science & Technology, vol. 15, no. 11, pp.1272–1280.
- Matsumoto, K, Takanezawa, T & Ooe, M 2000, 'Ocean tide models developed by assimilating TOPEX/POSEIDON altimeter data into hydrodynamical model: A global model and a regional model around Japan', Journal of Oceanography, vol. 56, no.5, pp. 567–581.
- McAuliffe CD 1987, 'Organism exposure to volatile/soluble hydrocarbons from crude oil spills a field and laboratory comparison', Proceedings of the 1987 International Oil Spill Conference, American Petroleum Institute, pp. 275–288.
- McCarty LS 1986, 'The relationship between aquatic toxicity QSARs and bioconcentration for some organic chemicals', Environmental Toxicology and Chemistry, vol. 5, no. 12, pp. 1071–1080.
- McCarty LS, Dixon DG, MacKay D, Smith AD & Ozburn GW 1992a, 'Residue-based interpretation of toxicity and bioconcentration QSARs from aquatic bioassays: Neutral narcotic organics', Environmental Toxicology and Chemistry, vol. 11, no. 7, pp.917–930.
- McCarty LP, Flannagan DC, Randall SA & Johnson KA 1992b, 'Acute toxicity in rats of chlorinated hydrocarbons given via the intratracheal route', Human & Experimental Toxicology, vol. 11, no. 3, pp.173–117.
- McCarty LS & Mackay D 1993, 'Enhancing ecotoxicological modelling and assessment. Body residues and modes of toxic action', Environmental Science & Technology, vol. 27, no. 9, pp. 1718–1728.
- McGrath JA, & Di Toro DM 2009, 'Validation of the target lipid model for toxicity assessment of residual petroleum constituents: monocyclic and polycyclic aromatic hydrocarbons', Environmental Toxicology and Chemistry, vol. 28, no. 6, pp. 1130–1148.
- National Centers for Environmental Information (NCEI) 2021, 'World Ocean Atlas' viewed 20 July 2021, https://www.ncei.noaa.gov/products/world-ocean-atlas

- National Oceanic and Atmospheric Administration (NOAA) 2010, Characteristics of Response Strategies: A Guide for Spill Response Planning in Marine Environments. U.S. Department of Commerce, U.S. Coast Guard, U.S. Environmental Protection Agency, American Petroleum Institute, Washington DC.
- National Oceanic and Atmospheric Administration (NOAA) 2013, Screening level risk assessment package Gulf state, Office of National Marine Sanctuaries & Office of Response and Restoration, Washington DC.
- National Offshore Petroleum Safety and Environmental Management Authority (NOPSEMA) 2018, 'At a glance: Oil spill modelling', viewed 15 November 2018, https://www.nopsema.gov.au/assets/Publications/A626200.pdf
- National Offshore Petroleum Safety and Environmental Management Authority (NOPSEMA) 2019, 'Environment bulletin: Oil spill modelling', viewed 4 February 2020, https://www.nopsema.gov.au/assets/Bulletins/A652993.pdf
- National Research Council (NRC) 2003, 'Oil in the sea III: Inputs, fates and effects', National Research Council, The National Academic Press, Washington DC.
- National Research Council (NRC) 2005, 'Oil Spill Dispersants Efficacy and Effects. Committee on Oil Spill Dispersants: Efficacy and Effects', National Research Council, The National Academies Press, Washington DC.
- Neff JM & Anderson JW 1981, 'Response of marine animals to petroleum and specific petroleum hydrocarbons' United States Department of Energy, United States.
- Nirmalakhandan N & Speece RE 1988, 'Quantitative techniques for predicting the behaviour of chemicals in the ecosystem', Environmental Science & Technology, vol. 22, no. 6, pp. 606–615.
- Nordtug, T, Olsen, AJ, Altin, D, Overrein, I, Storøy, W, Hansen, BH & De Laender, F 2011, 'Oil droplets do not affect assimilation and survival probability of first feeding larvae of North-East Arctic cod', Science of the Total Environment, vol. 412, pp.148–153.
- Oil Spill Solutions 2015, 'Evaluation The Theory of Oil Slick Appearances', viewed 6 January 2015, http://www.oilspillsolutions.org/evaluation.htm
- Owen, A 1980, 'A three-dimensional model of the Bristol Channel', Journal of Physical Oceanography, vol. 10, pp. 1290–1302.
- Qiu, B & Chen, S 2010, 'Eddy-mean flow interaction in the decadally modulating Kuroshio Extension system', Deep-Sea Research II, vol. 57, no. 13, pp. 1098–1110.
- Redman AD 2015, 'Role of entrained droplet oil on the bioavailability of petroleum substances in aqueous exposures', Marine Pollution Bulletin, vol. 97, no. 1–2, pp. 342–348.
- Saha, S, Moorthi, S, Pan, H-L, Wu, X, Wang, J & Nadiga, S 2010, 'The NCEP Climate Forecast System Reanalysis', Bulletin of the American Meteorological Society, vol. 91, no. 8, pp. 1015–1057.

- Scholten, MCTh, Kaag, NHBM, Dokkum, HP van, Jak, R.G., Schobben, HPM & Slob, W 1996, Toxische effecten van olie in het aquatische milieu, TNO report TNO-MEP R96/230, Den Helder.
- Suprayogi, B & Murray, F 1999, 'A field experiment of the physical and chemical effects of two oils on mangroves', Environmental and Experimental Botany, vol. 42, no. 3, pp. 221–229.
- Swartz RC, Schults DW, Ozretich RJ, Lamberson JO, Cole FA, Ferraro SP, Dewitt TH & Redmond MS 1995, 'ΣΡΑΗ: A Model to predict the toxicity of polynuclear aromatic hydrocarbon mixtures in field-collected sediments', Environmental Toxicology and Chemistry, vol. 14, no. 11, pp. 1977–1187.
- Verhaar, HJ, Van Leeuwen, CJ & Hermens, JL 1992, 'Classifying environmental pollutants', Chemosphere, vol. 25, no. 4, pp. 471-491.
- Verhaar, HJ, de Wolf, W, Dyer, S, Legierse, KC, Seinen, W & Hermens, JL 1999, 'An LC₅₀ vs time model for the aquatic toxicity of reactive and receptor-mediated compounds. Consequences for bioconcentration kinetics and risk assessment', Environmental science & technology, vol. 33, no. 5, pp.758-763.
- Willmott, CJ 1981, 'On the validation of models', Physical Geography, vol. 2, no. 2, pp.184–194.
- Willmott, CJ 1982, 'Some comments on the evaluation of model performance', Bulletin of the American Meteorological Society, vol. 63, no. 11, pp.1309–1313.
- Willmott CJ, Ackleson SG, Davis RE, Feddema JJ, Klink, KM, Legates, DR, O'Donnell, J & Rowe, CM 1985, 'Statistics for the evaluation of model performance', Journal of Geophysical Research, vol. 90, no. C5, pp. 8995–9005.
- Willmott, CJ & Matsuura, K 2005, 'Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance', Journal of Climate Research, vol. 30, no. 1, pp. 79–82.
- Yaremchuk, M & Tangdong, Q 2004, 'Seasonal variability of the large-scale currents near the coast of the Philippines', Journal of Physical Oceanography, vol. 34, no., 4, pp. 844–855.
- Zigic, S, Zapata, M, Isaji, T, King, B, & Lemckert, C 2003, 'Modelling of Moreton Bay using an ocean/coastal circulation model', Proceedings of the 16th Australasian Coastal and Ocean Engineering Conference, the 9th Australasian Port and Harbour Conference and the Annual New Zealand Coastal Society Conference, Institution of Engineers Australia, Auckland, paper 170.

Appendix 7:

Assessment of the risk of a LoWC on the management actions of protected areas

Assessment of the Beehive-1 Exploration Drilling against the North Marine Parks Network Management Plan (Director of National Parks, 2018).

The following information summarises the probabilities of exposure (%) to the AMPs in the North Marine Parks Network from the LoWC scenario

Jacob Bananarta Culf AMD	Summer			Transitional			Winter		
Joseph Bonaparte Gulf AMP	Low	Mod	High	Low	Mod	High	Low	Mod	High
Sea surface	100	47	5	96	36	4	87	22	9
Dissolved – 0-10 m below sea surface	100	97	89	90	79	66	98	95	73
Entrained – 0-10 m below sea surface	100		100	94		83	100		98

Occasio Charle ANAD	Summer			Transitional			Winter		
Oceanic Shoals AMP	Low	Mod	High	Low	Mod	High	Low	Mod	High
Sea surface	22	-	-	2	-	-	21	-	-
Dissolved – 0-10 m below sea surface	15	12	1	3	-	-	34	21	2
Entrained – 0-10 m below sea surface	35		21	18		11	71		49

Arafura AMP	Summer			Transitional			Winter		
Aldiuld Alvir	Low	Mod	High	Low	Mod	High	Low	Mod	High
Sea surface	-	-	-	-	-	-	-	-	-
Dissolved – 0-10 m below sea surface	1	-	-	-	-	-	-	-	-
Entrained – 0-10 m below sea surface	8		3	-		-	-		-

Arabam ANAD	Summer		Transitional			Winter			
Arnhem AMP	Low	Mod	High	Low	Mod	High	Low	Mod	High
Sea surface									
Dissolved – 0-10 m below sea surface									

Entrained – 0-10 m below sea surface	6		0	-		-	-		-
--------------------------------------	---	--	---	---	--	---	---	--	---

Management actions/ strategies	Compliance with management plan
Communication, education and awareness program.	
Develop information on marine parks in the Network to encourage increased awareness and understanding of their values and management arrangements.	No impacts.
Provide infrastructure in and adjacent to the Network, such as signs and marker buoys, to increase understanding of marine park values and rules, particularly at sites that are regularly visited.	No impacts.
Establish a North Network advisory committee to support and collaborate with the Director in management.	No impacts.
Tourism and visitor experience program.	
Promote visitor experiences that foster curiosity and appreciation of natural and heritage values in the Network.	No impacts.
Work with other Commonwealth, state and territory government agencies, and the tourism industry to support tourism initiatives, events and attractions that promote visitor experiences in marine parks.	No impacts.
Facilitate partnerships between Indigenous people and tourism operators.	No impacts.
Indigenous engagement program.	
Collaborate with traditional owners and Indigenous ranger groups and relevant partners to undertake marine park management such as surveillance, monitoring and threat mitigation including marine debris removal, and implement actions identified in sea country plans where applicable.	No impacts.
Identify opportunities and mechanisms to engage traditional owners and Indigenous rangers in the management of marine parks.	No impacts.
Increase understanding of traditional knowledge, map cultural values and manage significant sites.	No impacts.
Implement cultural awareness training for Parks Australia staff in association with traditional owners.	No impacts.
Establish protocols for researchers working with Parks Australia to guide engagement with traditional owners	No impacts.

Management actions/ strategies	Compliance with management plan
Marine science program.	
Monitor social and economic uses and their benefits and impacts on marine parks.	No impacts.
Monitor the condition of important habitats such as reef systems and their vulnerability to climate change.	In the event of a Level 2 or 3 oil spill, the OPEP and OSMIP will be implemented to monitor and mitigate any potential impacts.
Monitor the impact of invasive species on marine park values and the effectiveness of management.	No impacts.
Collaborate with other Commonwealth, state and territory government agencies, marine park users and the science sector to support long-term monitoring. For example, monitoring of coral reefs, protected species and the effects of fishing on marine parks.	In the event of a Level 2 or 3 oil spill, the OPEP and OSMIP will be implemented to monitor and mitigate any potential impacts.
Investigate opportunities to extend citizen science programs.	No impacts.
Assessments and authorisations program.	
Issue authorisations—a permit, class approval, activity licence or lease—for activities in marine parks assessed as acceptable either by the Director or another government or industry policy, plan or program accepted by the Director.	No impacts.
Work with other Commonwealth, state and territory government agencies to improve experiences and consistency of approaches for people seeking authorisations.	No impacts.
Park protection and management program.	
Enable infrastructure such as moorings to protect habitats and enhance visitor safety.	No impacts.
Collaborate with and support other agencies that undertake invasive and protected species management and marine debris removal. For example, biosecurity assessments, research, or removal of ghost nets.	In the event of a Level 2 or 3 oil spill, the OPEP and OSMIP will be implemented to monitor and mitigate any potential impacts.
Work with other Commonwealth, state and territory government agencies to respond to environmental incidents and accidents.	In the event of a Level 2 or 3 oil spill, the OPEP and OSMIP will be implemented to monitor and mitigate any potential impacts. Arrangements with Commonwealth, state and territory government agencies are described in the OPEP and OSMIP.
Collaborate with traditional owners and Indigenous ranger groups to undertake management actions.	In the event of a Level 2 or 3 oil spill, the OPEP and OSMIP will be implemented to monitor and mitigate any potential impacts. Traditional owners and Indigenous owner groups will be notified in the event of a spill and will be invited to assist in response

Management actions/ strategies	Compliance with management plan
	strategies, such as shoreline assessment and responses.
Compliance program.	
Work with other Commonwealth, state and territory government agencies, particularly where parks adjoin state or territory marine parks, in compliance planning, including implementing actions to deter illegal activities and encourage voluntary compliance.	No impacts.
Collaborate with Commonwealth, state and territory government agencies in surveillance, including water and aerial patrols.	In the event of a Level 2 or 3 oil spill, the OPEP and OSMIP will be implemented to monitor and mitigate any potential impacts. Arrangements with Commonwealth, state and territory government agencies are described in the OPEP and OSMIP.

Assessment of the Beehive-1 Exploration Drilling against the North-west Marine Parks Network Management Plan (Director of National Parks, 2018).

