S4121AF728393

Appendices

Appendix A Fair Ocean Access Information Sheet

Fair Ocean Access

Minimising fishing impacts from offshore operations

Information Sheet | May 2021

Introduction

Licenced commercial fishers and petroleum title holders have lawful rights and obligations to carry out their activities safely and without interference. Beach is committed to *Fair Ocean Access* by minimising impacts from its offshore activities to commercial fishers.

Beach's Fair Ocean Access Procedure sets out commitments by Beach to genuine consultation with fishers to understand and minimise safety, environmental and economic impacts.

Where impacts cannot be minimised by Beach, and a fisher has acted to avoid risks and impacts to a Beach project, Beach's *Fair Ocean Access Procedure* includes a simple and fair process for a fisher to claim compensation for an economic loss, and a rapid approval and payment process.

Safety

Safety is Beach's first priority and operating safely will sometimes require restricted access for relatively small offshore areas over short periods. Beach will consult with fishers to seek to minimise potential disturbance to areas that are regular fishing grounds and where the fisher has no alternative fishing options.

Environmental Protection

Beach's projects are subject to stringent assessment and mitigation of potential environmental impacts. Beach must prepare Environment Plans for its offshore projects. These identify all environmental and socioeconomic impacts and set out mitigation measures to reduce impacts, so they are "as low as reasonably practicable" and acceptable by regulators. Mitigation measures may include compensation where impacts on the commercial fishing industry cannot be minimised and where these impacts cause an economic loss.

Assessment of impacts includes identifying State and Commonwealth commercial fisheries that are actively fished in Beach's project areas and any biological or economic impacts to those fisheries. Consultation with commercial fishers is an important part of Beach's environmental assessment process.

Genuine consultation

Beach will consult with openness, transparency and mutual respect with fishers who may be directly impacted by Beach's projects. Beach will use its best endeavours to consult with all potentially impacted fishers during preparation of its Environment Plan for a project, and before projects commence.

Respecting the representative role of fishing associations, Beach will seek engagement with potentially impacted fishers via the relevant association. Beach will also engage directly with a fisher if they are not a member of an association, or where they request direct engagement with Beach.

Where a fishing association or fisher believes they will be impacted by a Beach project, Beach will share its fishing impact assessments, validate that with fishers, and discuss their specific circumstances with the objective of minimising potential impacts.

If project avoidance and impact minimisation is not possible, Beach will provide a copy of its full *Fair Ocean Access Procedure* and discuss mitigation options set out in the procedure, as appropriate to the individual fisher or association.

Economic loss

Beach is committed to the principle that a fisher should not suffer an economic loss as a direct result of a Beach project. Losses may occur for different reasons such as:

- reduced catch from fishing in a new area in order to avoid a Beach project
- reduced catch due to impacts to a fishery from the project activities
- steaming costs to avoid a Beach project area
- costs to repair or replace fishing gear.

Acting in good faith

Beach is committed to a fair, simple and transparent process for a fisher to claim compensation, where the fisher has consulted with Beach in good faith before a project, and provided the fisher has:

- acted to avoid risks and impacts to a Beach project
- acted to mitigate any economic losses to their business that may arise from avoiding risks and impacts to a Beach project
- evidence of fishing in the Beach project area during the same time of year as the project timing, for at least three years within the last five years, unless there are genuine fishery or fishing practice reasons for lesser periods
- historical and current catch and effort evidence and the ability to demonstrate an economic loss, as set out in Beach's Fair Ocean Access Procedure.

Making a claim

The Fair Ocean Access Procedure sets out a simple claim form and describes the evidence required for a claim, such as historical catch and effort records, current catch and effort records, and fish prices.

Claims must be made within 60 days of completion of a Beach project unless there is evidence that the project has caused an impact to the fishery which has impacted future catch and caused an economic loss.

The Fair Ocean Access Procedure sets out timeframes for the rapid assessment and payment of successful claims and for ensuring the fisher is kept informed. Beach will nominate a single point of contact at Beach for a fisher to liaise with.

Claims and evidence will be managed in accordance with Beach's Privacy Policy which can be found on Beach's website.

If a claim is not approved, Beach will provide written reasons for the decision.

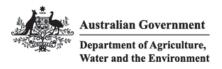
Resolving disagreements

Where a fisher and Beach cannot agree on a fisher's claim, the Fair Ocean Access Procedure includes steps for appointing an independent expert to resolve the matter. Beach will pay the reasonable costs of the independent expert, as set out in the Fair Ocean Access Procedure.

We welcome your questions and feedback

P: 1800 959 562 E: community@beachenergy.com.au

beachenergy.com.au



Fair Ocean Access - Minimising fishing impacts in offshore operations | May 2021

Page 2 of 2

Appendix B EPBC Act Protected Matters Search Reports

Activity Area EMBA

EPBC Act Protected Matters Report

This report provides general guidance on matters of national environmental significance and other matters protected by the EPBC Act in the area you have selected. Please see the caveat for interpretation of information provided here.

Report created: 17-Aug-2022

Summary Details Matters of NES Other Matters Protected by the EPBC Act Extra Information Caveat Acknowledgements

Summary

Matters of National Environment Significance

This part of the report summarises the matters of national environmental significance that may occur in, or may relate to, the area you nominated. Further information is available in the detail part of the report, which can be accessed by scrolling or following the links below. If you are proposing to undertake an activity that may have a significant impact on one or more matters of national environmental significance then you should consider the <u>Administrative Guidelines on Significance</u>.

World Heritage Properties:	None
National Heritage Places:	None
Wetlands of International Importance (Ramsar	None
Great Barrier Reef Marine Park:	None
Commonwealth Marine Area:	1
Listed Threatened Ecological Communities:	None
Listed Threatened Species:	37
Listed Migratory Species:	39

Other Matters Protected by the EPBC Act

This part of the report summarises other matters protected under the Act that may relate to the area you nominated. Approval may be required for a proposed activity that significantly affects the environment on Commonwealth land, when the action is outside the Commonwealth land, or the environment anywhere when the action is taken on Commonwealth land. Approval may also be required for the Commonwealth or Commonwealth agencies proposing to take an action that is likely to have a significant impact on the

The EPBC Act protects the environment on Commonwealth land, the environment from the actions taken on Commonwealth land, and the environment from actions taken by Commonwealth agencies. As heritage values of a place are part of the 'environment', these aspects of the EPBC Act protect the Commonwealth Heritage values of a Commonwealth Heritage place. Information on the new heritage laws can be found at http://www.environment.gov.au/heritage

A <u>permit</u> may be required for activities in or on a Commonwealth area that may affect a member of a listed threatened species or ecological community, a member of a listed migratory species, whales and other cetaceans, or a member of a listed marine species.

Commonwealth Lands:	None
Commonwealth Heritage Places:	None
Listed Marine Species:	59
Whales and Other Cetaceans:	27
Critical Habitats:	None
Commonwealth Reserves Terrestrial:	None
Australian Marine Parks:	None
Habitat Critical to the Survival of Marine Turtles:	None

Extra Information

This part of the report provides information that may also be relevant to the area you have

State and Territory Reserves:	None
Regional Forest Agreements:	None
Nationally Important Wetlands:	None
EPBC Act Referrals:	15
Key Ecological Features (Marine):	1
Biologically Important Areas:	18
Bioregional Assessments:	None
Geological and Bioregional Assessments:	None

Details

Matters of National Environmental Significance

Commonwealth Marine Area [Resource Information] Approval is required for a proposed activity that is located within the Commonwealth Marine Area which has, will have, or is likely to have a significant impact on the environment. Approval may be required for a proposed action taken outside a Commonwealth Marine Area but which has, may have or is likely to have a significant impact on the environment in the Commonwealth Marine Area. Feature Name **Buffer Status EEZ** and Territorial Sea

In feature area

Listed Threatened Species		[<u>Re</u>	source Information]
Status of Conservation Dependent and E Number is the current name ID.	xtinct are not MNES unde	er the EPBC Act.	
Scientific Name	Threatened Category	Presence Text	Buffer Status
BIRD			
<u>Calidris canutus</u>			
Red Knot, Knot [855]	Endangered	Species or species habitat may occur within area	In feature area
Calidris ferruginea			
Curlew Sandpiper [856]	Critically Endangered	Species or species habitat may occur within area	In feature area
Diomedea antipodensis			
Antipodean Albatross [64458]	Vulnerable	Foraging, feeding or related behaviour likely to occur within area	In feature area
Diomedea epomophora			
Southern Royal Albatross [89221]	Vulnerable	Foraging, feeding or related behaviour likely to occur within area	In feature area
<u>Diomedea exulans</u>			
Wandering Albatross [89223]	Vulnerable	Foraging, feeding or related behaviour likely to occur within area	In feature area

Scientific Name	Threatened Category	Presence Text	Buffer Status
<u>Diomedea sanfordi</u> Northern Royal Albatross [64456]	Endangered	Foraging, feeding or related behaviour likely to occur within area	In feature area
<u>Halobaena caerulea</u> Blue Petrel [1059]	Vulnerable	Species or species habitat may occur within area	In feature area
<u>Macronectes giganteus</u> Southern Giant-Petrel, Southern Giant Petrel [1060]	Endangered	Species or species habitat may occur within area	In feature area
<u>Macronectes halli</u> Northern Giant Petrel [1061]	Vulnerable	Foraging, feeding or related behaviour likely to occur within area	In feature area
<u>Numenius madagascariensis</u> Eastern Curlew, Far Eastern Curlew [847]	Critically Endangered	Species or species habitat may occur within area	In feature area
Pachyptila turtur subantarctica Fairy Prion (southern) [64445]	Vulnerable	Species or species habitat may occur within area	In feature area
Phoebetria fusca Sooty Albatross [1075]	Vulnerable	Species or species habitat likely to occur within area	In feature area
<u>Pterodroma leucoptera leucoptera</u> Gould's Petrel, Australian Gould's Petrel [26033]	Endangered	Species or species habitat may occur within area	In feature area
<u>Pterodroma mollis</u> Soft-plumaged Petrel [1036]	Vulnerable	Species or species habitat may occur within area	In feature area
<u>Sternula nereis nereis</u> Australian Fairy Tern [82950]	Vulnerable	Foraging, feeding or related behaviour likely to occur within area	In feature area