The following information summarises the probabilities of exposure (%) to the AMPs in the North-west marine Parks Network from the LoWC scenario

Argo-Rowley AMP	Summer			Transitional			Winter			
Argo-Rowley Alvir	Low	Mod	High	Low	Mod	High	Low	Mod	High	
Sea surface	2	-	-	7	-	-	2	-	-	
Dissolved – 0-10 m below sea surface	3	1	-	7	5	-	2	1	-	
Entrained – 0-10 m below sea surface	10		9	17		10	12		3	

Visabaslav ANAD	Summer			Transitional			Winter		
Kimberley AMP	Low	Mod	High	Low	Mod	High	Low	Mod	High
Sea surface	43	-	-	57	-	-	70	-	-
Dissolved – 0-10 m below sea surface	49	47	24	62	58	20	84	67	15
Entrained – 0-10 m below sea surface	56		48	74		62	93		88

Manuscid Doof AMD	Summer			Transitional			Winter		
Mermaid Reef AMP	Low	Mod	High	Low	Mod	High	Low	Mod	High
Sea surface	-	-	-	-	-	-	-	-	-
Dissolved – 0-10 m below sea surface	-	-	-	3	2	-	2	-	-
Entrained – 0-10 m below sea surface	7		0	11		5	2		2

Ashmore Reef AMP	Summer			Transitional			Winter		
ASIIIIOTE REEL AIVIP	Low	Mod	High	Low	Mod	High	Low	Mod	High
Sea surface	-	-	-	-	-	-	1	-	-
Dissolved – 0-10 m below sea surface	-	-	-	-	-	-	5	-	-
Entrained – 0-10 m below sea surface	-		-	-		-	25		14
Shoreline	-	-	-	-	-	-	7	3	-

Cartier Island AMP	Summer			Transitional			Winter			
Cartier Islanu Alvir	Low	Mod	High	Low	Mod	High	Low	Mod	High	
Sea surface	-	-	-	-	-	-	2	-	-	
Dissolved – 0-10 m below sea surface	-	-	-	-	-	-	4	-	-	
Entrained – 0-10 m below sea surface	-		-	-		-	32		15	
Shoreline	-	-	-	-	-	-	11	5	-	

Montebello AMP	Summer			Transitional			Winter		
Montepello Alvir	Low	Mod	High	Low	Mod	High	Low	Mod	High
Sea surface	-	-	-	-	-	-	-	-	-
Dissolved – 0-10 m below sea surface	-	-	-	-	-	-	-	-	-
Entrained – 0-10 m below sea surface	-		-	1		-	-		-

Management actions/ strategies	Compliance with management plan
Communication, education and awareness program.	
Develop information on marine parks in the Network to encourage increased awareness and understanding of their values and management arrangements. For example, an Ashmore Reef Marine Park visitor guide.	No impacts.
Provide infrastructure in and adjacent to the Network, such as signs and marker buoys, to increase understanding of marine park values and rules, particularly at sites that are regularly visited, and	No impacts.
Establish a North-west Network advisory committee to support and collaborate with the Director in management.	No impacts.
Tourism and visitor experience program.	
Promote visitor experiences that foster curiosity and appreciation of natural and heritage values in the Network, for example whale shark watching at Ningaloo Marine Park, diving at Mermaid Reef Marine Park, and bird watching at Ashmore Reef Marine Park.	No impacts.
Work with other Commonwealth and state government agencies, and the tourism industry to support tourism initiatives, events and attractions that promote visitor experiences in marine parks.	No impacts.
Facilitate partnerships between Indigenous people and tourism operators, and support the application of the Uunguu Visitor Management pass system for the native title determination area.	No impacts.
Indigenous engagement program.	
Collaborate with traditional owners, Indigenous ranger groups and relevant partners to undertake marine park management such as surveillance, monitoring and threat mitigation including marine debris removal, and implement actions identified in sea country plans where applicable.	No impacts.
Identify opportunities and mechanisms to engage traditional owners and Indigenous rangers in the management of marine parks.	No impacts.
Increase understanding of traditional knowledge, map cultural values and manage culturally significant sites.	No impacts.
Implement cultural awareness training for Parks Australia staff in association with traditional owners.	No impacts.
Establish research protocols in association with traditional owners, like those in the Collaborative Science on Kimberley Saltwater Country - A Guide for Researchers.	No impacts.
Marine science program.	
Monitor social and economic uses and their benefits and impacts on marine parks in the Network	No impacts.
monitor the condition of important habitats such as reef systems at Ningaloo, Mermaid, Kimberley, Ashmore and Cartier Marine Parks, and their vulnerability to climate change	In the event of a Level 2 or 3 oil spill, the OPEP and OSMIP will be implemented to monitor and mitigate any potential impacts.

Management actions/ strategies	Compliance with management plan
Monitor the impact of invasive species on marine park values and the effectiveness of management. For example, tropical fire ant impacts on seabirds and turtles at Ashmore Reef Marine Park, and the effectiveness of management such as baiting.	No impacts.
Collaborate with other Commonwealth and state government agencies, marine park users and the science sector to support long-term monitoring. For example monitoring of coral reefs, protected species and the effects of fishing on marine parks.	In the event of a Level 2 or 3 oil spill, the OPEP and OSMIP will be implemented to monitor and mitigate any potential impacts.
Investigate opportunities to extend citizen science programs.	No impacts.
Assessments and authorisations program.	
Issue authorisations—a permit, class approval, activity licence or lease—for activities in marine parks assessed as acceptable either by the Director or another government or industry policy, plan or program accepted by the Director.	No impacts.
Work with other Commonwealth and state government agencies to improve experiences and consistency of approaches for people seeking authorisations.	No impacts.
Park protection and management program.	
Enable infrastructure such as moorings to protect habitats and enhance visitor safety	No impacts.
Collaborate with and support other agencies that undertake invasive and protected species management and marine debris removal. For example, this may include biosecurity assessments, research, or removal of ghost nets.	In the event of a Level 2 or 3 oil spill, the OPEP and OSMIP will be implemented to monitor and mitigate any potential impacts.
Work with other Commonwealth and state government agencies to respond to environmental incidents and accidents.	In the event of a Level 2 or 3 oil spill, the OPEP and OSMIP will be implemented to monitor and mitigate any potential impacts. Arrangements with Commonwealth, state and territory government agencies are described in the OPEP and OSMIP.
Collaborate with traditional owners and Indigenous ranger groups to undertake management actions.	In the event of a Level 2 or 3 oil spill, the OPEP and OSMIP will be implemented to monitor and mitigate any potential impacts. Traditional owners and Indigenous owner groups will be notified in the event of a spill and will be invited to assist in response strategies, such as shoreline assessment and responses.

Management actions/ strategies	Compliance with management plan				
Compliance program.					
Work with other Commonwealth and state government agencies, particularly where parks adjoin state marine parks, in compliance planning, including implementing actions to deter illegal activities and encourage voluntary compliance.	No impacts.				
Collaborate with Commonwealth and state government agencies in surveillance, including water and aerial patrols.	In the event of a Level 2 or 3 oil spill, the OPEP and OSMIP will be implemented to monitor and mitigate any potential impacts. Arrangements with Commonwealth, state and territory government agencies are described in the OPEP and OSMIP.				

Assessment of the Beehive-1 Exploration Drilling against the Ord River and Parry Lagoons nature reserves management plan 77 2012 (Department of Environment and Conservation 2012)

The following information summarises the probabilities of exposure (%) to the Ord River Floodplain Ramsar Site.

Ond Diver Floodulein Donner Site	Summer		Transitional			Winter			
Ord River Floodplain Ramsar Site	Low	Mod	High	Low	Mod	High	Low	Mod	High
Sea surface	12	-	-	13	-	-	8	-	-
Dissolved – 0-10 m below sea surface	33	18	1	36	25	5	50	27	2
Entrained – 0-10 m below sea surface	67		37	45		39	68		64

Management actions/ strategies	Compliance with management plan
Protect the values of the planning area.	
Undertake the process for a change in tenure for the Ord River and Parry Lagoons nature reserves to 'class A' nature reserves.	n/a
Investigate an appropriate tenure for Parry Lagoons Nature Reserve, for example, a national park category, to better accommodate future visitor needs.	
Undertake the process for incorporating proposed additions as identified in Table 1 into the existing nature reserves.	
Traditional owner involvement in management of the planning area.	
Prepare a joint management agreement under the CALM Act with the Yawoorroong Miriuwung Gajerrong Yirrgeb Noong Dawang Aboriginal Corporation, as resources become available, as identified in the Ord Final Agreement	In the event of a Level 2 or 3 oil spill, the OPEP and OSMIP will be implemented to monitor and mitigate any potential impacts. Arrangements with Commonwealth, state and
Determine interest of pursuing joint management arrangements for the applicable portion of the planning area with the Balanggarra people.	territory government agencies are described in the OPEP and OSMIP. Traditional owners and Indigenous owner
Foster relations with other traditional owners who speak for country.	groups will be notified in the event of a spill and will be invited to assist in response strategies, such as shoreline
Ensure consultation with and approval from traditional owners who speak for country, for any amendments to land tenure that may occur over land for which they speak.	assessment and responses.
Work with traditional owners to promote their participation in commercial activities.	

Management actions/ strategies	Compliance with management plan
Ensure consultation with and approval from traditional owners who speak for country, for any research activities that may occur on land for which they speak.	
Refer development and resource use proposals to traditional owners who speak for country.	
Maintain hydrological regimes occurring at the time of Ramsar listing in 1990.	
Liaise with the Department of Water (DoW) to provide input into environmental water allocations for the Ord River.	In the event of a Level 2 or 3 oil spill, the OPEP and OSMIP will be implemented to monitor and mitigate any potential
Undertake studies to increase knowledge of hydrological requirements of the Ord River to maintain ecological values.	impacts. Arrangements with Commonwealth, state and territory government agencies are described in the OPEP
Work cooperatively with state and federal government authorities to maintain Ramsar values.	and OSMIP. Traditional owners and Indigenous owner groups will be notified in the event of a spill and will be invited to assist in response strategies, such as shoreline assessment and responses.
Conserve native plants and plant communities.	
Maintain and monitor vegetation diversity by reducing threatening processes, such as inappropriate fire regimes, altered hydrological regimes and high densities of introduced animals, such as cattle.	In the event of a Level 2 or 3 oil spill, the OPEP and OSMIP will be implemented to monitor and mitigate any potential
Work cooperatively with state and federal government authorities to maintain Ramsar values.	impacts. Arrangements with Commonwealth, state and territory government agencies are described in the OPEP and OSMIP. Traditional owners and Indigenous owner groups will be notified in the event of a spill and will be invited to assist in response strategies, such as shoreline assessment and responses.
Conserve specially protected and other native fauna.	
Support the preparation and implementation of recovery plans for any threatened fauna species.	In the event of a Level 2 or 3 oil spill, the OPEP and OSMIP
Protect native fauna from introduced and problem animals through appropriate control regimes where necessary.	will be implemented to monitor and mitigate any potential impacts. Arrangements with Commonwealth, state and territory government agencies are described in the OPEP
Work cooperatively with state and federal government authorities to maintain Ramsar values.	and OSMIP. Traditional owners and Indigenous owner
Monitor the abundance and composition of key fauna species.	groups will be notified in the event of a spill and will be invited to assist in response strategies, such as shoreline assessment and responses.

Management actions/ strategies	Compliance with management plan		
Prevent loss of native species and decline in plant communities from weed invasion.			
Consistent with regional weed prioritisation, prepare, implement and monitor a weed control program based upon invasiveness, existing and potential impacts, current and potential distribution, and feasibility of control.	n/a		
Support the Australian Quarantine and Inspection Service to monitor the occurrence of, and potentially control the spread of, weed species.			
Continue to work with other agencies and adjacent landholders to control environmental weeds			
Prevent impacts of introduced and other problem animals on the values of the planning area.			
Consistent with regional prioritisation for introduced and problem animals, prepare a control program based upon existing and potential impacts, current and potential distribution, feasibility of control and capacity for long-term monitoring.	In the event of a Level 2 or 3 oil spill, the OPEP and OSMIP will be implemented to monitor and mitigate any potential impacts. Arrangements with Commonwealth, state and		
Work with neighbours to limit cattle intrusions onto the reserves (for example, assist adjoining landowners to ensure boundary fences are adequate to exclude cattle, where practicable).	territory government agencies are described in the OPEP and OSMIP. Traditional owners and Indigenous owner groups will be notified in the event of a spill and will be invited to assist in response strategies, such as shoreline assessment and responses.		
Support the Australian Quarantine and Inspection Service and Department of Agriculture and Food to monitor the occurrence of, and potentially control the spread of, introduced animals.			
Implementation of the State Cane Toad Initiative, in collaboration with community-based groups and scientific institutions, to slow the westward spread of cane toads.			
Prevent impacts of altered hydrological regimes on the values of the planning area.			
Work with DoW and Water Corporation to provide information to assess adequate flow for the Ord River to maintain the ecological character of the Ramsar site.	n/a		
Protect biodiversity, people and property within the planning area. Maintain cultural responsibilities.			
Prepare and implement a prescribed burning program which is in accordance with the key principles and considers the knowledge and responsibilities of traditional owners.	n/a		
Continue to liaise with neighbouring landholders and local government to integrate fire management across the landscape.			
Integrate fire management with weed and introduced species control programs.			