Scientific Name	Threatened Category	Presence Text	Buffer Status
<u>Thalassarche bulleri</u> Buller's Albatross, Pacific Albatross [64460]	Vulnerable	Foraging, feeding or related behaviour likely to occur within area	In feature area
<u>Thalassarche bulleri platei</u> Northern Buller's Albatross, Pacific Albatross [82273]	Vulnerable	Foraging, feeding or related behaviour likely to occur within area	In feature area
<u>Thalassarche carteri</u> Indian Yellow-nosed Albatross [64464]	Vulnerable	Species or species habitat likely to occur within area	In feature area
<u>Thalassarche cauta</u> Shy Albatross [89224]	Endangered	Foraging, feeding or related behaviour likely to occur within area	In feature area
<u>Thalassarche chrysostoma</u> Grey-headed Albatross [66491]	Endangered	Species or species habitat may occur within area	In feature area
<u>Thalassarche impavida</u> Campbell Albatross, Campbell Black- browed Albatross [64459]	Vulnerable	Foraging, feeding or related behaviour likely to occur within area	In feature area
<u>Thalassarche melanophris</u> Black-browed Albatross [66472]	Vulnerable	Foraging, feeding or related behaviour likely to occur within area	In feature area
<u>Thalassarche salvini</u> Salvin's Albatross [64463]	Vulnerable	Foraging, feeding or related behaviour likely to occur within area	In feature area
<u>Thalassarche steadi</u> White-capped Albatross [64462]	Vulnerable	Foraging, feeding or related behaviour known to occur within area	
FISH			
<u>Hoplostethus atlanticus</u> Orange Roughy, Deep-sea Perch, Red Roughy [68455]	Conservation Dependent	Species or species habitat likely to occur within area	In feature area

Scientific Name	Threatened Category	Presence Text	Buffer Status
<u>Seriolella brama</u> Blue Warehou [69374]	Conservation Dependent	Species or species habitat known to occur within area	In feature area
<u>Thunnus maccoyii</u> Southern Bluefin Tuna [69402]	Conservation Dependent	Species or species habitat likely to occur within area	In feature area
MAMMAL			
Balaenoptera borealis Sei Whale [34]	Vulnerable	Foraging, feeding or related behaviour likely to occur within area	In feature area
<u>Balaenoptera musculus</u> Blue Whale [36]	Endangered	Foraging, feeding or related behaviour known to occur within area	In feature area
Balaenoptera physalus Fin Whale [37]	Vulnerable	Foraging, feeding or related behaviour likely to occur within area	In feature area
<u>Eubalaena australis</u> Southern Right Whale [40]	Endangered	Species or species habitat known to occur within area	In feature area
REPTILE			
<u>Caretta caretta</u> Loggerhead Turtle [1763]	Endangered	Species or species habitat likely to occur within area	In feature area
<u>Chelonia mydas</u> Green Turtle [1765]	Vulnerable	Species or species habitat may occur within area	In feature area
Dermochelys coriacea Leatherback Turtle, Leathery Turtle, Luth [1768]	Endangered	Species or species habitat likely to occur within area	In feature area
SHARK			
<u>Carcharodon carcharias</u> White Shark, Great White Shark [64470]	Vulnerable	Species or species habitat known to occur within area	In feature area

Scientific Name	Threatened Category	Presence Text	Buffer Status
<u>Centrophorus zeehaani</u> Southern Dogfish, Endeavour Dogfish, Little Gulper Shark [82679]	Conservation Dependent	Species or species habitat likely to occur within area	In feature area
<u>Galeorhinus galeus</u> School Shark, Eastern School Shark, Snapper Shark, Tope, Soupfin Shark [68453]	Conservation Dependent	Species or species habitat may occur within area	In feature area
Listed Migratory Species		[<u>Re</u> :	source Information]
Scientific Name	Threatened Category	Presence Text	Buffer Status
Migratory Marine Birds <u>Ardenna carneipes</u> Flesh-footed Shearwater, Fleshy-footed Shearwater [82404]		Species or species habitat likely to occur within area	In feature area
<u>Ardenna grisea</u> Sooty Shearwater [82651]		Species or species habitat may occur within area	In feature area
<u>Diomedea antipodensis</u> Antipodean Albatross [64458]	Vulnerable	Foraging, feeding or related behaviour likely to occur within area	In feature area
<u>Diomedea epomophora</u> Southern Royal Albatross [89221]	Vulnerable	Foraging, feeding or related behaviour likely to occur within area	In feature area
<u>Diomedea exulans</u> Wandering Albatross [89223]	Vulnerable	Foraging, feeding or related behaviour likely to occur within area	In feature area
<u>Diomedea sanfordi</u> Northern Royal Albatross [64456]	Endangered	Foraging, feeding or related behaviour likely to occur within area	In feature area
<u>Macronectes giganteus</u> Southern Giant-Petrel, Southern Giant Petrel [1060]	Endangered	Species or species habitat may occur within area	In feature area

Scientific Name	Threatened Category	Presence Text	Buffer Status
<u>Macronectes halli</u> Northern Giant Petrel [1061]	Vulnerable	Foraging, feeding or related behaviour likely to occur within area	In feature area
<u>Phoebetria fusca</u> Sooty Albatross [1075]	Vulnerable	Species or species habitat likely to occur within area	In feature area
<u>Thalassarche bulleri</u> Buller's Albatross, Pacific Albatross [64460]	Vulnerable	Foraging, feeding or related behaviour likely to occur within area	In feature area
<u>Thalassarche carteri</u> Indian Yellow-nosed Albatross [64464]	Vulnerable	Species or species habitat likely to occur within area	In feature area
<u>Thalassarche cauta</u> Shy Albatross [89224]	Endangered	Foraging, feeding or related behaviour likely to occur within area	In feature area
<u>Thalassarche chrysostoma</u> Grey-headed Albatross [66491]	Endangered	Species or species habitat may occur within area	In feature area
<u>Thalassarche impavida</u> Campbell Albatross, Campbell Black- browed Albatross [64459]	Vulnerable	Foraging, feeding or related behaviour likely to occur within area	In feature area
<u>Thalassarche melanophris</u> Black-browed Albatross [66472]	Vulnerable	Foraging, feeding or related behaviour likely to occur within area	In feature area
<u>Thalassarche salvini</u> Salvin's Albatross [64463]	Vulnerable	Foraging, feeding or related behaviour likely to occur within area	In feature area
<u>Thalassarche steadi</u> White-capped Albatross [64462]	Vulnerable	Foraging, feeding or related behaviour known to occur within area	

Scientific Name	Threatened Category	Presence Text	Buffer Status
<u>Balaenoptera bonaerensis</u> Antarctic Minke Whale, Dark-shoulder Minke Whale [67812]		Species or species habitat likely to occur within area	In feature area
Balaenoptera borealis Sei Whale [34]	Vulnerable	Foraging, feeding or related behaviour likely to occur within area	In feature area
<u>Balaenoptera musculus</u> Blue Whale [36]	Endangered	Foraging, feeding or related behaviour known to occur within area	
<u>Balaenoptera physalus</u> Fin Whale [37]	Vulnerable	Foraging, feeding or related behaviour likely to occur within area	In feature area
<u>Caperea marginata</u> Pygmy Right Whale [39]		Foraging, feeding or related behaviour ma occur within area	
<u>Carcharodon carcharias</u> White Shark, Great White Shark [64470]	Vulnerable	Species or species habitat known to occur within area	In feature area
<u>Caretta caretta</u> Loggerhead Turtle [1763]	Endangered	Species or species habitat likely to occur within area	In feature area
<u>Chelonia mydas</u> Green Turtle [1765]	Vulnerable	Species or species habitat may occur within area	In feature area
<u>Dermochelys coriacea</u> Leatherback Turtle, Leathery Turtle, Luth [1768]	Endangered	Species or species habitat likely to occur within area	In feature area
<u>Eubalaena australis as Balaena glacialis</u> Southern Right Whale [40]	australis Endangered	Species or species habitat known to occur within area	In feature area

Scientific Name	Threatened Category	Presence Text	Buffer Status
<u>Isurus oxyrinchus</u> Shortfin Mako, Mako Shark [79073]		Species or species habitat likely to occur within area	In feature area
<u>Lagenorhynchus obscurus</u> Dusky Dolphin [43]		Species or species habitat likely to occur within area	In feature area
<u>Lamna nasus</u> Porbeagle, Mackerel Shark [83288]		Species or species habitat likely to occur within area	In feature area
<u>Megaptera novaeangliae</u> Humpback Whale [38]		Species or species habitat likely to occur within area	In feature area
<u>Orcinus orca</u> Killer Whale, Orca [46]		Species or species habitat likely to occur within area	In feature area
<u>Physeter macrocephalus</u> Sperm Whale [59]		Species or species habitat may occur within area	In feature area
Migratory Wetlands Species			
Actitis hypoleucos Common Sandpiper [59309]		Species or species habitat may occur within area	In feature area
<u>Calidris acuminata</u> Sharp-tailed Sandpiper [874]		Species or species habitat may occur within area	In feature area
<u>Calidris canutus</u> Red Knot, Knot [855]	Endangered	Species or species habitat may occur within area	In feature area
<u>Calidris ferruginea</u> Curlew Sandpiper [856]	Critically Endangered	Species or species habitat may occur within area	In feature area
<u>Calidris melanotos</u> Pectoral Sandpiper [858]		Species or species habitat may occur within area	In feature area

Scientific Name	Threatened Category	Presence Text	Buffer Status
Numenius madagascariensis			
Eastern Curlew, Far Eastern Curlew [847]	Critically Endangered	Species or species habitat may occur within area	In feature area

Other Matters Protected by the EPBC Act

Listed Marine Species		[<u>Res</u>	source Information]
Scientific Name	Threatened Category	Presence Text	Buffer Status
Bird			
<u>Actitis hypoleucos</u> Common Sandpiper [59309]		Species or species habitat may occur within area	In feature area
Ardenna carneipes as Puffinus carneipes Flesh-footed Shearwater, Fleshy-footed Shearwater [82404]	<u>i</u>	Species or species habitat likely to occur within area	In feature area
<u>Ardenna grisea as Puffinus griseus</u> Sooty Shearwater [82651]		Species or species habitat may occur within area	In feature area
<u>Calidris acuminata</u> Sharp-tailed Sandpiper [874]		Species or species habitat may occur within area	In feature area
<u>Calidris canutus</u> Red Knot, Knot [855]	Endangered	Species or species habitat may occur within area overfly marine area	In feature area
<u>Calidris ferruginea</u> Curlew Sandpiper [856]	Critically Endangered	Species or species habitat may occur within area overfly marine area	In feature area
<u>Calidris melanotos</u> Pectoral Sandpiper [858]		Species or species habitat may occur within area overfly marine area	In feature area

Scientific Name	Threatened Category	Presence Text	Buffer Status
<u>Diomedea antipodensis</u> Antipodean Albatross [64458]	Vulnerable	Foraging, feeding or related behaviour likely to occur within area	In feature area
Diomedea epomophora Southern Royal Albatross [89221]	Vulnerable	Foraging, feeding or related behaviour likely to occur within area	In feature area
<u>Diomedea exulans</u> Wandering Albatross [89223]	Vulnerable	Foraging, feeding or related behaviour likely to occur within area	In feature area
<u>Diomedea sanfordi</u> Northern Royal Albatross [64456]	Endangered	Foraging, feeding or related behaviour likely to occur within area	In feature area
<u>Halobaena caerulea</u> Blue Petrel [1059]	Vulnerable	Species or species habitat may occur within area	In feature area
<u>Macronectes giganteus</u> Southern Giant-Petrel, Southern Giant Petrel [1060]	Endangered	Species or species habitat may occur within area	In feature area
<u>Macronectes halli</u> Northern Giant Petrel [1061]	Vulnerable	Foraging, feeding or related behaviour likely to occur within area	In feature area
<u>Numenius madagascariensis</u> Eastern Curlew, Far Eastern Curlew [847]	Critically Endangered	Species or species habitat may occur within area	In feature area
Pachyptila turtur Fairy Prion [1066]		Species or species habitat may occur within area	In feature area
<u>Phoebetria fusca</u> Sooty Albatross [1075]	Vulnerable	Species or species habitat likely to occur within area	In feature area

Scientific Name	Threatened Category	Presence Text	Buffer Status
<u>Pterodroma mollis</u> Soft-plumaged Petrel [1036]	Vulnerable	Species or species habitat may occur within area	In feature area
<u>Stercorarius skua as Catharacta skua</u> Great Skua [823]		Species or species habitat may occur within area	In feature area
<u>Thalassarche bulleri</u> Buller's Albatross, Pacific Albatross [64460]	Vulnerable	Foraging, feeding or related behaviour likely to occur within area	In feature area
<u>Thalassarche bulleri platei as Thalassarc</u> Northern Buller's Albatross, Pacific Albatross [82273]	<u>che sp. nov.</u> Vulnerable	Foraging, feeding or related behaviour likely to occur within area	In feature area
<u>Thalassarche carteri</u> Indian Yellow-nosed Albatross [64464]	Vulnerable	Species or species habitat likely to occur within area	In feature area
<u>Thalassarche cauta</u> Shy Albatross [89224]	Endangered	Foraging, feeding or related behaviour likely to occur within area	In feature area
<u>Thalassarche chrysostoma</u> Grey-headed Albatross [66491]	Endangered	Species or species habitat may occur within area	In feature area
<u>Thalassarche impavida</u> Campbell Albatross, Campbell Black- browed Albatross [64459]	Vulnerable	Foraging, feeding or related behaviour likely to occur within area	In feature area
<u>Thalassarche melanophris</u> Black-browed Albatross [66472]	Vulnerable	Foraging, feeding or related behaviour likely to occur within area	In feature area
<u>Thalassarche salvini</u> Salvin's Albatross [64463]	Vulnerable	Foraging, feeding or related behaviour likely to occur within area	In feature area

Scientific Name	Threatened Category	Presence Text	Buffer Status
<u>Thalassarche steadi</u> White-capped Albatross [64462]	Vulnerable	Foraging, feeding or related behaviour known to occur withir area	In feature area
Fish			
<u>Heraldia nocturna</u> Upside-down Pipefish, Eastern Upside- down Pipefish, Eastern Upside-down Pipefish [66227]		Species or species habitat may occur within area	In feature area
<u>Hippocampus abdominalis</u> Big-belly Seahorse, Eastern Potbelly Seahorse, New Zealand Potbelly Seahorse [66233]		Species or species habitat may occur within area	In feature area
<u>Hippocampus breviceps</u> Short-head Seahorse, Short-snouted Seahorse [66235]		Species or species habitat may occur within area	In feature area
<u>Histiogamphelus briggsii</u> Crested Pipefish, Briggs' Crested Pipefish, Briggs' Pipefish [66242]		Species or species habitat may occur within area	In feature area
<u>Histiogamphelus cristatus</u> Rhino Pipefish, Macleay's Crested Pipefish, Ring-back Pipefish [66243]		Species or species habitat may occur within area	In feature area
<u>Hypselognathus rostratus</u> Knifesnout Pipefish, Knife-snouted Pipefish [66245]		Species or species habitat may occur within area	In feature area
<u>Kaupus costatus</u> Deepbody Pipefish, Deep-bodied Pipefish [66246]		Species or species habitat may occur within area	In feature area
<u>Leptoichthys fistularius</u> Brushtail Pipefish [66248]		Species or species habitat may occur within area	In feature area
<u>Lissocampus caudalis</u> Australian Smooth Pipefish, Smooth Pipefish [66249]		Species or species habitat may occur within area	In feature area
<u>Lissocampus runa</u> Javelin Pipefish [66251]		Species or species habitat may occur within area	In feature area

Scientific Name	Threatened Category	Presence Text	Buffer Status
<u>Maroubra perserrata</u> Sawtooth Pipefish [66252]		Species or species habitat may occur within area	In feature area
<u>Mitotichthys semistriatus</u> Halfbanded Pipefish [66261]		Species or species habitat may occur within area	In feature area
<u>Mitotichthys tuckeri</u> Tucker's Pipefish [66262]		Species or species habitat may occur within area	In feature area
<u>Notiocampus ruber</u> Red Pipefish [66265]		Species or species habitat may occur within area	In feature area
<u>Phycodurus eques</u> Leafy Seadragon [66267]		Species or species habitat may occur within area	In feature area
<u>Phyllopteryx taeniolatus</u> Common Seadragon, Weedy Seadragor [66268]	1	Species or species habitat may occur within area	In feature area
<u>Pugnaso curtirostris</u> Pugnose Pipefish, Pug-nosed Pipefish [66269]		Species or species habitat may occur within area	In feature area
<u>Solegnathus robustus</u> Robust Pipehorse, Robust Spiny Pipehorse [66274]		Species or species habitat may occur within area	In feature area
<u>Solegnathus spinosissimus</u> Spiny Pipehorse, Australian Spiny Pipehorse [66275]		Species or species habitat may occur within area	In feature area
<u>Stigmatopora argus</u> Spotted Pipefish, Gulf Pipefish, Peacock Pipefish [66276]		Species or species habitat may occur within area	In feature area
<u>Stigmatopora nigra</u> Widebody Pipefish, Wide-bodied Pipefish, Black Pipefish [66277]		Species or species habitat may occur within area	In feature area

Scientific Name	Threatened Category	Presence Text	Buffer Status
<u>Stipecampus cristatus</u> Ringback Pipefish, Ring-backed Pipefish [66278]		Species or species habitat may occur within area	In feature area
<u>Urocampus carinirostris</u> Hairy Pipefish [66282]		Species or species habitat may occur within area	In feature area
<u>Vanacampus margaritifer</u> Mother-of-pearl Pipefish [66283]		Species or species habitat may occur within area	In feature area
<u>Vanacampus phillipi</u> Port Phillip Pipefish [66284]		Species or species habitat may occur within area	In feature area
<u>Vanacampus poecilolaemus</u> Longsnout Pipefish, Australian Long- snout Pipefish, Long-snouted Pipefish [66285]		Species or species habitat may occur within area	In feature area
Mammal <u>Arctocephalus forsteri</u> Long-nosed Fur-seal, New Zealand Fur- seal [20]		Species or species habitat may occur within area	In feature area
<u>Arctocephalus pusillus</u> Australian Fur-seal, Australo-African Fur-seal [21]		Species or species habitat may occur within area	In feature area
Reptile			
<u>Caretta caretta</u> Loggerhead Turtle [1763]	Endangered	Species or species habitat likely to occur within area	In feature area
<u>Chelonia mydas</u> Green Turtle [1765]	Vulnerable	Species or species habitat may occur within area	In feature area
<u>Dermochelys coriacea</u> Leatherback Turtle, Leathery Turtle, Luth [1768]	Endangered	Species or species habitat likely to occur within area	In feature area
Whales and Other Cetaceans		[Re:	source Information]
Current Scientific Name Mammal	Status	Type of Presence	Buffer Status

Current Scientific Name	Status	Type of Presence	Buffer Status
<u>Balaenoptera acutorostrata</u> Minke Whale [33]		Species or species habitat may occur within area	In feature area
Balaenoptera bonaerensis Antarctic Minke Whale, Dark-shoulder Minke Whale [67812]		Species or species habitat likely to occur within area	In feature area
<u>Balaenoptera borealis</u> Sei Whale [34]	Vulnerable	Foraging, feeding or related behaviour likely to occur within area	In feature area
Balaenoptera musculus Blue Whale [36]	Endangered	Foraging, feeding or related behaviour known to occur withir area	
Balaenoptera physalus Fin Whale [37]	Vulnerable	Foraging, feeding or related behaviour likely to occur within area	In feature area
<u>Berardius arnuxii</u> Arnoux's Beaked Whale [70]		Species or species habitat may occur within area	In feature area
<u>Caperea marginata</u> Pygmy Right Whale [39]		Foraging, feeding or related behaviour ma occur within area	
<u>Delphinus delphis</u> Common Dolphin, Short-beaked Common Dolphin [60]		Species or species habitat may occur within area	In feature area
Eubalaena australis Southern Right Whale [40]	Endangered	Species or species habitat known to occur within area	In feature area
<u>Globicephala macrorhynchus</u> Short-finned Pilot Whale [62]		Species or species habitat may occur within area	In feature area

Current Scientific Name	Status	Type of Presence	Buffer Status
<u>Globicephala melas</u> Long-finned Pilot Whale [59282]		Species or species habitat may occur within area	In feature area
<u>Grampus griseus</u> Risso's Dolphin, Grampus [64]		Species or species habitat may occur within area	In feature area
<u>Kogia breviceps</u> Pygmy Sperm Whale [57]		Species or species habitat may occur within area	In feature area
<u>Kogia sima as Kogia simus</u> Dwarf Sperm Whale [85043]		Species or species habitat may occur within area	In feature area
<u>Lagenorhynchus obscurus</u> Dusky Dolphin [43]		Species or species habitat likely to occur within area	In feature area
<u>Lissodelphis peronii</u> Southern Right Whale Dolphin [44]		Species or species habitat may occur within area	In feature area
<u>Megaptera novaeangliae</u> Humpback Whale [38]		Species or species habitat likely to occur within area	In feature area
<u>Mesoplodon bowdoini</u> Andrew's Beaked Whale [73]		Species or species habitat may occur within area	In feature area
<u>Mesoplodon densirostris</u> Blainville's Beaked Whale, Dense- beaked Whale [74]		Species or species habitat may occur within area	In feature area
<u>Mesoplodon hectori</u> Hector's Beaked Whale [76]		Species or species habitat may occur within area	In feature area
<u>Mesoplodon layardii</u> Strap-toothed Beaked Whale, Strap- toothed Whale, Layard's Beaked Wha [25556]	le	Species or species habitat may occur within area	In feature area

Current Scientific Name	Status	Type of Presence	Buffer Status
Mesoplodon mirus			
True's Beaked Whale [54]		Species or species habitat may occur within area	In feature area
Orcinus orca			
Killer Whale, Orca [46]		Species or species habitat likely to occur within area	In feature area
Physeter macrocephalus			
Sperm Whale [59]		Species or species habitat may occur within area	In feature area
Pseudorca crassidens			
False Killer Whale [48]		Species or species habitat likely to occur within area	In feature area
<u>Tursiops truncatus s. str.</u>			
Bottlenose Dolphin [68417]		Species or species habitat may occur within area	In feature area
Ziphius cavirostris			
Cuvier's Beaked Whale, Goose-beaked Whale [56]		Species or species habitat may occur within area	In feature area