Management actions/ strategies	Compliance with management plan			
Protect and conserve the value of the land to the culture and heritage of Aboriginal persons.				
Traditional owners using their traditional lands for customary purposes.				
Enhance understanding of the value of the planning area to the culture and heritage of Aboriginal persons.	In the event of a Level 2 or 3 oil spill, the OPEP and OSMIP			
Ensure that the values of the land to the culture and heritage of Aboriginal persons inform and guide management actions	will be implemented to monitor and mitigate any potential impacts. Arrangements with Commonwealth, state and			
Where applicable, apply the Miriuwung-Gajerrong Cultural Planning Framework (Hill et al. 2008) to inform and guide management actions.	territory government agencies are described in the OPEF and OSMIP. Traditional owners and Indigenous owner groups will be notified in the event of a spill and will be			
Work with traditional owners who speak for country, to protect heritage sites within the planning area.	invited to assist in response strategies, such as shoreline			
Ensure management activities attempt to minimise material adverse effect on Aboriginal culture and heritage.	assessment and responses.			
Protect other cultural heritage.				
Ensure management activities attempt to minimise material adverse effects on other cultural heritage.	In the event of a Level 2 or 3 oil spill, the OPEP and OSMIP will be implemented to monitor and mitigate any potential impacts. Arrangements with Commonwealth, state and territory government agencies are described in the OPEP and OSMIP. Traditional owners and Indigenous owner groups will be notified in the event of a spill and will be invited to assist in response strategies, such as shoreline assessment and responses.			
Facilitate visitor enjoyment, appreciation and understanding of the values of the planning area				
Provide a range of opportunities for visitors, and ensure they are consistent with the purpose of the reserves, pose no adverse impacts on the environment or unreasonably interfere with visitor experiences	n/a			
Minimal risks to visitors and encouragement of appropriate visitor behaviour				
Develop a visitor risk management plan in accordance with department policy that identifies and assesses the risks associated with all recreation sites and monitors and regularly reviews visitor risk.	n/a			

Management actions/ strategies	Compliance with management plan
Increase community awareness, understanding and appreciation of the values of the planning area to foster support for its protection and effective management.	
Provide information to visitors, volunteers, commercial operators and the tourism industry on:	n/a
day-use opportunities	
• the values and management issues within the planning area such as its importance for migratory waterbirds, visitor safety, permitted activities and regulations	
cultural heritage to promote visitor awareness, appreciation and understanding	
potentially hazardous areas and activities	
Leave No Trace principles	
Update existing signage and brochures and install new signs at all access points, including information on Aboriginal cultural interpretation.	
Increase community awareness of the need to keep domestic animals out of the planning area	
Provide safe and convenient access within the planning area for visitors and management, where appropriate	
Maintain designated access points to the planning area to facilitate four-wheel-drive, walking and birdwatching activities.	n/a
Pending a future increase in visitor numbers, develop defined walking trails if required	
Passive, low impact visitor use of the planning area	
Encourage visitor use that is consistent with protecting and promoting the values of the planning area.	n/a
Provide a range of day-use opportunities consistent with department policies as resources permit	
Provide management solutions to mitigate visitor impacts.	
Commercial tourism activities that extend the range of services, facilities and experiences available, which are compatible with management outcomes.	
Evaluate proposals for licences and commercial tourism leases according to legislation and departmental policies and allow their establishment where appropriate.	n/a
Ensure that all commercial operations are managed under a lease, licence or permit agreement with appropriate conditions.	

Management actions/ strategies	Compliance with management plan
Minimal impacts from mineral and petroleum exploration and development, including basic raw material extraction and development activities, on the values of the planning area.	
Refer proposals, where appropriate, to the Conservation Commission, to provide advice to the Minister for Environment	In the event of a Level 2 or 3 oil spill, the OPEP and OSMIP will be implemented to monitor and mitigate any potential
Ensure access to basic raw materials from within the planning area by local government authorities and private contractors is allowed only when: the material is to be used within the planning area extraction complies with this management plan and the purpose, class and tenure of the reserves extraction complies with existing department policies and guidelines.	impacts. Arrangements with Commonwealth, state and territory government agencies are described in the OPEP and OSMIP. Traditional owners and Indigenous owner groups will be notified in the event of a spill and will be invited to assist in response strategies, such as shoreline assessment and responses.
Minimal impacts from water resource use on the values of the planning area	
Issue licences as required under the CALM Act for water extraction from bores and other water sources located within the planning area.	n/a
Refer proposals that require or effect water resources that may adversely impact upon the values of the planning area to the EPA for consideration of assessment under the EP Act, ensuring consultation with DoW and the Water Corporation.	
Refer proposals to the Conservation Commission, to provide advice to the Minister for Environment.	7
Minimal impacts from the installation and maintenance of public utilities on the values of the planning area	
Encourage all new public utilities and services to be located outside of the reserves	n/a
Refer proposals that may adversely impact upon the planning area to the EPA for consideration of assessment under the EP Act.	
Refer proposals to the Conservation Commission to provide advice to the Minister for Environment.	
Degraded areas being restored to a condition resembling the natural environment within the local vicinity.	
Coordinate rehabilitation works with weed control, fire management and cattle exclusion to allow natural regeneration wherever possible	n/a
Utilise plant stock or seed of local provenance where active rehabilitation is required.	7
Effective community involvement in the management of the planning area.	

Management actions/ strategies	Compliance with management plan
Continue to encourage, promote and support volunteers and community groups with essential resources to help them carry out their activities.	In the event of a Level 2 or 3 oil spill, the OPEP and OSMIP will be implemented to monitor and mitigate any potential
Liaise with the Balanggarra and Miriuwung Gajerrong traditional owners, neighbouring landowners and land managers, local authorities, relevant government agencies and other stakeholders in the management of cross-boundary issues.	impacts. Arrangements with Commonwealth, state and territory government agencies are described in the OPEP and OSMIP. Traditional owners and Indigenous owner groups will be notified in the event of a spill and will be
Notify adjacent pastoralists of cattle located within the planning area, permit pastoralists to muster cattle and advise pastoralists that any stock remaining after mustering will be eradicated.	invited to assist in response strategies, such as shoreline assessment and responses.
Monitor possible impacts associated with implementing the management plan to provide for improved management	
Conduct or support research on issues and values required to report on this management plan, and the establishment of baseline information that includes: • current hydrological processes and water quality to determine adequacy to maintain the ecological character of the planning area • macroinvertebrate indicator species to determine water quality and detect levels of change • native plants that are rare, threatened or in need of special protection • vegetation condition and composition and any levels of change in condition and composition • abundance and composition of key fauna species and detect levels of change • threatening processes, such as fire and introduced plants and animals • the impacts of groundwater extraction within the planning area and from adjacent areas, particularly Mantinea Flats irrigation area • visitors' use of the area and its impacts. Provide support for cultural heritage research of the reserves and incorporate traditional custodians' cultural knowledge in the management of the reserves	In the event of a Level 2 or 3 oil spill, the OPEP and OSMIP will be implemented to monitor and mitigate any potential impacts. Arrangements with Commonwealth, state and territory government agencies are described in the OPEP and OSMIP. Traditional owners and Indigenous owner groups will be notified in the event of a spill and will be invited to assist in response strategies, such as shoreline assessment and responses.

Assessment of the Beehive-1 Exploration Drilling against the North Kimberley Marine Park Joint Management Plan 2016 Uunguu, Balanggaarra, Miriuwung Gajerrong, and Wilinggin management areas management plan 89 (WA Department of Parks and Wildlife, 2016).

The following information summarises the probabilities of exposure (%) to the North Kimberley Marine Park from the LoWC scenario

Naukh Winshaulau MD	Summer		Transitional			Winter			
North Kimberley MP	Low	Mod	High	Low	Mod	High	Low	Mod	High
Sea surface	91	9	0	90	0	0	98	0	0
Dissolved – 0-10 m below sea surface	68	55	33	85	78	44	97	96	88
Entrained – 0-10 m below sea surface	86		71	86		81	98		97

The following information summarises the probabilities of exposure (%) to the King Shoals Sanctuary Zone from the LoWC scenario.

Vina Charle Construent Zona	Summer			Transitional			Winter			
King Shoals Sanctuary Zone	Low	Mod	High	Low	Mod	High	Low	Mod	High	
Shoreline exposure (WA DoT shoreline cell)										
Bare Hill - East Cape Domett (E)	40	25	-	38	30	-	60	43	-	

The following information summarises the probabilities of exposure (%) to the Cape Domett Special Use Zone from the LoWC scenario.

Cana Damatt Special Durness Zone	Summer		Transitional			Winter			
Cape Domett Special Purpose Zone	Low	Mod	High	Low	Mod	High	Low	Mod	High
Shoreline exposure (WA DoT shoreline cell)									
East Cape Domett – WA- NT Border (B)	29	23	4	33	27	-	38	15	-

Management objectives	Compliance with management plan			
Management of cultural values.				
To ensure that Aboriginal culture and heritage sites in the marine park are protected and conserved.	In the event of a Level 2 or 3 oil spill, the OPEP and			
To support traditional owner connection to country including spiritual and cultural values.	OSMIP will be implemented to monitor and mitigate any potential impacts. Traditional owners and Indigenous			
To enable traditional owners to realise livelihoods from their country.	owner groups will be notified in the event of a spill and			
To provide recognition of and support for traditional owner rights to continue customary practices and to benefit from their country consistent with the purpose of the marine park.	will be invited to assist in response strategies, such as shoreline assessment and responses.			
The facilitate and maintain the opportunity for Aboriginal people to fulfil their cultural obligations as protectors and managers of their country.				
Management of natural values.				
Natural values are not significantly impacted by human activities in the marine park and baseline status is maintained (or improved) across their natural range.	In the event of a Level 2 or 3 oil spill, the OPEP and OSMIP will be implemented to monitor and mitigate an			
Obtain an adequate biophysical, social and cultural knowledge base of values to support future management requirements.	potential impacts. Arrangements with Commonwealt state and territory government agencies are describe in the OPEP and OSMIP.			
Acquire adequate knowledge of the impacts of climate change and develop applicable management strategies within the marine park.	In the OPEP and OSMIP.			
Investigate the extent and significance of current impacts and potential pressures, and if necessary implement management strategies.				
Increase local community and visitor knowledge of the cultural, ecological and social importance of key natural values.				
Management of recreation, tourism and community values.				
To promote visitor access to and enjoyment of the marine park while maintaining the outstanding cultural and natural values.	In the event of a Level 2 or 3 oil spill, the OPEP and OSMIP will be implemented to monitor and mitigate any			
To increase community understanding and appreciation of the marine park's values and support for management arrangements.	potential impacts. Arrangements with Commonwealth, state and territory government agencies are described in the OPEP and OSMIP.			
To support continued enjoyment of recreational fishing opportunities within the marine park while maintaining the outstanding cultural and natural values.	in the OFLF and OSIVIF.			
To minimise risks to visitors, and encourage appropriate visitor behaviour.				
To ensure human activities do not significantly impact on historic sites in and adjacent to the marine park.				
Management of commercial values.				

Management objectives	Compliance with management plan			
Commercial fishing	In the event of a Level 2 or 3 oil spill, the OPEP and			
To recognise and allow for commercial fishing whilst maintaining the cultural and natural values of the marine park.	OSMIP will be implemented to monitor and mitigate a potential impacts. Arrangements with Commonwealth			
Pearling and aquaculture	state and territory government agencies are described in the OPEP and OSMIP. Traditional owners and			
To recognise the historical and socio-economic value of pearling by providing for the maintenance of a viable pearling industry while maintaining the cultural and natural values of the marine park.	Indigenous owner groups will be notified in the event of a spill and will be invited to assist in response strategies.			
Mineral extractions (oil, gas and mining)	such as shoreline assessment and responses.			
To ensure industry and associated activities are managed in a manner consistent with the objectives of the marine park.				
Economic opportunities for traditional owners				
Enable traditional owners to assess and realise commercial opportunities for their benefit.				
To provide for traditional owner subsistence and commercial enterprises and activities consistent with maintain cultural and natural values of the marine park.				

Assessment of the Beehive-1 Exploration Drilling against the Lalang-garram / Camden Sound Marine Park management plan 73 2013–2023, Department of (Parks and Wildlife, 2013).

The following information summarises the probabilities of exposure (%) to the Lalang-garram / Camden Sound Marine Park.

Lalana assuran / Canadan Caund Marina Bard	Summer		Transitional			Winter			
Lalang-garram / Camden Sound Marine Park	Low	Mod	High	Low	Mod	High	Low	Mod	High
Sea surface	-	-	-	2	-	-	-	-	-
Dissolved – 0-10 m below sea surface	6	1	-	9	2	-	3	1	-
Entrained – 0-10 m below sea surface	17		9	36		15	19		5

Management actions/ strategies Compliance with management plan

To ensure the marine park has the appropriate legal, administrative, financial and human resource frameworks in place so that it is appropriately managed in partnership with Traditional Owners and in a collaborative setting with other agencies.

Implement all legal provisions necessary to establish and jointly manage the marine park, including registration of ILUAs; execution of Joint Management Agreements; reservation of intertidal areas within the marine park; gazettal of a CALM Act classified waters notice; and FRM Act fisheries management orders.

Develop and implement joint collaborative operational plans [DPaW, relevant JMB(s) DoF].

Develop and apply management targets for Aboriginal culture and heritage values within one year of management plan implementation.

Undertake a five-year review of the adequacy of management arrangements in the marine park with a particular focus on humpback whales and the special purpose zone (whale conservation). The review will also include the adequacy of management arrangements for other ecological values, including the adequacy of the zoning scheme and protection of the value of the area for the culture and heritage of Aboriginal people.

Ensure the provision of necessary information and support for assessments of the implementation of the management plan by the MPRA.

Take into account the guidance and aspirations of Traditional Owners, which are contained in a number of Traditional Owner documents including the North Kimberley Saltwater Country and Healthy Country Plans (e.g. Wunambal Gaambera Healthy Country Plan 2010-2020 and Dambimangari Healthy Country Plan 2012-2022), in protecting and conserving the value of the land and sea to the culture and heritage of Aboriginal people

Ensure the setting of conditions for new developments and operations are consistent with management program objectives and management targets for ecological values.

Develop a maritime incident response plan, specific to the marine park that complements the state's marine oil spill response plan.

Undertake a review of shipping activity in the marine park to determine the need for navigational measures such as compulsory pilotage and/or designation of shipping routes.

Ensure any boundary revision of the pearling 'transport exempt area' is consistent with the special purpose zone (pearling).

Develop and implement a plan for detection and mitigation response to marine pest incursion/outbreak in the marine park, including vessel risk assessments.

Through the relevant JMB(s), assist Traditional Owners to develop a sustainable management strategy for turtle and dugong.

In the event of a Level 2 or 3 oil spill, the OPEP and OSMIP will be implemented to monitor and mitigate any potential impacts. Arrangements with Commonwealth, state and territory government agencies are described in the OPEP and OSMIP. Traditional owners and Indigenous owner groups will be notified in the event of a spill and will be invited to assist in response strategies, such as shoreline assessment and responses.

Management actions/ strategies	Compliance with management plan
Develop a cultural awareness training program approved by the relevant Aboriginal Corporation(s) for government employees and/or contractors working on the ground or in the management of the proposed park.	
To provide world-class commercial and recreational opportunities for users and visitors to the marine park while biodiversity, with a particular emphasis on the protection of humpback whale cows and calves.	e conserving Aboriginal cultural heritage and marine
Gazette a Wildlife Conservation (close season for humpback cows and calves) Notice under the provisions of the WC Act applicable to the special purpose zone (whale conservation) and sanctuary zones specifying provisions such as: 1.1 A person in control of a vessel must not move it closer than 500 metres to humpback cows and calves and should maintain that distance. 1.2 A vessel within 500 metres of a humpback cow and calf should manoeuvre at a speed that creates minimal wake in a direct line to a distance greater than 500 metres from the cow and calf as soon as practicable. 1.3 If a humpback cow and calf approach in close proximity of a vessel, that vessel must be operated in neutral gear and with due consideration to navigation and vessel safety, move the vessel away to a distance greater than 500 metres from the cow and calf initially at a speed less than 5 knots for the first 100 metres. 1.4 No in-water interaction is permitted with humpback cows and calves. 1.5 Helicopters may not hover above humpback cows and calves. 1.6 Helicopters and fixed wing aircraft must remain at an altitude above 1,650 feet (500 metres) and a horizontal distance of 500 metres from humpback cows and calves. 1.7 A person may not make, or cause to be made, a noise that is likely to frighten or otherwise cause distress to a whale because of its loudness or suddenness or for any other reason. 1.8 A person may not play a recording of sounds made under water in a manner that is likely to be heard by a whale During the life of the management plan, consider the need and options for temporal closures to vessels during the core whale visitation period in the special purpose zone (whale conservation). If necessary, and taking into account vessel safety issues, gazette speed restriction notice in special purpose zones (whale conservation) and sanctuary zones to reduce the risk of vessel collision with humpback whales. Consider commercially licensed operators that may be exempt from some conditions of the Wildlife Conservation (close	In the event of a Level 2 or 3 oil spill, the OPEP and OSMIP will be implemented to monitor and mitigate any potential impacts. Arrangements with Commonwealth, state and territory government agencies are described in the OPEP and OSMIP. Traditional owners and Indigenous owner groups will be notified in the event of a spill and will be invited to assist in response strategies, such as shoreline assessment and responses.

Management actions/ strategies	Compliance with management plan
Ensure that the granting and renewal of commercial operations licences and leases in relation to marine park access and wildlife interaction is consistent with the management plan permitted use table, management targets, Wildlife Conservation (close season) Notices and any other conditions developed for Lalang-garram / Camden Sound Marine Park.	
Control access to sites that Traditional Owners consider unsuitable for visitation through the commercial tour operator licence system in collaboration with Traditional Owners.	
Apply strict commercial tour operator conditions to ensure culturally sensitive and appropriate visitation to approved cultural heritage sites and traditional country in collaboration with Traditional Owners.	
Ensure licence conditions for commercial tour vessels engaged in whale watching consistently include a requirement for operators to collect basic information on whale position and behaviour to assist humpback whale research and monitoring.	
Consider the restriction of access to localised high-use humpback whale calving and nursing areas by vessel or aircraft if humpbacks are found to be sensitive to these activities.	
Restrict access to seaplane landings in the special purpose zone (whale conservation) between June and November unless absolutely necessary for safety reasons.	
Develop and implement new management arrangements for visitor access, which will include considering restriction of foot access to Montgomery Reef.	
Develop information to ensure that visitors are aware of the cultural values of the marine park and are aware of cultural laws and protocols regarding visitor risk and safety.	
Ensure the granting and renewals of licences and leases relating to pearling operations within the marine park is consistent with the management plan permitted use table and management targets.	
Ensure the granting and renewal of authorisations for commercial fishing operations within the marine park is consistent with the management plan permitted use table and management targets.	
Ensure the authorisation of maritime developments within the marine park is consistent with the management plan permitted use table and management targets.	
Consult as necessary in regard to the issuing and renewal of licences, leases and permits under the WC Act, CALM Regulations, FRM Act and Pearling Act.	
Advise commercial tour operators that it is prohibited to disturb sites protected under the Maritime Archaeological Act 1973, Historic Shipwrecks Act 1976 and Aboriginal Heritage Act 1976.	
Establish and maintain a quantitative and qualitative spatial database of human use within the marine park.	

Management actions/ strategies	Compliance with management plan		
Ensure the implementation of EPBC Act Policy Statement 2.1 – Interaction between offshore seismic exploration and whales (Australian Government 2008a) within and adjacent to the marine park.			
Prepare a mooring and anchoring plan			
Implement and administer the mooring and anchoring plan.			
Conduct periodic visitor risk assessments in the marine park as required and mitigate identified issues.			
Facilitate training that enhances knowledge of maritime and terrestrial heritage site management.			
Ensure appropriate liaison regarding the introduction or maintenance of navigation infrastructure within the marine park.			
Develop and implement codes of practice as necessary to ensure responsible use of the marine park.			
To foster a high level of community understanding and appreciation of the marine park's values, as well as supp	ort for management.		
Develop an education and interpretation plan designed to raise awareness and stewardship of the importance of ecological, cultural and social values (especially those identified with management targets that form the key performance indicators), with emphasis on humpback whales; appropriate behaviours within zones to reduce human impacts and ensure public safety.	In the event of a Level 2 or 3 oil spill, the OPEP and OSMIP will be implemented to monitor and mitigate an potential impacts. Arrangements with Commonwealth, state and territory government agencies are described		
Implement the education and interpretation plan, including delivery of interpretive materials and presentations to the community, commercial tour operators and businesses with an interest in the marine park.	in the OPEP and OSMIP. Traditional owners and Indigenous owner groups will be notified in the event of a spill and will be invited to assist in response strategies,		
Collaboratively develop and implement education and interpretation programs, where culturally appropriate, to raise awareness and knowledge of visitors to the marine park about Aboriginal connections with the marine and coastal environment and areas of cultural significance.	such as shoreline assessment and responses.		
Provide education and interpretive information about the marine park's values and management arrangements to fishing, boat and yacht clubs operating in Broome, Derby, Wyndham and Darwin.			
To have meaningful public participation in the management of the marine park.			
Prepare and implement a public participation plan that encourages involvement in management through a range of opportunities.	N/A		
Facilitate public participation in the management of the marine park through appropriate engagement mechanisms.			
Maintain a database of public participation.			
To have a high level of compliance with management arrangements specified for the marine park.			

Compliance with management plan Management actions/ strategies Develop and implement a collaborative patrol and enforcement plan. In the event of a Level 2 or 3 oil spill, the OPEP and OSMIP will be implemented to monitor and mitigate any a. Facilitate cross-authorisation of enforcement officers as appropriate. potential impacts. Arrangements with Commonwealth, b. Monitor compliance with the Wildlife Conservation (close season for humpback cows and calves) state and territory government agencies are described Notice within the special purpose zone (whale conservation) and sanctuary zones. in the OPEP and OSMIP. Traditional owners and c. Ensure the implementation of the Strategy for the Management of Sewage Discharge from Vessels Indigenous owner groups will be notified in the event of into the Marine Environment (Department for Planning and Infrastructure 2004) and thereby prohibit a spill and will be invited to assist in response strategies, the discharge of sewage from vessels in the sanctuary zone, in all areas within 500 metres of the such as shoreline assessment and responses. shore and in Kuri Bay, Camden Harbour, Sampson Inlet, St George Basin, Prince Regent River, and 'The River' at Montgomery Reef. d. Promote the management plan among commercial tour operators and visitors to inform them about their responsibilities and encourage them to voluntarily report any inappropriate or unlawful activity. e. Ensure marine park visitors obtain and comply with appropriate regulations, licences and permits. Maintain a database of compliance statistics and issues for management assessment. Patrol the shoreline and waters of the marine park for marine debris and remove as necessary. To implement a collaborative and cost-effective research program to improve knowledge and understanding of humpback whales, other important ecological values, cultural heritage and human use in the marine park. In consultation with Traditional Owners prepare a collaborative marine research plan. Ensure the research In the event of a Level 2 or 3 oil spill, the OPEP and plan utilises existing traditional ecological knowledge and cutural values, includes further research on OSMIP will be implemented to monitor and mitigate any indigenous cultural values and integrates research on TEK and cultural values with Western science programs. potential impacts. Arrangements with Commonwealth, state and territory government agencies are described Ensure that all research projects undertaken by or on behalf of DPaW comply with DPaW's Science Policy (No. in the OPEP and OSMIP. Traditional owners and 78) and associated guidelines. Indigenous owner groups will be notified in the event of Establish habitat mapping and characterisation for the marine park to support management and the five-year a spill and will be invited to assist in response strategies, review. such as shoreline assessment and responses. Ensure the marine research plan addresses key gaps in knowledge for threatened species and species of special conservation significance with management targets that form key performance indicators. In consultation with Traditional Owners, develop protocols to ensure the research plan and any research undertaken in the marine park is culturally appropriate and that information shared by Traditional Owners is used in a culturally appropriate manner. Research partnerships between research scientists and Traditional Owners should be accompanied by a research agreement. Ensure the granting and renewal of permits relating to scientific research is consistent with the management plan permitted use table, management targets, cultural protocols and Wildlife Conservation (close season) Notices as appropriate

Management actions/ strategies	Compliance with management plan
Undertake further research to assist with a five-year review of the adequacy of management arrangements in the marine park, particularly with regard to humpback whales and the special purpose zone (whale conservation) and the adequacy of the zoning scheme for habitat and species representativeness and protection, including St George Basin.	
Spatially and qualitatively characterise the use of the marine park by humpback whales, including the identification of high-use humpback whale calving and nursing areas.	
Consider and use information from cultural mapping projects initiated by Traditional Owners and use it to help inform management actions and responses in relation to Aboriginal cultural and heritage values.	
Spatially and qualitatively characterise human use of the marine park by recreational and commercial users.	
Investigate the extent and significance of interactions between commercial fishing and humpback whales and other specially protected species.	
Ensure outcomes from the research program are incorporated into adaptive marine park management, as well as planning and policy programs.	
Implement research components of the Humpback whale recovery plan (Australian Government 2005) and other relevant species conservation plans/strategies with respect to the marine park.	
Maintain a database of ecological and socio-economic research relevant to management.	
Provide logistical and financial support to researchers where possible.	
To implement a collaborative and cost-effective marine monitoring program to provide for adaptive manageme effectiveness within the marine park.	nt and to inform assessment of management
Prepare a collaborative and cost-effective marine monitoring plan. Ensure the marine monitoring plan uses existing traditional ecological knowledge.	In the event of a Level 2 or 3 oil spill, the OPEP and OSMIP will be implemented to monitor and mitigate any
Ensure that all monitoring activities undertaken by or on behalf of DPaW comply with DPaW's Science Policy (No. 78) and associated guidelines.	potential impacts. Arrangements with Commonwealth, state and territory government agencies are described in the OPEP and OSMIP. Traditional owners and
Progressively implement the marine monitoring plan with a primary focus on determining if management targets have been achieved for key performance indicators.	Indigenous owner groups will be notified in the event of a spill and will be invited to assist in response strategies,
Implement monitoring components of the Humpback whale recovery plan (Australian Government 2005), and other relevant species conservation plans/strategies with respect to the marine park.	such as shoreline assessment and responses.
Ensure an appropriate level of monitoring is undertaken by developers operating with approval in or adjacent to the marine park.	
Consider the potential implications of climate change when developing a marine monitoring program.	

Management actions/ strategies	Compliance with management plan
Develop and apply management targets to ecological values identified through the research program.	
In partnership with Traditional Owner rangers, develop and implement an ongoing turtle and dugong monitoring program.	
Develop and apply management targets for human values and uses.	
Ensure biosecurity issues are considered during the development of the marine monitoring plan.	

Assessment of the Beehive-1 Exploration Drilling against the Rowley Shoals Marine Park Management Plan 2007-2017 (WA Department of Environment and Conservation, 2007).

The following information summarises the probabilities of exposure (%) to the Rowley Shoals Marine Park from the LoWC scenario

Daviday Shaala MD	Summer		Transitional			Winter			
Rowley Shoals MP	Low	Mod	High	Low	Mod	High	Low	Mod	High
Sea surface	-	-	-	1	-	-	-	-	-
Dissolved – 0-10 m below sea surface	-	-	-	3	-	-	2	1	-
Entrained – 0-10 m below sea surface	7		-	10		4	2		2

Management actions/ strategies	Compliance with management plan
To ensure that a fair and equitable zoning scheme is implemented within the park within 6 months of the release of the management plan.	
Gazette appropriate notices under the CALM Act and FRM Act to implement the zoning scheme.	N/A
Inform visitors about the types of zones, reasons for and restrictions on activities in the Marine Park using signage, information manuals and education programs.	
Develop and implement procedures to ensure coordination between Government agencies and stakeholders to maximise efficiency and effectiveness of surveillance and enforcement activities.	
Gazette the Marine Park as a mooring control area and seek appointment as the controlling authority within one year of gazettal.	
Develop Codes of Practice for marine based industries and recreational sectors, where necessary.	
To enhance community understanding of and support for the park through education and interpretation programs and active participation in ongoing management.	
Develop and implement, in collaboration with DoF, other relevant agencies and commercial operators, a marine education program to ensure Park users are aware of and understand the values of the park, management zones and regulations, and the reasons for these controls.	N/A
Develop and distribute to the community and visitors a range of education materials about the Marine Park's values, pressures on these values, management strategies and targets, as well as marine conservation more broadly.	