Extra Information

EPBC Act Referrals			[Resou	rce Information]
Title of referral	Reference	Referral Outcome	Assessment Status	Buffer Status
Controlled action				
<u>Otway Development</u>	2002/621	Controlled Action	Post-Approval	In feature area
VICP61 2D Marine Seismic Survey	2008/4075	Controlled Action	Completed	In feature area
Not controlled action				
INDIGO Central Submarine Telecommunications Cable	2017/8127	Not Controlled Action	Completed	In feature area
Not controlled action (particular manne	er)			
<u>3D marine seismic survey near King</u> <u>Island</u>	2004/1461	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
Astrolabe 3D Marine Seismic Survey	2011/6048	Not Controlled Action	Post-Approval	In feature area

Title of referral	Reference	Referral Outcome	Assessment Status	Buffer Status
Not controlled action (particular manne	er)	(Particular		
		Manner)		
Deepwater Sorell Basin 2001 Non-	2001/156	Not Controlled	Post-Approval	In feature area
Exclusive 2D Seismic Survey		Action (Particular Manner)		
		,		
Drill and Profile Exploration Well	2009/5037	Not Controlled	Post-Approval	In feature area
Somerset 1, License Area T34P		Action (Particular Manner)		
Geographe-A gas exploration well	2000/82	Not Controlled Action (Particular	Post-Approval	In feature area
		Manner)		
INDIGO Marine Cable Route Survey (INDIGO)	2017/7996	Not Controlled Action (Particular	Post-Approval	In feature area
		Manner)		
La Dalla 2D Marina Caiamia Cumunu	0040/0000	Not Controlled	Deet Ammerical	In facture and
<u>La Bella 3D Marine Seismic Survey,</u> <u>Otway Basin, VIC</u>	2012/6683	Not Controlled Action (Particular	Post-Approval	In feature area
		Manner)		
Otway Astrolabe 3D Marine Seismic	2012/6421	Not Controlled	Post-Approval	In feature area
<u>Survey, Otway Basin</u>		Action (Particular		
		Manner)		
Otway Basin Exploration Drilling	2011/6125	Not Controlled	Post-Approval	In feature area
<u>Campaign, Vic</u>		Action (Particular Manner)		
		,		
Thylacine-A Exploration Well	2000/81	Not Controlled	Post-Approval	In feature area
		Action (Particular Manner)		
<u>Undertake a three dimensional</u> marine seismic survey	2010/5700	Not Controlled Action (Particular	Post-Approval	In feature area
<u>manne selomie survey</u>		Manner)		
Referral decision <u>VICP61 2D Marine Seismic Survey</u>	2008/3975	Referral Decision	Completed	In feature area
		2000011		

Key Ecological Features

[Resource Information]

Key Ecological Features are the parts of the marine ecosystem that are considered to be important for the biodiversity or ecosystem functioning and integrity of the Commonwealth Marine Area.

Name	Region	Buffer Status
<u>West Tasmania Canyons</u>	South-east	In feature area

Biologically Important Areas Scientific Name Seabirds	Behaviour	Presence	Buffer Status
<u>Ardenna pacifica</u> Wedge-tailed Shearwater [84292]	Foraging	Likely to occur	In feature area
<u>Ardenna tenuirostris</u> Short-tailed Shearwater [82652]	Foraging	Known to occur	In feature area
<u>Diomedea exulans (sensu lato)</u> Wandering Albatross [1073]	Foraging	Known to occur	In feature area
<u>Diomedea exulans antipodensis</u> Antipodean Albatross [82269]	Foraging	Known to occur	In feature area
<u>Pelecanoides urinatrix</u> Common Diving-petrel [1018]	Foraging	Known to occur	In feature area
<u>Thalassarche bulleri</u> Bullers Albatross [64460]	Foraging	Known to occur	In feature area
<u>Thalassarche cauta cauta</u> Shy Albatross [82345]	Foraging likely	Likely to occur	In feature area
<u>Thalassarche chlororhynchos bassi</u> Indian Yellow-nosed Albatross [85249]	Foraging	Known to occur	In feature area
<u>Thalassarche melanophris</u> Black-browed Albatross [66472]	Foraging	Known to occur	In feature area
<u>Thalassarche melanophris impavida</u> Campbell Albatross [82449]	Foraging	Known to occur	In feature area
Sharks			
Carcharodon carcharias White Shark [64470]	Distribution	Known to occur	In feature area
<u>Carcharodon carcharias</u> White Shark [64470]	Distribution	Likely to occur	In feature area
<u>Carcharodon carcharias</u> White Shark [64470]	Distribution	Likelv to occur	In feature area

White Shark [64470]

Distribution Likely to occur In feature area (low density)

Scientific Name	Behaviour	Presence	Buffer Status
<u>Carcharodon carcharias</u> White Shark [64470]	Known distribution	Known to occur	In feature area
Whales			
<u>Balaenoptera musculus brevicauda</u> Pygmy Blue Whale [81317]	Distribution	Known to occur	In feature area
Balaenoptera musculus brevicauda Pygmy Blue Whale [81317]	Foraging	Likely to be present	In feature area
<u>Balaenoptera musculus brevicauda</u> Pygmy Blue Whale [81317]	Foraging (annual high use area)	Known to occur	In feature area
<u>Eubalaena australis</u> Southern Right Whale [40]	Known core range	Known to occur	In feature area

Caveat

I PURPOSE

This report is designed to assist in identifying the location of matters of national environmental significance (MNES) and other matters protected by the Environment Protection and Biodiversity Conservation Act 1999 (Cth) (EPBC Act) which may be relevant in determining obligations and requirements under the EPBC Act.

The report contains the mapped locations of:

- World and National Heritage properties;
- Wetlands of International and National Importance;
- Commonwealth and State/Territory reserves;
- distribution of listed threatened, migratory and marine species;
- listed threatened ecological communities; and
- other information that may be useful as an indicator of potential habitat value.

2 DISCLAIMER

This report is not intended to be exhaustive and should only be relied upon as a general guide as mapped data is not available for all species or ecological communities listed under the EPBC Act (see below). Persons seeking to use the information contained in this report to inform the referral of a proposed action under the EPBC Act should consider the limitations noted below and whether additional information is required to determine the existence and location of MNES and other protected matters.

Where data are available to inform the mapping of protected species, the presence type (e.g. known, likely or may occur) that can be determined from the data is indicated in general terms. It is the responsibility of any person using or relying on the information in this report to ensure that it is suitable for the circumstances of any proposed use. The Commonwealth cannot accept responsibility for the consequences of any use of the report or any part thereof. To the maximum extent allowed under governing law, the Commonwealth will not be liable for any loss or damage that may be occasioned directly or indirectly through the use of, or reliance

3 DATA SOURCES

Threatened ecological communities

For threatened ecological communities where the distribution is well known, maps are generated based on information contained in recovery plans, State vegetation maps and remote sensing imagery and other sources. Where threatened ecological community distributions are less well known, existing vegetation maps and point location data are used to produce indicative distribution maps.

Threatened, migratory and marine species

Threatened, migratory and marine species distributions have been discerned through a variety of methods. Where distributions are well known and if time permits, distributions are inferred from either thematic spatial data (i.e. vegetation, soils, geology, elevation, aspect, terrain, etc.) together with point locations and described habitat; or modelled (MAXENT or BIOCLIM habitat modelling) using

Where little information is available for a species or large number of maps are required in a short time-frame, maps are derived either from 0.04 or 0.02 decimal degree cells; by an automated process using polygon capture techniques (static two kilometre grid cells, alpha-hull and convex hull); or captured manually or by using topographic features (national park boundaries, islands, etc.).

In the early stages of the distribution mapping process (1999-early 2000s) distributions were defined by degree blocks, 100K or 250K map sheets to rapidly create distribution maps. More detailed distribution mapping methods are used to update these distributions

4 LIMITATIONS

The following species and ecological communities have not been mapped and do not appear in this report:

- threatened species listed as extinct or considered vagrants;
- · some recently listed species and ecological communities;
- · some listed migratory and listed marine species, which are not listed as threatened species; and
- migratory species that are very widespread, vagrant, or only occur in Australia in small numbers.

The following groups have been mapped, but may not cover the complete distribution of the species:

- listed migratory and/or listed marine seabirds, which are not listed as threatened, have only been mapped for recorded
- seals which have only been mapped for breeding sites near the Australian continent

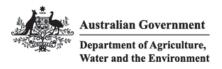
The breeding sites may be important for the protection of the Commonwealth Marine environment.

Refer to the metadata for the feature group (using the Resource Information link) for the currency of the information.

Acknowledgements

This database has been compiled from a range of data sources. The department acknowledges the following custodians who have contributed valuable data and advice:

-Office of Environment and Heritage, New South Wales -Department of Environment and Primary Industries, Victoria -Department of Primary Industries, Parks, Water and Environment, Tasmania -Department of Environment, Water and Natural Resources, South Australia -Department of Land and Resource Management, Northern Territory -Department of Environmental and Heritage Protection, Queensland -Department of Parks and Wildlife, Western Australia -Environment and Planning Directorate, ACT -Birdlife Australia -Australian Bird and Bat Banding Scheme -Australian National Wildlife Collection -Natural history museums of Australia -Museum Victoria -Australian Museum -South Australian Museum -Queensland Museum -Online Zoological Collections of Australian Museums -Queensland Herbarium -National Herbarium of NSW -Royal Botanic Gardens and National Herbarium of Victoria -Tasmanian Herbarium -State Herbarium of South Australia -Northern Territory Herbarium -Western Australian Herbarium -Australian National Herbarium, Canberra -University of New England -Ocean Biogeographic Information System -Australian Government, Department of Defence Forestry Corporation, NSW -Geoscience Australia -CSIRO -Australian Tropical Herbarium, Cairns -eBird Australia -Australian Government – Australian Antarctic Data Centre -Museum and Art Gallery of the Northern Territory -Australian Government National Environmental Science Program -Australian Institute of Marine Science -Reef Life Survey Australia -American Museum of Natural History -Queen Victoria Museum and Art Gallery, Inveresk, Tasmania -Tasmanian Museum and Art Gallery, Hobart, Tasmania -Other groups and individuals


The Department is extremely grateful to the many organisations and individuals who provided expert advice and information on numerous draft distributions.

© Commonwealth of Australia

Department of Agriculture Water and the Environment GPO Box 858 Canberra City ACT 2601 Australia +61 2 6274 1111

S4121AF728393

Underwater Noise EMBA

EPBC Act Protected Matters Report

This report provides general guidance on matters of national environmental significance and other matters protected by the EPBC Act in the area you have selected. Please see the caveat for interpretation of information provided here.

Report created: 19-Aug-2022

Summary Details Matters of NES Other Matters Protected by the EPBC Act Extra Information Caveat Acknowledgements

Summary

Matters of National Environment Significance

This part of the report summarises the matters of national environmental significance that may occur in, or may relate to, the area you nominated. Further information is available in the detail part of the report, which can be accessed by scrolling or following the links below. If you are proposing to undertake an activity that may have a significant impact on one or more matters of national environmental significance then you should consider the <u>Administrative Guidelines on Significance</u>.

World Heritage Properties:	None
National Heritage Places:	None
Wetlands of International Importance (Ramsar	None
Great Barrier Reef Marine Park:	None
Commonwealth Marine Area:	1
Listed Threatened Ecological Communities:	None
Listed Threatened Species:	37
Listed Migratory Species:	39

Other Matters Protected by the EPBC Act

This part of the report summarises other matters protected under the Act that may relate to the area you nominated. Approval may be required for a proposed activity that significantly affects the environment on Commonwealth land, when the action is outside the Commonwealth land, or the environment anywhere when the action is taken on Commonwealth land. Approval may also be required for the Commonwealth or Commonwealth agencies proposing to take an action that is likely to have a significant impact on the

The EPBC Act protects the environment on Commonwealth land, the environment from the actions taken on Commonwealth land, and the environment from actions taken by Commonwealth agencies. As heritage values of a place are part of the 'environment', these aspects of the EPBC Act protect the Commonwealth Heritage values of a Commonwealth Heritage place. Information on the new heritage laws can be found at http://www.environment.gov.au/heritage

A <u>permit</u> may be required for activities in or on a Commonwealth area that may affect a member of a listed threatened species or ecological community, a member of a listed migratory species, whales and other cetaceans, or a member of a listed marine species.

Commonwealth Lands:	None
Commonwealth Heritage Places:	None
Listed Marine Species:	59
Whales and Other Cetaceans:	27
Critical Habitats:	None
Commonwealth Reserves Terrestrial:	None
Australian Marine Parks:	None
Habitat Critical to the Survival of Marine Turtles:	None

Extra Information

This part of the report provides information that may also be relevant to the area you have

State and Territory Reserves:	None
Regional Forest Agreements:	None
Nationally Important Wetlands:	None
EPBC Act Referrals:	15
Key Ecological Features (Marine):	1
Biologically Important Areas:	18
Bioregional Assessments:	None
Geological and Bioregional Assessments:	None

Details

Matters of National Environmental Significance

Commonwealth Marine Area [Resource Information] Approval is required for a proposed activity that is located within the Commonwealth Marine Area which has, will have, or is likely to have a significant impact on the environment. Approval may be required for a proposed action taken outside a Commonwealth Marine Area but which has, may have or is likely to have a significant impact on the environment in the Commonwealth Marine Area. Feature Name **Buffer Status EEZ** and Territorial Sea

In feature area

Listed Threatened Species		[<u>Re</u>	source Information]		
Status of Conservation Dependent and Extinct are not MNES under the EPBC Act. Number is the current name ID.					
Scientific Name	Threatened Category	Presence Text	Buffer Status		
BIRD					
<u>Calidris canutus</u>					
Red Knot, Knot [855]	Endangered	Species or species habitat may occur within area	In feature area		
Calidris ferruginea					
Curlew Sandpiper [856]	Critically Endangered	Species or species habitat may occur within area	In feature area		
Diomedea antipodensis					
Antipodean Albatross [64458]	Vulnerable	Foraging, feeding or related behaviour likely to occur within area	In feature area		
Diomedea epomophora					
Southern Royal Albatross [89221]	Vulnerable	Foraging, feeding or related behaviour likely to occur within area	In feature area		
<u>Diomedea exulans</u>					
Wandering Albatross [89223]	Vulnerable	Foraging, feeding or related behaviour likely to occur within area	In feature area		

Scientific Name	Threatened Category	Presence Text	Buffer Status
<u>Diomedea sanfordi</u> Northern Royal Albatross [64456]	Endangered	Foraging, feeding or related behaviour likely to occur within area	In feature area
<u>Halobaena caerulea</u> Blue Petrel [1059]	Vulnerable	Species or species habitat may occur within area	In feature area
<u>Macronectes giganteus</u> Southern Giant-Petrel, Southern Giant Petrel [1060]	Endangered	Species or species habitat may occur within area	In feature area
<u>Macronectes halli</u> Northern Giant Petrel [1061]	Vulnerable	Foraging, feeding or related behaviour likely to occur within area	In feature area
<u>Numenius madagascariensis</u> Eastern Curlew, Far Eastern Curlew [847]	Critically Endangered	Species or species habitat may occur within area	In feature area
Pachyptila turtur subantarctica Fairy Prion (southern) [64445]	Vulnerable	Species or species habitat may occur within area	In feature area
Phoebetria fusca Sooty Albatross [1075]	Vulnerable	Species or species habitat likely to occur within area	In feature area
<u>Pterodroma leucoptera leucoptera</u> Gould's Petrel, Australian Gould's Petrel [26033]	Endangered	Species or species habitat may occur within area	In feature area
<u>Pterodroma mollis</u> Soft-plumaged Petrel [1036]	Vulnerable	Species or species habitat may occur within area	In feature area
<u>Sternula nereis nereis</u> Australian Fairy Tern [82950]	Vulnerable	Foraging, feeding or related behaviour likely to occur within area	In feature area

Scientific Name	Threatened Category	Presence Text	Buffer Status
<u>Thalassarche bulleri</u> Buller's Albatross, Pacific Albatross [64460]	Vulnerable	Foraging, feeding or related behaviour likely to occur within area	In feature area
<u>Thalassarche bulleri platei</u> Northern Buller's Albatross, Pacific Albatross [82273]	Vulnerable	Foraging, feeding or related behaviour likely to occur within area	In feature area
<u>Thalassarche carteri</u> Indian Yellow-nosed Albatross [64464]	Vulnerable	Species or species habitat likely to occur within area	In feature area
<u>Thalassarche cauta</u> Shy Albatross [89224]	Endangered	Foraging, feeding or related behaviour likely to occur within area	In feature area
<u>Thalassarche chrysostoma</u> Grey-headed Albatross [66491]	Endangered	Species or species habitat may occur within area	In feature area
<u>Thalassarche impavida</u> Campbell Albatross, Campbell Black- browed Albatross [64459]	Vulnerable	Foraging, feeding or related behaviour likely to occur within area	In feature area
<u>Thalassarche melanophris</u> Black-browed Albatross [66472]	Vulnerable	Foraging, feeding or related behaviour likely to occur within area	In feature area
<u>Thalassarche salvini</u> Salvin's Albatross [64463]	Vulnerable	Foraging, feeding or related behaviour likely to occur within area	In feature area
<u>Thalassarche steadi</u> White-capped Albatross [64462]	Vulnerable	Foraging, feeding or related behaviour known to occur within area	
FISH			
<u>Hoplostethus atlanticus</u> Orange Roughy, Deep-sea Perch, Red Roughy [68455]	Conservation Dependent	Species or species habitat likely to occur within area	In feature area

Scientific Name	Threatened Category	Presence Text	Buffer Status
<u>Seriolella brama</u> Blue Warehou [69374]	Conservation Dependent	Species or species habitat known to occur within area	In feature area
<u>Thunnus maccoyii</u> Southern Bluefin Tuna [69402]	Conservation Dependent	Species or species habitat likely to occur within area	In feature area
MAMMAL			
Balaenoptera borealis Sei Whale [34]	Vulnerable	Foraging, feeding or related behaviour likely to occur within area	In feature area
<u>Balaenoptera musculus</u> Blue Whale [36]	Endangered	Foraging, feeding or related behaviour known to occur within area	In feature area
Balaenoptera physalus Fin Whale [37]	Vulnerable	Foraging, feeding or related behaviour likely to occur within area	In feature area
<u>Eubalaena australis</u> Southern Right Whale [40]	Endangered	Species or species habitat known to occur within area	In feature area
REPTILE			
<u>Caretta caretta</u> Loggerhead Turtle [1763]	Endangered	Species or species habitat likely to occur within area	In feature area
<u>Chelonia mydas</u> Green Turtle [1765]	Vulnerable	Species or species habitat may occur within area	In feature area
<u>Dermochelys coriacea</u> Leatherback Turtle, Leathery Turtle, Luth [1768]	Endangered	Species or species habitat likely to occur within area	In feature area
SHARK			
<u>Carcharodon carcharias</u> White Shark, Great White Shark [64470]	Vulnerable	Species or species habitat known to occur within area	In feature area

Scientific Name	Threatened Category	Presence Text	Buffer Status
<u>Centrophorus zeehaani</u> Southern Dogfish, Endeavour Dogfish, Little Gulper Shark [82679]	Conservation Dependent	Species or species habitat likely to occur within area	In feature area
<u>Galeorhinus galeus</u> School Shark, Eastern School Shark, Snapper Shark, Tope, Soupfin Shark [68453]	Conservation Dependent	Species or species habitat may occur within area	In feature area
Listed Migratory Species		[<u>Re</u> :	source Information]
Scientific Name	Threatened Category	Presence Text	Buffer Status
Migratory Marine Birds <u>Ardenna carneipes</u> Flesh-footed Shearwater, Fleshy-footed Shearwater [82404]		Species or species habitat likely to occur within area	In feature area
<u>Ardenna grisea</u> Sooty Shearwater [82651]		Species or species habitat may occur within area	In feature area
<u>Diomedea antipodensis</u> Antipodean Albatross [64458]	Vulnerable	Foraging, feeding or related behaviour likely to occur within area	In feature area
<u>Diomedea epomophora</u> Southern Royal Albatross [89221]	Vulnerable	Foraging, feeding or related behaviour likely to occur within area	In feature area
<u>Diomedea exulans</u> Wandering Albatross [89223]	Vulnerable	Foraging, feeding or related behaviour likely to occur within area	In feature area
<u>Diomedea sanfordi</u> Northern Royal Albatross [64456]	Endangered	Foraging, feeding or related behaviour likely to occur within area	In feature area
<u>Macronectes giganteus</u> Southern Giant-Petrel, Southern Giant Petrel [1060]	Endangered	Species or species habitat may occur within area	In feature area

Scientific Name	Threatened Category	Presence Text	Buffer Status
<u>Macronectes halli</u> Northern Giant Petrel [1061]	Vulnerable	Foraging, feeding or related behaviour likely to occur within area	In feature area
<u>Phoebetria fusca</u> Sooty Albatross [1075]	Vulnerable	Species or species habitat likely to occur within area	In feature area
<u>Thalassarche bulleri</u> Buller's Albatross, Pacific Albatross [64460]	Vulnerable	Foraging, feeding or related behaviour likely to occur within area	In feature area
<u>Thalassarche carteri</u> Indian Yellow-nosed Albatross [64464]	Vulnerable	Species or species habitat likely to occur within area	In feature area
<u>Thalassarche cauta</u> Shy Albatross [89224]	Endangered	Foraging, feeding or related behaviour likely to occur within area	In feature area
<u>Thalassarche chrysostoma</u> Grey-headed Albatross [66491]	Endangered	Species or species habitat may occur within area	In feature area
<u>Thalassarche impavida</u> Campbell Albatross, Campbell Black- browed Albatross [64459]	Vulnerable	Foraging, feeding or related behaviour likely to occur within area	In feature area
<u>Thalassarche melanophris</u> Black-browed Albatross [66472]	Vulnerable	Foraging, feeding or related behaviour likely to occur within area	In feature area
<u>Thalassarche salvini</u> Salvin's Albatross [64463]	Vulnerable	Foraging, feeding or related behaviour likely to occur within area	In feature area
<u>Thalassarche steadi</u> White-capped Albatross [64462]	Vulnerable	Foraging, feeding or related behaviour known to occur within area	