Management actions/ strategies	Compliance with management plan		
Assist the fishing, tourism, charter and other key sectors to access and deliver marine information courses/materials to their staff or patrons.			
To facilitate on-going community participation in the management of the park.			
Establish and maintain a MAC, or other appropriate mechanism to facilitate community input into the ongoing management of the park.	N/A		
Encourage charter industry involvement in education and interpretation programs.			
Encourage charter industry involvement in monitoring programs.			
To maximise public compliance with regulations related to the ongoing management of the park.			
Facilitate cross authorisation of Government enforcement officers as appropriate.	In the event of a Level 2 or 3 oil spill, the OPEP and		
Develop and implement procedures to ensure coordination between Government agencies to maximise efficiency and effectiveness of patrol and enforcement activities.	OSMIP will be implemented to monitor and mitigate any potential impacts. Arrangements with Commonwealth, state and territory government agencies are described in the OPEP and OSMIP. Traditional owners and Indigenous owner groups will be notified in the event of a spill and will be invited to assist in response strategies, such as shoreline assessment and responses.		
Develop and implement a surveillance and enforcement program, in collaboration with DoF, to ensure an adequate level of compliance with zoning restrictions.			
Assess the suitability and, if appropriate implement remote surveillance technology.			
Implement education strategies outlined in this plan to support compliance activities.			
Develop a MOU between DEC and CoastWatch in regard to maintaining regular surveillance flights and reporting for the Rowley Shoals Marine Park.			
Monitor illegal fishing activities by crews of foreign fishing vessels (CoastWatch).			
Develop and maintain a database of incidences of illegal fishing and species taken by crews of foreign fishing vessels.			
Investigate opportunities for appointment of honorary enforcement officers.			
To remediate existing human impacts on the ecological and social values of the park. To provide visitor facilities that enhance visitor enjoyment of and minimise environmental impact to, the Park. To take reasonable steps to minimise visitor risk where possible in the park			
Undertake triennial assessment to identify areas of human impact in the park, assess rehabilitation options and, where appropriate, implement these measures.	N/A		
Undertake a triennial risk assessment of human use patterns and trends in the park, and where changes in use have potential to cause environmental impacts, assess preventative options and where appropriate, implement these measures.			

Management actions/ strategies	Compliance with management plan		
Undertake a triennial assessment of visitor risk in the park and, where necessary, implement appropriate measures to minimise visitor risk.			
To obtain an appropriate understanding of the biodiversity and key ecological and social processes within the park.			
To promote ecological and social research in the Park that improves knowledge of the Park and the technical basis for management decisions			
Develop and progressively implement a coordinated and prioritised research program focused on key values and processes of the park.	In the event of a Level 2 or 3 oil spill, the OPEP and OSMIP will be implemented to monitor and mitigate any		
Develop and maintain detailed habitat and wildlife distribution maps for the park.	potential impacts. Arrangements with Commonwealth,		
Develop and maintain a database of human usage in the park.	state and territory government agencies are described in the OPEP and OSMIP. Traditional owners and Indigenous owner groups will be notified in the event of a spill and will be invited to assist in response strategies, such as shoreline assessment and responses.		
Identify, prioritise and communicate high priority ecological and social research projects relevant to the management of the park to appropriate research organisations, via a strategic research plan with the aim of maximising priority research outcomes for the park.			
Develop and maintain a database of historical and current research in the park.			
Facilitate ecological and social research in the park conducted by research, academic and educational institutions, by providing financial and logistical assistance (where possible).			
To determine the status and trends in the condition of, and threats to, the ecological values and the effectiveness of management responses in the reserves.			
To provide the necessary information for the MPRA and DEC audit function.			
To promote ecological and social monitoring in the park that can detect changes to the ecological values and aid management decisions.			
Develop and progressively implement an integrated and prioritised ecological and social monitoring program for the Park, with a particular emphasis on MPRA and DEC audit requirements.	In the event of a Level 2 or 3 oil spill, the OPEP and OSMIP will be implemented to monitor and mitigate any		
Ensure that proponents of development proposals or activities with the potential to impact on the Park's values conduct appropriate compliance monitoring programs.	potential impacts. Arrangements with Commonwealth, state and territory government agencies are described in the OPEP and OSMIP. Traditional owners and		
Encourage Commonwealth marine research agencies to continue with long-term reference sites to better understand natural variability and key ecological processes (e.g. recruitment, herbivory etc) in the reserves.	In the OPEP and OSMIP. Traditional owners and Indigenous owner groups will be notified in the event of a spill and will be invited to assist in response strategies, such as shoreline assessment and responses.		

Limits of acceptable change for the Ord River Floodplain Ramsar Site from the Ecological Character Description (Department of Environment and Conservation, 2008)

Limits of acceptable change

Hydrology

Wet season flows sufficient to provide: 4 or more spells over 125 m 3/s, 2 or more spells over 200 m 3/s and at least one over 300 m 3/s. Total annual durations of at least 10, five and one day(s) for 125 m 3/s, 200 m 3/s and 300 m 3/s spells respectively.

Data deficient, however connectivity between Parry Lagoons and the estuary every 3 – 5 years is optimum for maintaining ecological character.

Data deficient – baseline must be established before limits can be set. However annual inundation is essential.

Nutrients

Median nutrient concentrations within the Ord Estuary and Parry Lagoons of: < 50 g/L nitrate-nitrite and < 20 g/L phosphate. To be revised when further data becomes available.

Dissolved oxygen

Dissolved oxygen concentrations in the estuary no less than 90% saturation.

Salinity

Salinity during the dry season in the Estuary and False mouths of the Ord to average 30 – 35 ppt.

Annual median salinity in Parry Lagoons < 1ppt.

Toxicants

Atrazine < 0.7 g/L Endosulphan < 0.03 g/L.

Phytoplankton

Annual median chlorophyll a concentrations 10 – 15 g/L (Note this is an estimate based on limited data and should be reviewed with additional monitoring).

Mangrove

Mangrove extent > 26,000 ha Mangrove species 14 No significant change in mangrove distribution and zonation.

Sedge/grassland

Current extent and community composition not known - baseline must be established before quantitative limits can be made No significant change in community composition or extent.

Aquatic vegetation

Current extent and community composition not known - baseline must be established before quantitative limits can be made No significant change in community composition or extent.

Limits of acceptable change

Invertebrates

Insufficient information to set a baseline - baseline must be established before quantitative limits can be made No significant change in community composition or abundance.

Fish

Insufficient information to set a baseline with the possible exception of barramundi and Threadfin Salmon based on commercial fishing data. However, total catch of Barramundi has decreased substantially since the time of listing (Fisheries WA 2003 – 2007), - Baseline must be established before quantitative limits can be made No significant change in community composition or abundance.

Significant species such as the Freshwater Sawfish, Green Sawfish and Northern River Shark require additional protection. However, without population estimates, quantitative limits are difficult to set. - baseline must be established before quantitative limits can be made.

Wetland dependent birds

LAC set based on Ramsar criteria and reason for listing

In a majority of the years in which the Parry Floodplain Wetlands is extensively inundated, the system supports:

- 20,000 waterbirds substantial numbers of migratory shorebirds
- substantial breeding by waterbirds
- large numbers of Plumed Whistling-Duck and Little Curlew
- at least occasional (1 in 20 year) occurrence of Australian Painted Snipe provided that appropriately frequent, systematic and comprehensive surveys of waterbirds have been conducted at these times.

Crocodiles

No significant change in mean populations for each of these species

Mean population estimates for the Saltwater Crocodile = 80 and Freshwater Crocodile = 400 in the lower Ord River.

Appendix 8:

Spill Response Strategic Net Environmental Benefit Analysis and ALARP Demonstration

Strategic Spill Response NEBA and ALARP Demonstration

Strategic NEBA of Spill Response Strategies

The overall aim of a response to a LoWC is to stop or control the flow of oil and remove spilled oil to minimise damage to the environment. There are a number of potential spill response strategies that can be implemented, though not all of them are effective when considering the spilled hydrocarbon type, location and local and regional environmental sensitivities.

This section describes the strategic NEBA for a LoWC from Beehive-1. The NEBA assesses each potential spill response strategy on the basis of the following criteria:

- Environmental benefits;
- Environmental impacts and risks; and
- Operational constraints.

If a response strategy is considered applicable, then its appropriateness as a primary or secondary response strategy is evaluated. This strategic NEBA employs the following process:

- List the available response strategies;
- Identify the benefit, environmental impacts and risks and operational constraints of each response strategy;
- Evaluate the applicability of each response strategy;
- The response strategies are further delineated as:
 - o Primary response strategy to be used as soon as possible in the event of a spill.
 - Secondary response strategy to be implemented as and if needed, and only when practicable if there is a net environmental benefit.
 - Not applicable (N/A) response strategies.
 - Rejected response strategy based on the lack of net environmental benefit.

In the event of an oil spill resulting from a LoWC, operational NEBAs will be undertaken by the Drilling Incident Management Team (DIMT) during the Incident Action Plan (IAP) process to evaluate response options that have a net environmental benefit. As such, the combination of spill response strategies and their implementation may evolve over time as conditions change on the basis of the operational (real-time) NEBAs. Table A8.1 presents the Strategic NEBA for the OPEP.

Table A8.1. Strategic NEBA of oil spill response strategies

Response strategy	Environmental benefits	Environmental impacts and risks	Operational constraints	Suitable response?	Primary or secondary	Justification
Source control – relief well	Limits the volume of oil released to the environment. Successful drilling of relief well estimated to take 77 days after the LoWC.	Routine discharges from the MODU and support vessels (e.g., all the impacts and risks associated with vessel operations, see EP Chapters 7 & 8).	There are few jack-up MODUs generally available in Australia at any one time. Predicted to take 24 days to source and mobilise a MODU to the Beehive-1 location. Additional equipment is necessary to drill a relief well.	Yes	Primary	Most effective method to gain permanent control of the well and prevent further oil releases.
Source control – capping stack	Limits the volume of oil released to the environment until a successful relief well is drilled.	Localised physical disturbance to seabed. Risks from operation of vessel spread to support deployment of equipment (e.g., all the routine planned and unplanned events associated with vessel operations, see EP Chapters 7 & 8).	Well capping is not suitable for Beehive-1 because these systems are designed for subsea wellhead applications and therefore not suitable for jack-up MODU surface application systems as is the case for Beehive-1.	No	N/A	Per 'operational constraints.'
Source control – subsea dispersant application	Direct subsea application of dispersant at the wellhead decreasing volumes of dispersant required via aerial and/or vessel application. Reduced surface oil above the wellhead reduces safety hazard (volatile organic compounds [VOCs] and explosion risk) to allow use of other response strategies.	Minor localised physical disturbance to the seabed. Routine discharges from the MODU and support vessels (e.g., all the impacts and risks associated with vessel operations, see EP Chapters 7 & 8). Toxicity effects of chemical dispersant to marine fauna. Increased concentration of hydrocarbons in the water column (reducing the opportunity for evaporation from the sea surface).	Subsea dispersant application is not suitable for Beehive-1 because this response is designed for subsea wellhead applications, and therefore not suitable for jack-up MODU surface application systems as is the case for Beehive-1.	No	N/A	Per 'operational constraints.'
Monitor and evaluate	Vessel surveillance	Enables real-time decisions to be made to identify emerging environmental risks, to plan spill response and to assess response effectiveness. Risks from operations of monitoring vessels and aircraft (e.g., routine emissions and discharges, marine fauna interactions). Routine discharges from vessels (e.g., all the impacts and risks associated with vessel operations, see EP Chapters 7 & 8) and aircraft	Provides real-time information on spill trajectory and behaviour (e.g. weathering). Informs implementation of other response strategies. Vessel personnel may not be trained observers. Vessel observers on leaking vessel may not have capacity to observe oil during emergency response procedure implementation. Constrained to daylight. Limited to visual range from the vessel. Limited capacity to evaluate possible interactions with sensitive receptors.	Yes	Primary	Constant monitoring and evaluation of the spill enables better real-time response decisions to be made.
	Aerial surveillance	(fauna disturbance noise air emissions)	Provides real-time information on spill trajectory and behaviour (e.g., weathering). May identify environmental sensitivities impacted or at risk of impact (e.g., seabird aggregations, other users such as fishers). Informs implementation of other response strategies.	Yes	Primary	
	Oil spill trajectory modelling and vessels to visually monitor the spill. Visual observations will be restricted at night or during poor weather conditions.		Can be implemented rapidly. Predictive – provides estimate of where the oil may go, which can be used to prepare and implement other responses. No additional field personnel required. Not constrained by weather conditions. Can predict floating, entrained, dissolved and stranded hydrocarbon fractions. May not be accurate. Requires in-field calibration.	Yes	Primary	

Response strategy	Environmental benefits	Environmental impacts and risks	Operational constraints	Suitable response?	Primary or secondary	Justification
	Satellite imagery		Ancillary information can be gathered in all weather, day/night, however Synthetic Radar Analysis (SAR) algorithm used to generate oil on water detection depends significantly on wind conditions. Specifically: 1.5 – 2m/s to 15m/s range. Outside this range the imagery provided uses colour codes to indicate confidence levels for detection in various parts of the designated area of interest captured. Mobilisation likely to be >24 hours. Requires processing. May return false positives.	Yes	Primary	
	Tracking buoys		Can be implemented rapidly. Tracking buoys simulate oil-on-water movement as defined roughly by 100% with current and 3% with the wind.	Yes	Primary	
In-situ burning (ISB)	Combustion of oil on sea surface reduces the volume remaining on the surface.	Generates black smoke, particulates and GHG, with potential health risks to responders. Generates modest waste products for recovery and disposal. Incomplete combustion residues may be toxicologically damaging and could be ingested by marine life or coat gills, feathers, and hair. Routine discharges from vessels (e.g., all the impacts and risks associated with vessel operations, see EP Chapters 7 & 8) and aircraft (fauna disturbance, noise, air emissions).	Thick hydrocarbon film is required for ignition/ combustion (5-10 mm). The predicted light nature of the crude means this may not occur. There are no fireproof booms available in Australia. ISB has never been conducted in Australia (limited personnel experience). Ignition of hydrocarbon requires specialist training and equipment. Wind and sea conditions a key constraint, with light wind and low wave heights required for safe and controlled burning (wind limited to 10 kts, and wave height <1 m, IPIECA-IOGP, 2015).	No	N/A	Per 'operational constraints.'
Surface dispersant application – vessel	Accelerates breakup of surface oil by reducing oil-water interfacial tension to increase entrained oil and its sub-	Adds chemical to the environment, introducing additional toxicity impacts to marine fauna that may not have otherwise been affected by the oil (e.g., pelagic species,	Uncertain amenability of Beehive-1 oil to dispersant. A test spray would be required. Aerial application only possible with wind less than 35 knots, and wave height less than 5 m (IPIECA-IOGP, 2015).	Yes	Secondary	Environmental benefits outweigh the impacts and risks. This is a strategy that the oil and gas industry is well-
Surface dispersant application – aerial	surface dispersal, thereby reducing potential impacts at the sea surface (e.g., seabirds) and to sensitive shoreline receptors (e.g., mangroves, turtle nesting beaches). Oil stranded on shorelines will be more weathered and less toxic. Can be activated quickly (within first day after spill) over a wide area irrespective of sea surface conditions. Reduction in onshore hydrocarbon waste disposal requirements.	coral reefs and shoals). Doesn't remove oil from the environment (simply pushes surface oil into the water column). Increased concentration of sub-surface hydrocarbons in the water column, which may take longer to weather. Routine discharges from vessels (e.g., all the impacts and risks associated with vessel operations, see EP Chapters 7 & 8) and aircraft (fauna disturbance, noise, air emissions).	Vessel application may have a wider range of suitable weather conditions compared to aerial application, though the number of vessel boom spray equipment and vessels will be limited. The volume of suitable dispersant could potentially limit response implementation, but available stockpiles demonstrates that needs can be met (6,386 m³ readily available from AMSA, AMOSC and OSRL, with a predicted need for 4,278 m³). Requires clear area with no (or limited) simultaneous operations. Trajectory of sub-surface dispersed hydrocarbons is difficult to track (requires tracking of water currents rather than winds).	Yes	Primary	prepared to implement.