Scientific Name	Threatened Category	Presence Text	Buffer Status
<u>Balaenoptera bonaerensis</u> Antarctic Minke Whale, Dark-shoulder Minke Whale [67812]		Species or species habitat likely to occur within area	In feature area
Balaenoptera borealis Sei Whale [34]	Vulnerable	Foraging, feeding or related behaviour likely to occur within area	In feature area
<u>Balaenoptera musculus</u> Blue Whale [36]	Endangered	Foraging, feeding or related behaviour known to occur within area	
<u>Balaenoptera physalus</u> Fin Whale [37]	Vulnerable	Foraging, feeding or related behaviour likely to occur within area	In feature area
<u>Caperea marginata</u> Pygmy Right Whale [39]		Foraging, feeding or related behaviour ma occur within area	
<u>Carcharodon carcharias</u> White Shark, Great White Shark [64470]	Vulnerable	Species or species habitat known to occur within area	In feature area
<u>Caretta caretta</u> Loggerhead Turtle [1763]	Endangered	Species or species habitat likely to occur within area	In feature area
<u>Chelonia mydas</u> Green Turtle [1765]	Vulnerable	Species or species habitat may occur within area	In feature area
<u>Dermochelys coriacea</u> Leatherback Turtle, Leathery Turtle, Luth [1768]	Endangered	Species or species habitat likely to occur within area	In feature area
<u>Eubalaena australis as Balaena glacialis</u> Southern Right Whale [40]	australis Endangered	Species or species habitat known to occur within area	In feature area

Scientific Name	Threatened Category	Presence Text	Buffer Status
<u>Isurus oxyrinchus</u> Shortfin Mako, Mako Shark [79073]		Species or species habitat likely to occur within area	In feature area
<u>Lagenorhynchus obscurus</u> Dusky Dolphin [43]		Species or species habitat likely to occur within area	In feature area
<u>Lamna nasus</u> Porbeagle, Mackerel Shark [83288]		Species or species habitat likely to occur within area	In feature area
<u>Megaptera novaeangliae</u> Humpback Whale [38]		Species or species habitat likely to occur within area	In feature area
<u>Orcinus orca</u> Killer Whale, Orca [46]		Species or species habitat likely to occur within area	In feature area
<u>Physeter macrocephalus</u> Sperm Whale [59]		Species or species habitat may occur within area	In feature area
Migratory Wetlands Species			
Actitis hypoleucos Common Sandpiper [59309]		Species or species habitat may occur within area	In feature area
<u>Calidris acuminata</u> Sharp-tailed Sandpiper [874]		Species or species habitat may occur within area	In feature area
<u>Calidris canutus</u> Red Knot, Knot [855]	Endangered	Species or species habitat may occur within area	In feature area
<u>Calidris ferruginea</u> Curlew Sandpiper [856]	Critically Endangered	Species or species habitat may occur within area	In feature area
<u>Calidris melanotos</u> Pectoral Sandpiper [858]		Species or species habitat may occur within area	In feature area

Scientific Name	Threatened Category	Presence Text	Buffer Status
Numenius madagascariensis			
Eastern Curlew, Far Eastern Curlew [847]	Critically Endangered	Species or species habitat may occur within area	In feature area

Other Matters Protected by the EPBC Act

Listed Marine Species		[<u>Res</u>	source Information]
Scientific Name	Threatened Category	Presence Text	Buffer Status
Bird			
<u>Actitis hypoleucos</u> Common Sandpiper [59309]		Species or species habitat may occur within area	In feature area
Ardenna carneipes as Puffinus carneipes Flesh-footed Shearwater, Fleshy-footed Shearwater [82404]	<u>i</u>	Species or species habitat likely to occur within area	In feature area
<u>Ardenna grisea as Puffinus griseus</u> Sooty Shearwater [82651]		Species or species habitat may occur within area	In feature area
<u>Calidris acuminata</u> Sharp-tailed Sandpiper [874]		Species or species habitat may occur within area	In feature area
<u>Calidris canutus</u> Red Knot, Knot [855]	Endangered	Species or species habitat may occur within area overfly marine area	In feature area
<u>Calidris ferruginea</u> Curlew Sandpiper [856]	Critically Endangered	Species or species habitat may occur within area overfly marine area	In feature area
<u>Calidris melanotos</u> Pectoral Sandpiper [858]		Species or species habitat may occur within area overfly marine area	In feature area

Scientific Name	Threatened Category	Presence Text	Buffer Status
<u>Diomedea antipodensis</u> Antipodean Albatross [64458]	Vulnerable	Foraging, feeding or related behaviour likely to occur within area	In feature area
Diomedea epomophora Southern Royal Albatross [89221]	Vulnerable	Foraging, feeding or related behaviour likely to occur within area	In feature area
<u>Diomedea exulans</u> Wandering Albatross [89223]	Vulnerable	Foraging, feeding or related behaviour likely to occur within area	In feature area
<u>Diomedea sanfordi</u> Northern Royal Albatross [64456]	Endangered	Foraging, feeding or related behaviour likely to occur within area	In feature area
<u>Halobaena caerulea</u> Blue Petrel [1059]	Vulnerable	Species or species habitat may occur within area	In feature area
<u>Macronectes giganteus</u> Southern Giant-Petrel, Southern Giant Petrel [1060]	Endangered	Species or species habitat may occur within area	In feature area
<u>Macronectes halli</u> Northern Giant Petrel [1061]	Vulnerable	Foraging, feeding or related behaviour likely to occur within area	In feature area
<u>Numenius madagascariensis</u> Eastern Curlew, Far Eastern Curlew [847]	Critically Endangered	Species or species habitat may occur within area	In feature area
Pachyptila turtur Fairy Prion [1066]		Species or species habitat may occur within area	In feature area
<u>Phoebetria fusca</u> Sooty Albatross [1075]	Vulnerable	Species or species habitat likely to occur within area	In feature area

Scientific Name	Threatened Category	Presence Text	Buffer Status
<u>Pterodroma mollis</u> Soft-plumaged Petrel [1036]	Vulnerable	Species or species habitat may occur within area	In feature area
<u>Stercorarius skua as Catharacta skua</u> Great Skua [823]		Species or species habitat may occur within area	In feature area
<u>Thalassarche bulleri</u> Buller's Albatross, Pacific Albatross [64460]	Vulnerable	Foraging, feeding or related behaviour likely to occur within area	In feature area
<u>Thalassarche bulleri platei as Thalassarc</u> Northern Buller's Albatross, Pacific Albatross [82273]	<u>che sp. nov.</u> Vulnerable	Foraging, feeding or related behaviour likely to occur within area	In feature area
<u>Thalassarche carteri</u> Indian Yellow-nosed Albatross [64464]	Vulnerable	Species or species habitat likely to occur within area	In feature area
<u>Thalassarche cauta</u> Shy Albatross [89224]	Endangered	Foraging, feeding or related behaviour likely to occur within area	In feature area
<u>Thalassarche chrysostoma</u> Grey-headed Albatross [66491]	Endangered	Species or species habitat may occur within area	In feature area
<u>Thalassarche impavida</u> Campbell Albatross, Campbell Black- browed Albatross [64459]	Vulnerable	Foraging, feeding or related behaviour likely to occur within area	In feature area
<u>Thalassarche melanophris</u> Black-browed Albatross [66472]	Vulnerable	Foraging, feeding or related behaviour likely to occur within area	In feature area
<u>Thalassarche salvini</u> Salvin's Albatross [64463]	Vulnerable	Foraging, feeding or related behaviour likely to occur within area	In feature area

Scientific Name	Threatened Category	Presence Text	Buffer Status
<u>Thalassarche steadi</u> White-capped Albatross [64462]	Vulnerable	Foraging, feeding or related behaviour known to occur withir area	In feature area
Fish			
<u>Heraldia nocturna</u> Upside-down Pipefish, Eastern Upside- down Pipefish, Eastern Upside-down Pipefish [66227]		Species or species habitat may occur within area	In feature area
<u>Hippocampus abdominalis</u> Big-belly Seahorse, Eastern Potbelly Seahorse, New Zealand Potbelly Seahorse [66233]		Species or species habitat may occur within area	In feature area
<u>Hippocampus breviceps</u> Short-head Seahorse, Short-snouted Seahorse [66235]		Species or species habitat may occur within area	In feature area
<u>Histiogamphelus briggsii</u> Crested Pipefish, Briggs' Crested Pipefish, Briggs' Pipefish [66242]		Species or species habitat may occur within area	In feature area
<u>Histiogamphelus cristatus</u> Rhino Pipefish, Macleay's Crested Pipefish, Ring-back Pipefish [66243]		Species or species habitat may occur within area	In feature area
<u>Hypselognathus rostratus</u> Knifesnout Pipefish, Knife-snouted Pipefish [66245]		Species or species habitat may occur within area	In feature area
<u>Kaupus costatus</u> Deepbody Pipefish, Deep-bodied Pipefish [66246]		Species or species habitat may occur within area	In feature area
<u>Leptoichthys fistularius</u> Brushtail Pipefish [66248]		Species or species habitat may occur within area	In feature area
<u>Lissocampus caudalis</u> Australian Smooth Pipefish, Smooth Pipefish [66249]		Species or species habitat may occur within area	In feature area
<u>Lissocampus runa</u> Javelin Pipefish [66251]		Species or species habitat may occur within area	In feature area

Scientific Name	Threatened Category	Presence Text	Buffer Status
<u>Maroubra perserrata</u> Sawtooth Pipefish [66252]		Species or species habitat may occur within area	In feature area
<u>Mitotichthys semistriatus</u> Halfbanded Pipefish [66261]		Species or species habitat may occur within area	In feature area
<u>Mitotichthys tuckeri</u> Tucker's Pipefish [66262]		Species or species habitat may occur within area	In feature area
<u>Notiocampus ruber</u> Red Pipefish [66265]		Species or species habitat may occur within area	In feature area
<u>Phycodurus eques</u> Leafy Seadragon [66267]		Species or species habitat may occur within area	In feature area
<u>Phyllopteryx taeniolatus</u> Common Seadragon, Weedy Seadragor [66268]	1	Species or species habitat may occur within area	In feature area
<u>Pugnaso curtirostris</u> Pugnose Pipefish, Pug-nosed Pipefish [66269]		Species or species habitat may occur within area	In feature area
<u>Solegnathus robustus</u> Robust Pipehorse, Robust Spiny Pipehorse [66274]		Species or species habitat may occur within area	In feature area
<u>Solegnathus spinosissimus</u> Spiny Pipehorse, Australian Spiny Pipehorse [66275]		Species or species habitat may occur within area	In feature area
<u>Stigmatopora argus</u> Spotted Pipefish, Gulf Pipefish, Peacock Pipefish [66276]		Species or species habitat may occur within area	In feature area
<u>Stigmatopora nigra</u> Widebody Pipefish, Wide-bodied Pipefish, Black Pipefish [66277]		Species or species habitat may occur within area	In feature area

Scientific Name	Threatened Category	Presence Text	Buffer Status
<u>Stipecampus cristatus</u> Ringback Pipefish, Ring-backed Pipefish [66278]		Species or species habitat may occur within area	In feature area
<u>Urocampus carinirostris</u> Hairy Pipefish [66282]		Species or species habitat may occur within area	In feature area
<u>Vanacampus margaritifer</u> Mother-of-pearl Pipefish [66283]		Species or species habitat may occur within area	In feature area
<u>Vanacampus phillipi</u> Port Phillip Pipefish [66284]		Species or species habitat may occur within area	In feature area
<u>Vanacampus poecilolaemus</u> Longsnout Pipefish, Australian Long- snout Pipefish, Long-snouted Pipefish [66285]		Species or species habitat may occur within area	In feature area
Mammal <u>Arctocephalus forsteri</u> Long-nosed Fur-seal, New Zealand Fur- seal [20]		Species or species habitat may occur within area	In feature area
<u>Arctocephalus pusillus</u> Australian Fur-seal, Australo-African Fur-seal [21]		Species or species habitat may occur within area	In feature area
Reptile			
<u>Caretta caretta</u> Loggerhead Turtle [1763]	Endangered	Species or species habitat likely to occur within area	In feature area
<u>Chelonia mydas</u> Green Turtle [1765]	Vulnerable	Species or species habitat may occur within area	In feature area
<u>Dermochelys coriacea</u> Leatherback Turtle, Leathery Turtle, Luth [1768]	Endangered	Species or species habitat likely to occur within area	In feature area
Whales and Other Cetaceans		[Re:	source Information]
Current Scientific Name Mammal	Status	Type of Presence	Buffer Status

Current Scientific Name	Status	Type of Presence	Buffer Status
<u>Balaenoptera acutorostrata</u> Minke Whale [33]		Species or species habitat may occur within area	In feature area
Balaenoptera bonaerensis Antarctic Minke Whale, Dark-shoulder Minke Whale [67812]		Species or species habitat likely to occur within area	In feature area
<u>Balaenoptera borealis</u> Sei Whale [34]	Vulnerable	Foraging, feeding or related behaviour likely to occur within area	In feature area
Balaenoptera musculus Blue Whale [36]	Endangered	Foraging, feeding or related behaviour known to occur withir area	
Balaenoptera physalus Fin Whale [37]	Vulnerable	Foraging, feeding or related behaviour likely to occur within area	In feature area
<u>Berardius arnuxii</u> Arnoux's Beaked Whale [70]		Species or species habitat may occur within area	In feature area
<u>Caperea marginata</u> Pygmy Right Whale [39]		Foraging, feeding or related behaviour ma occur within area	
<u>Delphinus delphis</u> Common Dolphin, Short-beaked Common Dolphin [60]		Species or species habitat may occur within area	In feature area
Eubalaena australis Southern Right Whale [40]	Endangered	Species or species habitat known to occur within area	In feature area
<u>Globicephala macrorhynchus</u> Short-finned Pilot Whale [62]		Species or species habitat may occur within area	In feature area

Current Scientific Name	Status	Type of Presence	Buffer Status
<u>Globicephala melas</u> Long-finned Pilot Whale [59282]		Species or species habitat may occur within area	In feature area
<u>Grampus griseus</u> Risso's Dolphin, Grampus [64]		Species or species habitat may occur within area	In feature area
<u>Kogia breviceps</u> Pygmy Sperm Whale [57]		Species or species habitat may occur within area	In feature area
<u>Kogia sima as Kogia simus</u> Dwarf Sperm Whale [85043]		Species or species habitat may occur within area	In feature area
<u>Lagenorhynchus obscurus</u> Dusky Dolphin [43]		Species or species habitat likely to occur within area	In feature area
<u>Lissodelphis peronii</u> Southern Right Whale Dolphin [44]		Species or species habitat may occur within area	In feature area
<u>Megaptera novaeangliae</u> Humpback Whale [38]		Species or species habitat likely to occur within area	In feature area
<u>Mesoplodon bowdoini</u> Andrew's Beaked Whale [73]		Species or species habitat may occur within area	In feature area
<u>Mesoplodon densirostris</u> Blainville's Beaked Whale, Dense- beaked Whale [74]		Species or species habitat may occur within area	In feature area
<u>Mesoplodon hectori</u> Hector's Beaked Whale [76]		Species or species habitat may occur within area	In feature area
<u>Mesoplodon layardii</u> Strap-toothed Beaked Whale, Strap- toothed Whale, Layard's Beaked Wha [25556]	le	Species or species habitat may occur within area	In feature area

Current Scientific Name	Status	Type of Presence	Buffer Status
Mesoplodon mirus			
True's Beaked Whale [54]		Species or species habitat may occur within area	In feature area
Orcinus orca			
Killer Whale, Orca [46]		Species or species habitat likely to occur within area	In feature area
Physeter macrocephalus			
Sperm Whale [59]		Species or species habitat may occur within area	In feature area
Pseudorca crassidens			
False Killer Whale [48]		Species or species habitat likely to occur within area	In feature area
<u>Tursiops truncatus s. str.</u>			
Bottlenose Dolphin [68417]		Species or species habitat may occur within area	In feature area
Ziphius cavirostris			
Cuvier's Beaked Whale, Goose-beaked Whale [56]		Species or species habitat may occur within area	In feature area

Extra Information

EPBC Act Referrals			[Resou	rce Information]
Title of referral	Reference	Referral Outcome	Assessment Status	Buffer Status
Controlled action				
<u>Otway Development</u>	2002/621	Controlled Action	Post-Approval	In feature area
VICP61 2D Marine Seismic Survey	2008/4075	Controlled Action	Completed	In feature area
Not controlled action				
INDIGO Central Submarine Telecommunications Cable	2017/8127	Not Controlled Action	Completed	In feature area
Not controlled action (particular manne	er)			
<u>3D marine seismic survey near King</u> <u>Island</u>	2004/1461	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
Astrolabe 3D Marine Seismic Survey	2011/6048	Not Controlled Action	Post-Approval	In feature area

Title of referral	Reference	Referral Outcome	Assessment Status	Buffer Status
Not controlled action (particular manne	er)	(Particular		
		Manner)		
Deepwater Sorell Basin 2001 Non-	2001/156	Not Controlled	Post-Approval	In feature area
Exclusive 2D Seismic Survey		Action (Particular Manner)		
		,		
Drill and Profile Exploration Well	2009/5037	Not Controlled	Post-Approval	In feature area
Somerset 1, License Area T34P		Action (Particular Manner)		
Geographe-A gas exploration well	2000/82	Not Controlled Action (Particular	Post-Approval	In feature area
		Manner)		
INDIGO Marine Cable Route Survey (INDIGO)	2017/7996	Not Controlled Action (Particular	Post-Approval	In feature area
		Manner)		
La Dalla 2D Marina Caiamia Cumunu	0040/0000	Not Controlled	Deet Ammerical	In facture and
<u>La Bella 3D Marine Seismic Survey,</u> <u>Otway Basin, VIC</u>	2012/6683	Not Controlled Action (Particular	Post-Approval	In feature area
		Manner)		
Otway Astrolabe 3D Marine Seismic	2012/6421	Not Controlled	Post-Approval	In feature area
<u>Survey, Otway Basin</u>		Action (Particular		
		Manner)		
Otway Basin Exploration Drilling	2011/6125	Not Controlled	Post-Approval	In feature area
<u>Campaign, Vic</u>		Action (Particular Manner)		
		,		
Thylacine-A Exploration Well	2000/81	Not Controlled	Post-Approval	In feature area
		Action (Particular Manner)		
<u>Undertake a three dimensional</u> marine seismic survey	2010/5700	Not Controlled Action (Particular	Post-Approval	In feature area
<u>manne selomie survey</u>		Manner)		
Referral decision <u>VICP61 2D Marine Seismic Survey</u>	2008/3975	Referral Decision	Completed	In feature area
		2000011		

Key Ecological Features

[Resource Information]

Key Ecological Features are the parts of the marine ecosystem that are considered to be important for the biodiversity or ecosystem functioning and integrity of the Commonwealth Marine Area.

Name	Region	Buffer Status
<u>West Tasmania Canyons</u>	South-east	In feature area

Biologically Important Areas Scientific Name Seabirds	Behaviour	Presence	Buffer Status
<u>Ardenna pacifica</u> Wedge-tailed Shearwater [84292]	Foraging	Likely to occur	In feature area
<u>Ardenna tenuirostris</u> Short-tailed Shearwater [82652]	Foraging	Known to occur	In feature area
<u>Diomedea exulans (sensu lato)</u> Wandering Albatross [1073]	Foraging	Known to occur	In feature area
<u>Diomedea exulans antipodensis</u> Antipodean Albatross [82269]	Foraging	Known to occur	In feature area
<u>Pelecanoides urinatrix</u> Common Diving-petrel [1018]	Foraging	Known to occur	In feature area
<u>Thalassarche bulleri</u> Bullers Albatross [64460]	Foraging	Known to occur	In feature area
<u>Thalassarche cauta cauta</u> Shy Albatross [82345]	Foraging likely	Likely to occur	In feature area
<u>Thalassarche chlororhynchos bassi</u> Indian Yellow-nosed Albatross [85249]	Foraging	Known to occur	In feature area
<u>Thalassarche melanophris</u> Black-browed Albatross [66472]	Foraging	Known to occur	In feature area
<u>Thalassarche melanophris impavida</u> Campbell Albatross [82449]	Foraging	Known to occur	In feature area
Sharks			
Carcharodon carcharias White Shark [64470]	Distribution	Known to occur	In feature area
<u>Carcharodon carcharias</u> White Shark [64470]	Distribution	Likely to occur	In feature area
<u>Carcharodon carcharias</u> White Shark [64470]	Distribution	Likelv to occur	In feature area

White Shark [64470]

Distribution Likely to occur In feature area (low density)

Scientific Name	Behaviour	Presence	Buffer Status
<u>Carcharodon carcharias</u> White Shark [64470]	Known distribution	Known to occur	In feature area
Whales			
<u>Balaenoptera musculus brevicauda</u> Pygmy Blue Whale [81317]	Distribution	Known to occur	In feature area
Balaenoptera musculus brevicauda Pygmy Blue Whale [81317]	Foraging	Likely to be present	In feature area
<u>Balaenoptera musculus brevicauda</u> Pygmy Blue Whale [81317]	Foraging (annual high use area)	Known to occur	In feature area
<u>Eubalaena australis</u> Southern Right Whale [40]	Known core range	Known to occur	In feature area

Caveat

I PURPOSE

This report is designed to assist in identifying the location of matters of national environmental significance (MNES) and other matters protected by the Environment Protection and Biodiversity Conservation Act 1999 (Cth) (EPBC Act) which may be relevant in determining obligations and requirements under the EPBC Act.

The report contains the mapped locations of:

- World and National Heritage properties;
- Wetlands of International and National Importance;
- Commonwealth and State/Territory reserves;
- distribution of listed threatened, migratory and marine species;
- listed threatened ecological communities; and
- other information that may be useful as an indicator of potential habitat value.