Response strategy	Environmental benefits	Environmental impacts and risks	Operational constraints	Suitable response?	Primary or secondary	Justification
Mechanical dispersion (vessel propellors)	Enhances dispersion and break- up of surface hydrocarbons to facilitate natural degradation processes.	Increases oil concentrations in the water column. Routine discharges from vessels (e.g., all the impacts and risks associated with vessel operations, see EP Chapters 7 & 8).	Vessels not designed to cavitate, not efficient at breaking up slicks. Potential OHS risks for vessel-based responders through ignition or inhalation of vapours from the oil, especially as Jabiru crude is so volatile (79% volatile components). Small oil droplet size required otherwise the oil can resurface. For some oil types there is limited benefit unless combined with dispersant application (suitability is unknown for Jabiru crude). Wind speeds above 20 knots provide natural dispersion, making this method redundant in windy weather.	No	No	AMOSC advices that this is not considered best practice and not recommended for either MDO or crude.
Containment & recovery	Contains the spill as close as possible to the source. Recovery reduces spread of surface oil and thereby risks to sensitive shoreline receptors. Removal of oil from the environment. Requires minimum slick concentrations >10 g/m², which the OSTM predicts to be extensive.	Routine discharges from vessels (e.g., all the impacts and risks associated with vessel operations, see EP Chapters 7 & 8). Cleaning and disposal of contamination from booms and response vessels may introduce oil to other areas (e.g., local ports).	Containment is possible using the right equipment in 3 – 5 knots of current (well within listed current range). Strategy does not require placing boom around very large oil slicks. Limitations and constraints (high release rate, low strike rate, storage and waste management, labour intensive, weather, VoO availability) are not reasons to eliminate or downgrade this as a strategy.	Yes	Secondary	Strong tidal conditions are unlikely to permit efficient offshore containment in proximity to the well with booms, weirs and skimmers. High release rate and the numerous vessels required for a meaningful recovery rate make this response option dubious. Strategy may be effective in nearshore low-energy areas (e.g., bays) to protect high priority receptors (such as turtle nesting or shorebird nesting beaches and mangroves).
Shoreline protection & deflection (booming operations)	Prevents or minimise oil exposure to sensitive receptors (e.g., turtle nesting beaches, mangroves, seagrass meadows) by deflecting oil to lower priority areas (e.g., rocky shores that are 'self-cleaning').	Disturbance to seabed sediments at booming anchor points. Potential for mixing of oil with beach sediments. Disturbance to shorelines (e.g., sandy beaches and sand dunes) where helicopter or foot access is required. Generation of waste from booms and disposal of recovered oil and water. Oiling of shorelines that oil is deflected towards. Routine discharges from vessels (e.g., all the impacts and risks associated with vessel operations, see EP Chapters 7 & 8).	Wind, waves and surface currents are key constraint in the deployment and operations of booms in nearshore coastal environments. Depending on the exact type of boom, currents cannot be >1-2 knots and breaking waves cannot be >30-50 cm. High tidal ranges in the region means keeping booms anchored could be challenging. Considerable resources and logistics support needed (i.e., equipment and labour intensive). Shoreline is remote with no facilities for responders. High OHS risks, including sun and heat exposure, risk of fauna bites/attack (mosquitoes, crocodiles, jellyfish), mud and high tidal ranges. Rescue and medical facilities are located a significant distance from shorelines. There is no road access — access is limited to vessels or aircraft only.	Yes	Secondary	Extremely poor site access and high OHS risks. Sensitive areas (e.g., mangroves, turtle nesting shorelines) may be targeted for protection by the DIMT (based on operational monitoring and real-time OSTM forecasting).

Response strategy	Environmental benefits	Environmental impacts and risks	Operational constraints	Suitable response?	Primary or secondary	Justification
Shoreline clean-up	Removes oil to minimise environmental risks to sensitive receptors and to accelerate recovery time. Reduces risk of oil reentrainment from shoreline into marine environment. Areas of shoreline that are amenable to clean-up (contact >100 g/m²) are predicted to occur over 120 km of shoreline in the worst-case deterministic modelling run (with a maximum shoreline loading of 825 m²).	Potential shoreline disturbance to sensitive habitats (e.g., turtle nesting beaches) from clean-up operations (e.g., trampling by response personnel and equipment) may outweigh environmental benefits in some circumstances (such as natural weathering processes on the shoreline of biodegradation, photo-oxidation and volatilisation). Large volumes of waste will be generated from the removal of contaminated beach sediments. This may impact on coastal flora and fauna. Temporary storage of waste has the potential to cause contamination to areas not contacted by the spill. Presence of response personnel, equipment and facilities increase the risk of hydrocarbon cross-contamination from impacted to non-impacted sites. Routine discharges from vessels (e.g., all the impacts and risks associated with vessel operations, see EP Chapters 7 & 8).	Labour intensive (likely to require hundreds or thousands of people), with no local staging facilities or accommodation available. There is no road access – access is limited to vessels or helicopters only. Significant waste management logistics considerations required in a very remote area. Extensive areas of the shoreline are dominated by mangroves and mudflats, which are not accessible by foot and extremely difficult to remove oil from. High tidal ranges, with two high and two low tides per day, means shoreline clean-up hours are limited each day to period of low tide. High OHS risks, including sun and heat exposure, risk of fauna bites/attack (mosquitoes, crocodiles, jellyfish), mud and high tidal ranges. Rescue and medical facilities are located a significant distance from shorelines.	Yes	Secondary	Extremely poor site access and high OHS risks. Responses will be limited to sandy beaches only due to access constraints, high tidal ranges, safety of responders around rocky shorelines and in mudflats, and environmental sensitivity of mangrove forests (trampling may cause higher impacts than oil, assuming the oil is partially weathered by the time it reaches mangroves).
Oiled wildlife response (OWR) Onshore exclusion barriers Hazing Preemptive capture Capture, treatment and rehabilitation	Reduces impacts to wildlife populations, particularly threatened species such as turtles. Minimising suffering of affected fauna. Euthanasia of animals that have no prospect of survival are not consumed by predators or scavengers, thereby avoiding secondary contamination of the food web.	Hazing may accidentally drive wildlife into spills or separate groups/individuals (e.g., parents/ offspring pairs). It may push them away from resources they require (food, habitat). Potential risk of fauna injury due to inappropriate field collection/handling during capture. Rehabilitation activities could result in inappropriate animal handling leading to stress, injury or death. Inappropriate fauna relocation points leading to disorientation or stress and consequent health impacts. Generation of medical wastes and requirement for suitable disposal. Routine discharges from vessels (e.g., all the impacts and risks associated with vessel operations, see EP Chapters 7 & 8).	There is no road access – access is limited to vessels and helicopters only. Labour intensive with significant logistical considerations. Limited to sandy beach areas (e.g., turtle nesting beaches during nesting or hatchling emerging times and shorebird nesting beaches) due to OHS risks associated with access to shorelines dominated by rocks, mangroves and mudflats. Sandy beaches comprise a very small percentage of the shoreline within the spill EMBA and coastlines closest to Beehive-1. The number of oiled wildlife kits are limited (AMOSC, AMSA, OSRL and state-based wildlife government agencies). OWR is limited to trained wildlife handlers from AMSA and state-based wildlife government agencies, meaning responder numbers are small. Access to trained wildlife handlers from wildlife rehabilitation organisations could be limited due to access constraints and OHS risks. Most of the shoreline is not suitable for staging facilities (e.g., treatment and rehabilitation) due to its remoteness. High OHS risks, including sun and heat exposure, risk of fauna bites/attack (mosquitoes, crocodiles, jellyfish), mud and high tidal ranges. Rescue and medical facilities are located a significant distance from shorelines.	Yes	Secondary	OWR is justified when oiled wildlife is identified and the capability to respond is in place (through existing state plans). Extremely poor site access. Limited to sandy beaches due to OHS risks of access to other shoreline types.

Response strategy	Environmental benefits	Environmental impacts and risks	Operational constraints	Suitable response?	Primary or secondary	Justification
Operational and Scientific Monitoring (OSM)	OSM and its supporting documents are instrumental in providing situational awareness of a hydrocarbon spill, enabling Incident Management Teams/Emergency Management Teams (IMT/EMTs) to mount a timely and effective spill response and continually monitor the effectiveness of the response. OSM is also the principal tool for determining the extent, severity and persistence of environmental impacts from a hydrocarbon spill and resultant remediation activities.	Routine discharges from vessels (e.g., all the impacts and risks associated with vessel operations, see EP Chapters 7 & 8) and aircraft (fauna disturbance, noise, air emissions).	Weather constraints. High OHS risks, including sun and heat exposure, risk of fauna bites/attack (mosquitoes, crocodiles, jellyfish), mud and high tidal ranges. Rescue and medical facilities are located a significant distance from shorelines.	Yes	Primary	Applicable as a primary response strategy to characterise impacts from oil spill and response activities, and subsequent recovery. EOG has adopted the APPEA Joint Industry OSM Framework and has committed to implementing the relevant plans if their initiation criteria are met.

ALARP Demonstration for Control Measures of Selected Response Strategies

The ALARP principle (described in EP Section 6.6) is applied to potential control measures of the selected spill response strategies from the strategic NEBA. Table A8.2 provides an overview of the ALARP demonstration process of each potential response strategy's control measure and Table A8.3 provides a summary of the assessment and the rationale for effectiveness rankings of potential criteria. This information is linked to the environmental risk assessment in Section 8.8 of the EP.

Table A8.2. Overview of ALARP demonstration for potential control measures associated with response strategies

Column Title	Description						
Control measures	A potential control	measure of the response strat	egy.				
Hierarchy of Control (HOC)	Hierarchy of control category of the control measure.						
Rationale	Why is the control r	measure for the response stra	tegy under consideration?				
Environmental benefit	What environmenta	What environmental benefit is derived from the control measure?					
Effectiveness		eness of the control measure ty, survivability, independence	• •				
	Criteria	Effective	ness Ranking				
		Low	High				
	A: Availability	Equipment/resources not readily available and EOG has no external arrangement or internal processes in place to expedite timely provision of equipment/resources.	Equipment/resources readily available or EOG has equipment/resources on standby, and/or contracts, arrangements, or MOU's in place for provision of equipment/ resources.				
	F: Functionality	Control measure does not materially reduce risk/ impact.	Control measure does materially reduce risk/ impact.				
	R: Reliability	Control measure not tested in Australian waters and/or low assurance assigned to success rate.	Control measure has been tested in Australian waters and/or high assurance assigned to success rate.				
	S: Survivability						

Column Title	Description	Description						
	I/C: Independence/ Compatibility	Control measure is reliant on other control measures in place and/or is not compatible with other control measures in place.	Control measure is not reliant on other control measures in place and/or can be implemented with other control measures.					
Implementation time	How soon could the	e control measure be impleme	ented?					
Cost/ Effort	What is the cost to implement the control measure during the activity?							
ALARP Summary	Accept or reject cor	Accept or reject control measure on basis of ALARP.						

Table A8.3. ALARP demonstration of potential control measures for selected response strategies of the strategic NEBA

Key: A = Availability; F = Functionality, R = Reliability; S = Survivability; IC = Independence/Capability.

Control Measures	Hierarchy of control	Rationale	Environmental benefit	Effectiveness	Implementation time	Cost/effort	ALARP summary
Source control – relief well (pri	mary strategy)						
No relief well source control.	N/A	Do nothing option.	None	N/A	N/A	Nil	Reject – relief well strategy required.
Relief well operations managed in accordance with the Incident Action Plan (IAP), Relief Well Plan (RWP) and third-party requirements.	Administrative	Rapidly initiate relief well planning and pre-identification of equipment requirements.	Reduced spill period.	A, F, R, S, IC: High.	Immediate and ongoing. Calculated as 77 days to kill well after LoWC.	Minor	Accept – control measure is effective and has minor cost implications.
NOPSEMA-accepted WOMP and Safety Case(s) specific to the activity.	Administrative	Legislative requirement.	Legislative requirement.	A, F, R, S, IC: High.	Immediate and ongoing.	Minor	Accept – Control measure is effective and has minor cost implications.
Purchase casing, casing accessories and wellhead for relief well ahead of time.	Administrative	Reduces delays in equipment availability.	Reduced duration of LoWC and therefore lower volumes of oil released.	A, F, R, S, IC: High.	Implement prior to commencement of drilling.	>\$2M, Contracting and logistics effort	Reject – High costs, grossly disproportionate to environmental benefit. Supply agreement in place with Santos.
Supply arrangement in place for casing, casing accessories and wellhead for relief well.	Administrative	Reduces delays in equipment availability.	Reduced duration of LoWC and therefore lower volumes of oil released.	A, F, R, S, IC: High.	Implement prior to commencement of drilling.	Contracting and logistics effort	Accept – Control measure is effective and has minor cost implications.
Necessary casing widely used by titleholders with stockpiles in Australia accessible via APPEA MoU provisions.	Administrative	Reduces delays in equipment availability	Reduced duration of LoWC and therefore lower volumes of oil released.	A, F, R, S, IC: High	Implement prior to drilling operations.	Minor	Accept – Control measure practicable and effective, environmental benefit outweighs minor costs.
Pre-drill top hole of relief well.	Administrative	Reduces duration to drill relief well.	Reduced duration of LoWC and therefore lower volumes of oil released.	F, S, IC: High. A: Low (difficult to contract rig). R: Low.	Up to a year.	~\$10-15 million	Reject – High costs, second operation risk exposure, and P&A liability grossly disproportionate to environmental benefit. Likely to only save 1-2 days.
Mutual Aid MoU in place with other operators to release MODU for relief well.	Administrative	Allow rapid mobilisation of MODU.	Reduced duration of LoWC and therefore lower volumes of oil released.	A, F, S, IC: High. R: Low (MoU has not been tested).	N/A	Minor	Accept – Control measure practicable and effective, environmental benefit outweighs minor costs.
Prepare outline of relief well safety case (MoU MODU)	Administrative	Reduces delays in preparation of safety case for relief well.	Reduced duration of LoWC and therefore lower volumes of oil released.	A, F, R, S, IC: High	Implement post primary MODU safety case prior to entering reservoir.	~\$10 k	Reject – Minimal time saving benefit due to unknown MODU parameters, and existing safety case(s) of MoU MODUs. Cost disproportionate to environmental benefit.
MODU contract tracking and forecasting.	Administrative	Improves visibility of likely locations of relief well MODU during the activity.	Reduced duration of LoWC and therefore lower volumes of oil released.	A, F, R, S, IC: High	Ongoing	Minor	Accept – Control measure practicable and effective, environmental benefit outweighs minor cost.

Control Measures	Hierarchy of control	Rationale	Environmental benefit	Effectiveness	Implementation time	Cost/effort	ALARP summary
Prepare mobilisation plan for Operator with appropriate Australian Safety Case MODU if no MoU MODU in Australia 3 months prior to start of drilling.	Administrative	Reduces delays in preparation of Safety Case for relief well – in the case of requiring a MODU to be mobilised from Southeast Asia.	Reduced duration of LoWC and therefore lower volumes of oil released.	A, F, R, S, IC: High	Implement with primary MODU provider (or other with Australian Safety Case experience) if no MoU MODU in Australia 3 months prior to commencement of drilling.	Moderate	Accept – If no MoU MODU in Australia - Control measure practicable and effective, environmental benefit outweighs moderate costs.
Invasive Marine Species (IMS) clearance of MODUs not already in Australia.	Administrative	MODU cleared from IMS are able to mobilise directly to the relief well location.	Reduced duration of LoWC and therefore lower volumes of oil released.	A, R, F: High S, IC: Low	Prior to commencement of drilling.	Moderate	Reject – This control relies on contracting the required MODU ahead of time. High cost is disproportionate to environmental benefit.
IMS risk assessment of MoU MODUs in Australia.	Administrative	Risk assessment can be accessed from titleholders using the MODUs. This fast-tracks the mobilisation period.	Reduced duration of LoWC and therefore lower volumes of oil released.	A, R, F, S, IC: High.	Implement if no MoU MODU in Australia concurrent with mobilisation plan.	Minor	Accept – Control measure practicable and effective, environmental benefit outweighs minor costs.
Vessel brokerage weekly vessel updates.	Administrative	Weekly update on appropriate heavy lift vessels (HLV) for MODU transport. This fast-tracks the mobilisation period.	Reduced duration of LoWC and therefore lower volumes of oil released.	A, R, F, S, IC: High.	3 months prior to commencement of drilling until the end of drilling.	Minor	Accept – Control measure practicable and effective, environmental benefit outweighs minor costs.
Subscription to real-time vessel tracking and brokerage service.	Administrative	Rapid identification and selection of appropriate HLVs for MODU transport.	Reduced duration of LoWC and therefore lower volumes of oil released.	A, R, F, S, IC: High.	In place one month prior to drilling until the end of drilling.	Minor	Accept – Control measure practicable and effective, environmental benefit outweighs minor cost.
MODU on standby in case relief well needed.	Administrative	MODU immediately available to drill relief well.	Reduced duration of LoWC and therefore lower volumes of oil released.	F, R, S, IC: High. A: Low (difficult to get rig on standby).	14 days to mobilise standby MODU to drill relief well	~\$20-30 million for local MODU ~\$30-40 million if mobilised from overseas	Reject – High costs grossly disproportionate to environmental benefit.
Pre-mobilisation of relief well personnel	Administrative	Having relief well team in place at the start of drilling greatly reduces the mobilisation time for source control personnel.	Negligible – source control team can work remotely during initial phase and then mobilise over time.	A, R, S, IC: High. F: Low	In place at the start of drilling	~\$1.5 million	Reject – High costs grossly disproportionate to negligible environmental benefit.
Aircraft on standby for source control personnel mobilisation	Administrative	Allows for source control team to be mobilised in one flight.	Negligible – source control team can work remotely during initial phase and then mobilise over time.	A, R, S, IC: High. F: Low	In place at the start of drilling	\$10-15 million	Reject – High costs grossly disproportionate to negligible environmental benefit.
Relief well (source control) personnel resourcing plan in place.	Administrative	Source control team positions and provider identified for all positions. Contracts or arrangements in place for all positions means the team can be deployed ASAP.	Reduced duration of LoWC and therefore lower volumes of oil released.	A, R, F, S, IC: High	In place 2 months prior to commencement of drilling.	Minor	Accept – Control measure practicable and effective, environmental benefit outweighs minor cost.
Relief well MODU conductor validation	Engineering	Provide assurance that any relief well MODU will be able to utilise existing conductor design.	Reduced duration of LoWC and therefore lower volumes of oil released.	A, R, F, S, IC: High	In place 4 months prior to drilling.	Minor	Accept – Control measure practicable and effective, environmental benefit outweighs minor cost.

Control Measures	Hierarchy of control	Rationale	Environmental benefit	Effectiveness	Implementation time	Cost/effort	ALARP summary
Site survey conducted for relief well location.	Engineering	Provides assurance that relief well location(s) is/are suitable for use and provide information to complete mooring analysis.	Reduced duration of LoWC and therefore lower volumes of oil released.	A, R, F, S, IC: High	In place 6 months prior to drilling.	Minor	Accept – Control measure practicable and effective, environmental benefit outweighs minor cost.
Pinning analysis for relief well MODU(s).	Engineering	Provide assurance that any relief well MODU can be safely jacked-up at the relief well location.	Reduced duration of LoWC and therefore lower volumes of oil released.	A, R, F, S, IC: High	In place 4 months prior to drilling.	Minor	Accept – Control measure practicable and effective, environmental benefit outweighs minor cost.
Monitor and evaluate (primary	strategy)						
No monitoring and evaluation of the spill	N/A	Do nothing option.	None	N/A	N/A	Nil	Reject – Monitor and evaluate (operational monitoring) strategy required to inform response planning and to assess response effectiveness.
Monitor and evaluate operations managed by DIMT through IAP process and guided by OPEP and OSMP.	Administrative	Information to plan and to monitor spill and response measures.	Knowledge of spill and evaluation of response measures informs a more targeted spill response.	A, F, R, S, IC: High.	Immediate and ongoing.	Minor	Accept – practicable and effective, environmental benefit outweighs minor cost.
Quasi-real-time OSTM predictions to support operational NEBA during IAP process.	Administrative	Predicted spill trajectory, effectiveness of response and risks to environmental receptors inform DIMT.	Forecasted spill behaviour to respond and to manage spill, and to identify sensitive receptors at risk.	A, F, R, S, IC: High.	<2 hours to initiate.	Minor	Accept – practicable and effective, environmental benefit outweighs minor cost.
Initial observations and reporting by MODU, support vessels and/or contracted helicopter(s).	Administrative	Vessels and helicopter(s) provide basic information (location, weather and spill character) to inform initial response.	Early indication of direction of spill to target immediate response and to establish situational awareness.	A, F, R, S: High. IC: Low (dependent on safety considerations and tasks of available on-/near- site vessels and/or contracted helicopters).	Immediate for support vessel and/or MODU crew. Aircraft - ~6 hours.	Minor	Accept – practicable and effective, environmental benefit outweighs minor cost.
Oil spill tracking buoys located on MODU and support vessels.	Administrative	Buoys deployed in event of LoWC to track spill movement and gain situational awareness.	Early indication of direction of spill to target immediate response and to establish situational awareness.	A, F, R, S, IC: High	Immediate	Minor	Accept – practicable and effective, environmental benefit outweighs minor cost.
Provision of satellite imagery.	Administrative	Quasi-real-time monitoring required to inform DIMT of spill distribution, expedited acquisition.	Informs DIMT IAP process to target response to yield greatest environmental benefit.	A, F, R, S, IC: High.	<24 hours for acquisition of first image.	Minor	Accept – practicable and effective, environmental benefit outweighs minor cost.
Aerial monitoring by trained observers (AMOSC) in fixedwing aircraft.	Administrative	Fixed-wing aircraft and trained observers improve spill surveillance.	Ongoing spill surveillance to inform spill response.	A, F, R, S, IC: High.	Subject to aircraft and personnel availability, but ~24 hours.	Minor	Accept – practicable and effective, environmental benefit outweighs minor cost.
Dedicated monitoring plant, equipment and personnel on call-off arrangement.	Administrative	Dedicated monitoring resources improve spill monitoring.	Ongoing spill monitoring to inform spill response.	A, F, R, S, IC: High.	Subject to vessel and personnel availability, but <2 days from call-off.	Minor	Accept – practicable and effective, environmental benefit outweighs minor cost.

Control Measures	Hierarchy of control	Rationale	Environmental benefit	Effectiveness	Implementation time	Cost/effort	ALARP summary
Trained observers, and dedicated equipment and plant on standby for aerialand/or vessel-based surveillance.	Administrative	Decrease response time for plant (aircraft, vessels) and trained observers improve spill surveillance.	Ongoing spill monitoring to inform spill response.	F, R, S, IC: High. A: Low (trained observers typically have full-time jobs and may not be released for standby).	24 hours to get airborne or depart port with standby observers.	Standby costs of ~>\$1M to maintain plant and trained observers.	Reject – high costs are grossly disproportionate to the limited environmental benefit.
Surface dispersant application	– aerial (primary strate	gy) and vessel (secondary strate	gy)				
No surface dispersant system response strategy.	N/A	Do nothing option.	None	N/A	N/A	Nil	Reject – The option to apply a surface dispersant system under appropriate conditions is retained.
Only chemical dispersants listed on the AMSA oil spill control agents [OSCA] list will be used (lower toxicity than non-OSCA listed dispersants).	Substitute	Reduce environmental effects by only selecting dispersants with low(est) toxicity.	Reduces toxicity impacts to marine fauna.	S, IC: High. A: Low (stocks potentially limited). F, R: Low (may not to be as effective as higher toxicity dispersants).	N/A	Minor	Accept – only dispersants listed on the OSCA register can be used in Australian waters.
Temporal windows of environmental sensitivity considered in operational NEBA.	Substitute	Surface dispersant application during temporal windows of environmental sensitivity (e.g., coral spawning, turtle nesting, shorebird & EPBC listed species migrations) a key consideration in operational NEBAs.	Reducing potential impacts during surface dispersant application.	A, F, R, S, IC: High.	N/A	Minor	Accept –practicable and effective, environmental benefit outweighs minor cost.
Operational control to prevent impacts on EPBC-listed megafauna.	Eliminate	Sightings of EPBC-listed megafauna (e.g., whale sharks, blue whales) in the immediate vicinity of any surface dispersant operations will trigger cessation of response until animal has moved and not been sighted for 30 minutes.	Reduced impact on EPBC-listed megafauna.	A, F, R, S, IC: High.	N/A	Minor	Accept –practicable and effective, environmental benefit outweighs minor cost.
Dispersant not applied in water depths <20 m, within an Australian Marine Park and within State waters (i.e., within 3 nm of the shoreline).	Eliminate	Restrictions on dispersant use that consider likely exposure to dispersant/ dispersed oil in sensitive areas is recognised good practice.	Reduced impact from dispersant and dispersed oil on sensitive receptors (e.g., shallow water habitats and coastal habitats).	A, F, R, S, IC: High.	N/A	Minor	Accept – practicable and effective, environmental benefit outweighs minor cost.
Arrangements in place with AMOSC, OSRL and other third parties for plant, equipment, dispersants and service provision of surface dispersant application.	Administrative	Rapid mobilisation of surface dispersant system to reduce surface oil volumes and the extent and volume of shoreline oiling. Plant, equipment and personnel to implement surface dispersant response strategy can be mobilised for first strike, escalation, and peak volume needs.	Arrangements in place for rapid initialisation of surface dispersant application resources that may reduce surface and shoreline oiling impacts. Mobilisation time frames for plant, equipment and personnel can meet first strike, escalation and peak volume needs and thereby do not limit response strategy implementation.	A, R, S, F, IC: High.	<2 hours to initiate	Minor	Accept – practicable and effective, environmental benefit outweighs minor cost.

Control Measures	Hierarchy of control	Rationale	Environmental benefit	Effectiveness	Implementation time	Cost/effort	ALARP summary
OSRL GDS membership.	Administrative	Access to global stockpiles of dispersant. Supply chain analysis confirms that sufficient dispersant stockpiles exist to meet volume and temporal needs for this strategy.	Global stockpile access provides sufficient volumes for SDA response to treat minimum oil thickness (>50 um) that may reduce surface and shoreline oiling impacts.	A, R, S, F, IC: High.	<2 hours to initiate.	Moderate (~\$100,000)	Accept – practicable and effective, environmental benefit outweighs minor cost.
Rapid dispersant efficacy assessment.	Administrative	Rapid onsite effectiveness trial of available dispersants prior to surface application.	Determination of effectiveness of dispersants available at/near the spill site.	A, R, S, F, IC: High.	<2 days to initiate	Minor	Accept – practicable and effective, environmental benefit outweighs minor cost.
Laboratory dispersant efficacy assessment.	Administrative	Detailed dispersant effectiveness evaluation to inform selection of priority of dispersant types for surface application	Determination of effectiveness of the range of dispersants with greater certainty than the rapid assessment.	A, R, S, F: High IC: Low (ability to acquire oil sample of sufficient volume and 'freshness').	<2 days to initiate.	Minor	Accept – practicable and effective, environmental benefit outweighs minor cost.
Dedicated response vessel(s) and/or fixed wing aircraft with surface dispersant system spread(s).	Administrative	On standby 24/7 during drilling to rapidly initiate surface dispersant system application in the event of a LoWC.	Rapid response reduces surface concentrations and shoreline loading.	A, R, S, F, IC: High.	<1 day to initiate.	Significant vessel and aircraft standby costs >~\$1-5 million.	Reject – High costs are grossly disproportionate to environmental benefit given that AMOSC can respond in a similar time.
Dedicated personnel and equipment on standby implementation of surface dispersant application response strategy.	Administrative	On standby 24/7 during drilling to rapidly initiate surface dispersant system application in the event of a LoWC.	Rapid response reduces surface concentrations and shoreline loading.	A, R, S, F, IC: High.	<1 day to initiate.	Significant personnel standby costs ~\$1 million.	Reject – High costs are grossly disproportionate to environmental benefit given that AMOSC can respond in a similar time.
Dispersant pre-mobilisation to nearby holding facilities (e.g., Wyndham or Wadeye) to support surface dispersant application response strategy.	Administrative	Sufficient dispersant stockpiles are available at Broome and Darwin, with supplies from elsewhere in Australia able to be rapidly deployed by air.	Rapid response reduces surface concentrations and shoreline loading.	A, R, S, F, IC: High.	<1 day to initiate.	Mobilisation of existing national and global stockpiles to Dampier not possible.	Reject – High costs are grossly disproportionate to environmental benefit given that nearby stockpiles can be rapidly deployed to site.
Engage suppliers to manufacture dispersant and store at Darwin and Broome for surface dispersant application response strategy.	Administrative	Sufficient dispersant stockpiles are available at Broome and Darwin, with supplies from elsewhere in Australia able to be rapidly deployed by air. Additional supplies are available from OSRL in Singapore.	Rapid response reduces surface concentrations and shoreline loading.	A, R, S, F, IC: High.	<1 day to initiate.	Manufacture and storage costs of sufficient dispersant volumes >\$1 million.	Reject – High costs are grossly disproportionate to environmental benefit given that nearby stockpiles can be rapidly deployed to site.
Containment and recovery (sec	ondary strategy)						
No containment and recovery response.	N/A	Do nothing option.	None	N/A	N/A	Nil	Reject – The option to apply a containment and recovery under appropriate conditions is retained.
Implement offshore containment and recovery operations near well.	Administrative	Recovers some oil offshore near the source to reduce the volume reaching sensitive shorelines.	Reduces the volume of oil reaching sensitive shorelines.	A: High. S: Low (booms will require frequent maintenance and replacement).	N/A	Major	Accept – practicable and effective, environmental benefit outweighs major costs, but only where surface oil is thickest and

Control Measures	Hierarchy of control	Rationale	Environmental benefit	Effectiveness	Implementation time	Cost/effort	ALARP summary
				F: Low (will not materially decrease oil from marine environment, long distances to transport oil to waste transfer stations). R: Low (limited effectiveness in typical offshore conditions). IC: Low (dependent on waste management capacity).			therefore amenable to recovery (near the well).
Implement nearshore containment and recovery operations near sensitive shoreline receptors (e.g., mangroves, turtle nesting sites).	Administrative	Recovery of oil offshore near key sensitive receptors with a sufficient probability of contact by a slick.	Removal of surface oil primarily in the waters closest to sensitive environmental receptors that may be impacted by shoreline oiling (preventative).	A: High. S: Low (booms will require frequent maintenance and replacement). F: Low (will not materially decrease oil from marine environment, long distances to transport oil to waste transfer stations for most key sensitive receptors). R: Low (limited effectiveness in typical nearshore ocean conditions and low surface oil thickness). IC: Low (dependent on waste management capacity).	N/A	Major	Reject – will provide limited environmental benefit due to the insufficient thickness of the oil near sensitive shorelines.
Temporal windows of environmental sensitivity considered in operational NEBA.	Substitute	Response strategy during temporal windows of environmental sensitivity (e.g. turtle nesting, shorebird & EPBC listed species migrations) a key consideration in operational NEBAs.	Reducing potential impacts during containment and recovery response strategy.	A, F, R, S, IC: High.	N/A	Minor	Accept – practicable and effective, environmental benefit outweighs minor cost.
Operational control to prevent impacts on EPBC-listed megafauna.	Eliminate	Sightings of EPBC-listed megafauna (e.g., whale sharks, blue whales) in the immediate vicinity of any containment and recovery operations will trigger cessation of response until animal has moved and not been sighted for 30 minutes.	Reduced impact on EPBC-listed megafauna.	A, F, R, S, IC: High.	N/A	Minor	Accept – practicable and effective, environmental benefit outweighs minor cost.
OSRL and AMOSC membership	Administrative	Ready access to a wide range and large quantity of spill response equipment and trained personnel that can be rapidly mobilised.	Potential limited reduction of oiling of sensitive shorelines.	A, F, R, S, IC: High.	Mobilised within <24 hours for AMOSC equipment. <3 days for OSRL equipment. Functional <7 days.	Moderate	Accept – practicable and effective, environmental benefit outweighs moderate cost.

Control Measures	Hierarchy of control	Rationale	Environmental benefit	Effectiveness	Implementation time	Cost/effort	ALARP summary
Suitable response vessels sourced through external services contracting strategy.	Administrative	Enable deployment for containment and recovery operations at high priority sites with appropriate vessels.	Protection of very high sensitivity site(s) may be possible.	A, F, R, S, IC: High.	Mobilised within 7 days.	Minor	Accept – practicable and effective, environmental benefit outweighs minor cost.
Containment and recovery equipment and vessels with trained personnel on standby at/near key sensitive receptors.	Administrative	Enables rapid deployment to protect high priority sites.	Protection of very high sensitivity site(s) may be possible.	A, F, R: High. S: Low (regular inspection and maintenance of booms required at pre-positioned sites). IC: Low (dependent on waste management capacity).	Mobilisation <1 day, functional within 7 days	Standby cost of vessel(s), personnel and equipment >\$1 million	Reject – grossly disproportionate compared to limited environmental benefit due to inability to predict exact areas of shoreline impact.
Shoreline protection and deflect	ction (secondary strate	gy)					
No shoreline protection and deflection response.	N/A	Do nothing option.	None	N/A	N/A	Nil	Reject – may mitigate impacts to sensitive shoreline environmental receptors.
Temporal windows of environmental sensitivity considered in operational NEBA.	Substitute	Response strategy during temporal windows of environmental sensitivity (e.g., turtle nesting, shorebird & EPBC listed species migrations) a key consideration in operational NEBAs.	Reducing potential impacts during protection and deflection response strategy.	A, F, R, S, IC: High.	N/A	Minor	Accept – practicable and effective, environmental benefit outweighs minor cost.
Operational control to prevent impacts on EPBC-listed megafauna.	Eliminate	Sightings of EPBC-listed megafauna (e.g., whale sharks, blue whales) in the immediate vicinity of any containment and recovery operations will trigger cessation of response until animal has moved and not been sighted for 30 minutes.	Reduced impact on EPBC-listed megafauna.	A, F, R, S, IC: High.	N/A	Minor	Accept – practicable and effective, environmental benefit outweighs minor cost.
OSRL and AMOSC membership.	Administrative	Ready access to a wide range and large quantity of spill response equipment and trained personnel that can be rapidly mobilised.	Potential limited reduction of oiling of sensitive shorelines.	A, F, R, S, IC: High.	Mobilised within <24 hours for AMOSC equipment. <3 days for OSRL equipment. Functional <7 days	Moderate	Accept – practicable and effective, environmental benefit outweighs moderate cost.
Suitable response vessels sourced through external services contracting strategy.	Administrative	Enable deployment to protect high priority sites with appropriate mix of small to larger vessels.	Protection of very high sensitivity site(s) possible.	A, F, R, S, IC: High.	Mobilised within 7 days.	Minor	Accept – practicable and effective, environmental benefit outweighs minor cost.

Control Measures	Hierarchy of control	Rationale	Environmental benefit	Effectiveness	Implementation time	Cost/effort	ALARP summary
Shoreline booms and associated equipment and vessels with trained personnel on standby at/near key sensitive receptors.	Administrative	Enable rapid deployment to protect high priority site.	Protection of very high sensitivity site(s) possible.	A, IC: High. F: Low (predicted surface oil concentrations low [<10 g/m²] when arrive at shorelines). R: Low (potential minimal arrival time and location after release from wellhead difficult to predict). S: Low (regular inspection and maintenance required).	Mobilisation <1 day, functional within 7 days	Standby cost of vessel(s), personnel and equipment >\$1-5 million	Reject – grossly disproportionate compared to limited environmental benefit due to inability to predict exact areas of shoreline impact.
Shoreline clean-up (secondary s	strategy)						
No shoreline clean-up response.	N/A	Do nothing option.	None	N/A	N/A	Nil	Reject – this strategy is required to mitigate impacts and risks to sensitive shoreline environmental receptors.
No machinery to be used in mangroves or within 20 m of an identified turtle nest.	Eliminate	Eliminates impacts of machinery (such as compaction, destruction) on sensitive receptors.	If required, arrangements in place for mobilisation for clean-up of oiled shorelines.	A, F, R, S, IC: High.	Immediate and ongoing	Minor	Accept – practicable and effective, environmental benefit outweighs minor cost.
Call-off arrangements in place for resources to implement shoreline clean-up response.	Administrative	Access to shoreline clean-up equipment, personnel, support logistics. Effective implementation if required.	Arrangements in place for mobilisation for clean-up of oiled shorelines, if required.	A, F, R, S, IC: High.	<2 weeks	Minor	Accept – practicable and effective, environmental benefit outweighs minor cost.
Standby arrangements in place for shoreline clean-up.	Administrative	Rapid access to shoreline clean-up equipment, personnel, and support logistics.	Rapid commencement of shoreline clean-up.	A, F, R, S, IC: High.	<1 week	Standby costs >\$1M	Reject –disproportionate to environmental benefit as equipment and personnel are rapidly available via call-off arrangements.
Contract with regulated and licenced waste management provider.	Administrative	Waste management services to remove shoreline clean-up waste.	Appropriate handling, storage and disposal of shoreline clean-up waste.	A, F, R, S, IC: High.	Immediate and ongoing	Minor	Accept – practicable and effective, environmental benefit outweighs minor cost.
Oiled wildlife response (second	ary strategy)						
No OWR.	N/A	Do nothing option.	None.	N/A	N/A	Nil	Reject – OWR strategy is appropriate to mitigate impacts and risks to fauna.
OWR operations directed by WA and/or NT wildlife management agencies, with assistance from the DIMT.	Administrative	OWR operations directed to situations with a net environmental benefit.	Positive (greatest) environmental benefit from OWR to be based upon monitoring and evaluation (situational awareness).	A, F, R, S, IC: High.	Immediate and ongoing.	Minor	Accept – practicable and effective, environmental benefit outweighs minor cost.
AMOSC and OSRL membership.	Administrative	Access to range of OWR personnel and equipment.	Ability to treat oiled wildlife with appropriate personnel and equipment.	A, F, R, S, IC: High.	<24 hours for triage equipment. <2 days for responders and containers.	Moderate	Accept – practicable and effective, environmental benefit outweighs moderate cost.
Establishing work areas that follow pre-designated plans of state/territory wildlife response plans.	Administrative	Reduce potential impacts to sensitive receptors be avoiding areas of environmental sensitivity.	Ability to treat oiled wildlife, and triage when appropriate.	A, F, R, S, IC: High.	Immediate and ongoing.	Minor	Accept – practicable and effective, environmental benefit outweighs minor cost.

Control Measures	Hierarchy of control	Rationale	Environmental benefit	Effectiveness	Implementation time	Cost/effort	ALARP summary
Equipment for OWR (and triage) is pre-positioned at strategic locations.	Administrative	Wildlife treated at strategic locations where equipment (OWR containers) are available.	Ability to treat oiled wildlife more rapidly than otherwise.	F, R, S, IC: High. A: Low (AMOSC cannot provide container on standby, must purchase with long lead times).	<1 day for equipment and personnel.	Not available through AMOSC. Procurement and maintenance of container >\$50,000.	Reject –cost is disproportionate to the limited environmental benefit.
Operational and scientific moni	itoring (primary strateg	(y)					
No operational or scientific monitoring of the spill.	N/A	Do nothing option.	None	N/A	N/A	Nil	Reject – Operational and scientific monitoring is required to quantify spill impacts and subsequent recovery.
Operational and scientific monitoring managed by DIMT through IAP process, guided by Joint Industry OSM Framework and OSM Bridging Implementation Plan.	Administrative	Ensures monitoring information acquired to plan and monitor effectiveness of spill response. Ensure scientific objectives (i.e., to characterise impacts and subsequent recovery) are met.	Understanding impacts to sensitive environmental receptors from the spill and response strategies, and subsequent recovery after the spill and response strategies. Informs DIMT of effective spill response tactics to mitigate/reduce impacts from spill and responses.	A, F, R, S, IC: High.	Immediate and ongoing.	Minor	Accept – practicable and effective, environmental benefit outweighs minor cost.
Call-off arrangements in place for operational and scientific monitoring.	Administrative	Readiness to implement scientific monitoring.	Ability to monitor spill impacts and recovery of sensitive receptors.	A, F, R, S, IC: High.	<1 day for DIMT to initiate mobilisation. <7 days for initial monitoring implementation.	Minor	Accept – practicable and effective, environmental benefit outweighs minor cost.
Operational and scientific monitoring personnel, plant and equipment on standby.	Administrative	Reduce response time to initiate scientific monitoring.	Marginal increase in ability to monitor sensitive receptors prior to hydrocarbon contact relative to nonstandby arrangement.	A, F, R, S, IC: High.	<6 hours to initiate mobilisation. <3 days for initial monitoring implementation	>\$1M	Reject – grossly disproportionate for the limited environmental benefit.