2 DISCLAIMER

This report is not intended to be exhaustive and should only be relied upon as a general guide as mapped data is not available for all species or ecological communities listed under the EPBC Act (see below). Persons seeking to use the information contained in this report to inform the referral of a proposed action under the EPBC Act should consider the limitations noted below and whether additional information is required to determine the existence and location of MNES and other protected matters.

Where data are available to inform the mapping of protected species, the presence type (e.g. known, likely or may occur) that can be determined from the data is indicated in general terms. It is the responsibility of any person using or relying on the information in this report to ensure that it is suitable for the circumstances of any proposed use. The Commonwealth cannot accept responsibility for the consequences of any use of the report or any part thereof. To the maximum extent allowed under governing law, the Commonwealth will not be liable for any loss or damage that may be occasioned directly or indirectly through the use of, or reliance

3 DATA SOURCES

Threatened ecological communities

For threatened ecological communities where the distribution is well known, maps are generated based on information contained in recovery plans, State vegetation maps and remote sensing imagery and other sources. Where threatened ecological community distributions are less well known, existing vegetation maps and point location data are used to produce indicative distribution maps.

Threatened, migratory and marine species

Threatened, migratory and marine species distributions have been discerned through a variety of methods. Where distributions are well known and if time permits, distributions are inferred from either thematic spatial data (i.e. vegetation, soils, geology, elevation, aspect, terrain, etc.) together with point locations and described habitat; or modelled (MAXENT or BIOCLIM habitat modelling) using

Where little information is available for a species or large number of maps are required in a short time-frame, maps are derived either from 0.04 or 0.02 decimal degree cells; by an automated process using polygon capture techniques (static two kilometre grid cells, alpha-hull and convex hull); or captured manually or by using topographic features (national park boundaries, islands, etc.).

In the early stages of the distribution mapping process (1999-early 2000s) distributions were defined by degree blocks, 100K or 250K map sheets to rapidly create distribution maps. More detailed distribution mapping methods are used to update these distributions

4 LIMITATIONS

The following species and ecological communities have not been mapped and do not appear in this report:

- threatened species listed as extinct or considered vagrants;
- · some recently listed species and ecological communities;
- · some listed migratory and listed marine species, which are not listed as threatened species; and
- migratory species that are very widespread, vagrant, or only occur in Australia in small numbers.

The following groups have been mapped, but may not cover the complete distribution of the species:

- listed migratory and/or listed marine seabirds, which are not listed as threatened, have only been mapped for recorded
- seals which have only been mapped for breeding sites near the Australian continent

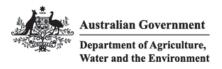
The breeding sites may be important for the protection of the Commonwealth Marine environment.

Refer to the metadata for the feature group (using the Resource Information link) for the currency of the information.

Acknowledgements

This database has been compiled from a range of data sources. The department acknowledges the following custodians who have contributed valuable data and advice:

-Office of Environment and Heritage, New South Wales -Department of Environment and Primary Industries, Victoria -Department of Primary Industries, Parks, Water and Environment, Tasmania -Department of Environment, Water and Natural Resources, South Australia -Department of Land and Resource Management, Northern Territory -Department of Environmental and Heritage Protection, Queensland -Department of Parks and Wildlife, Western Australia -Environment and Planning Directorate, ACT -Birdlife Australia -Australian Bird and Bat Banding Scheme -Australian National Wildlife Collection -Natural history museums of Australia -Museum Victoria -Australian Museum -South Australian Museum -Queensland Museum -Online Zoological Collections of Australian Museums -Queensland Herbarium -National Herbarium of NSW -Royal Botanic Gardens and National Herbarium of Victoria -Tasmanian Herbarium -State Herbarium of South Australia -Northern Territory Herbarium -Western Australian Herbarium -Australian National Herbarium, Canberra -University of New England -Ocean Biogeographic Information System -Australian Government, Department of Defence Forestry Corporation, NSW -Geoscience Australia -CSIRO -Australian Tropical Herbarium, Cairns -eBird Australia -Australian Government – Australian Antarctic Data Centre -Museum and Art Gallery of the Northern Territory -Australian Government National Environmental Science Program -Australian Institute of Marine Science -Reef Life Survey Australia -American Museum of Natural History -Queen Victoria Museum and Art Gallery, Inveresk, Tasmania -Tasmanian Museum and Art Gallery, Hobart, Tasmania -Other groups and individuals


The Department is extremely grateful to the many organisations and individuals who provided expert advice and information on numerous draft distributions.

© Commonwealth of Australia

Department of Agriculture Water and the Environment GPO Box 858 Canberra City ACT 2601 Australia +61 2 6274 1111

S4121AF728393

Light EMBA

EPBC Act Protected Matters Report

This report provides general guidance on matters of national environmental significance and other matters protected by the EPBC Act in the area you have selected. Please see the caveat for interpretation of information provided here.

Report created: 19-Aug-2022

Summary Details <u>Matters of NES</u> <u>Other Matters Protected by the EPBC Act</u> <u>Extra Information</u> Caveat <u>Acknowledgements</u>

Summary

Matters of National Environment Significance

This part of the report summarises the matters of national environmental significance that may occur in, or may relate to, the area you nominated. Further information is available in the detail part of the report, which can be accessed by scrolling or following the links below. If you are proposing to undertake an activity that may have a significant impact on one or more matters of national environmental significance then you should consider the <u>Administrative Guidelines on Significance</u>.

World Heritage Properties:	None
National Heritage Places:	None
Wetlands of International Importance (Ramsar	None
Great Barrier Reef Marine Park:	None
Commonwealth Marine Area:	1
Listed Threatened Ecological Communities:	None
Listed Threatened Species:	38
Listed Migratory Species:	39

Other Matters Protected by the EPBC Act

This part of the report summarises other matters protected under the Act that may relate to the area you nominated. Approval may be required for a proposed activity that significantly affects the environment on Commonwealth land, when the action is outside the Commonwealth land, or the environment anywhere when the action is taken on Commonwealth land. Approval may also be required for the Commonwealth or Commonwealth agencies proposing to take an action that is likely to have a significant impact on the

The EPBC Act protects the environment on Commonwealth land, the environment from the actions taken on Commonwealth land, and the environment from actions taken by Commonwealth agencies. As heritage values of a place are part of the 'environment', these aspects of the EPBC Act protect the Commonwealth Heritage values of a Commonwealth Heritage place. Information on the new heritage laws can be found at http://www.environment.gov.au/heritage

A <u>permit</u> may be required for activities in or on a Commonwealth area that may affect a member of a listed threatened species or ecological community, a member of a listed migratory species, whales and other cetaceans, or a member of a listed marine species.

Commonwealth Lands:	None
Commonwealth Heritage Places:	None
Listed Marine Species:	60
Whales and Other Cetaceans:	27
Critical Habitats:	None
Commonwealth Reserves Terrestrial:	None
Australian Marine Parks:	None
Habitat Critical to the Survival of Marine Turtles:	None

Extra Information

This part of the report provides information that may also be relevant to the area you have

State and Territory Reserves:	None
Regional Forest Agreements:	None
Nationally Important Wetlands:	None
EPBC Act Referrals:	19
Key Ecological Features (Marine):	1
Biologically Important Areas:	18
Bioregional Assessments:	None
Geological and Bioregional Assessments:	None

Details

Matters of National Environmental Significance

Commonwealth Marine Area [Resource Information] Approval is required for a proposed activity that is located within the Commonwealth Marine Area which has, will have, or is likely to have a significant impact on the environment. Approval may be required for a proposed action taken outside a Commonwealth Marine Area but which has, may have or is likely to have a significant impact on the environment in the Commonwealth Marine Area. Feature Name **Buffer Status EEZ** and Territorial Sea

In feature area

Listed Threatened Species		[<u>Re</u>	source Information]
Status of Conservation Dependent and E Number is the current name ID.	xtinct are not MNES unde	er the EPBC Act.	
Scientific Name	Threatened Category	Presence Text	Buffer Status
BIRD			
<u>Calidris canutus</u>			
Red Knot, Knot [855]	Endangered	Species or species habitat may occur within area	In feature area
Calidris ferruginea			
Curlew Sandpiper [856]	Critically Endangered	Species or species habitat may occur within area	In feature area
Diomedea antipodensis			
Antipodean Albatross [64458]	Vulnerable	Foraging, feeding or related behaviour likely to occur within area	In feature area
Diomedea epomophora			
Southern Royal Albatross [89221]	Vulnerable	Foraging, feeding or related behaviour likely to occur within area	In feature area
<u>Diomedea exulans</u>			
Wandering Albatross [89223]	Vulnerable	Foraging, feeding or related behaviour likely to occur within area	In feature area

Scientific Name	Threatened Category	Presence Text	Buffer Status
<u>Diomedea sanfordi</u> Northern Royal Albatross [64456]	Endangered	Foraging, feeding or related behaviour likely to occur within area	In feature area
<u>Halobaena caerulea</u> Blue Petrel [1059]	Vulnerable	Species or species habitat may occur within area	In feature area
<u>Macronectes giganteus</u> Southern Giant-Petrel, Southern Giant Petrel [1060]	Endangered	Species or species habitat may occur within area	In feature area
<u>Macronectes halli</u> Northern Giant Petrel [1061]	Vulnerable	Foraging, feeding or related behaviour likely to occur within area	In feature area
<u>Neophema chrysogaster</u> Orange-bellied Parrot [747]	Critically Endangered	Migration route likely to occur within area	In buffer area only
<u>Numenius madagascariensis</u> Eastern Curlew, Far Eastern Curlew [847]	Critically Endangered	Species or species habitat may occur within area	In feature area
<u>Pachyptila turtur subantarctica</u> Fairy Prion (southern) [64445]	Vulnerable	Species or species habitat may occur within area	In feature area
<u>Phoebetria fusca</u> Sooty Albatross [1075]	Vulnerable	Species or species habitat likely to occur within area	In feature area
<u>Pterodroma leucoptera leucoptera</u> Gould's Petrel, Australian Gould's Petrel [26033]	Endangered	Species or species habitat may occur within area	In feature area
<u>Pterodroma mollis</u> Soft-plumaged Petrel [1036]	Vulnerable	Species or species habitat may occur within area	In feature area
<u>Sternula nereis nereis</u> Australian Fairy Tern [82950]	Vulnerable	Foraging, feeding or related behaviour likely to occur within area	In feature area

Scientific Name	Threatened Category	Presence Text	Buffer Status
<u>Thalassarche bulleri</u> Buller's Albatross, Pacific Albatross [64460]	Vulnerable	Foraging, feeding or related behaviour likely to occur within area	In feature area
<u>Thalassarche bulleri platei</u> Northern Buller's Albatross, Pacific Albatross [82273]	Vulnerable	Foraging, feeding or related behaviour likely to occur within area	In feature area
<u>Thalassarche carteri</u> Indian Yellow-nosed Albatross [64464]	Vulnerable	Species or species habitat likely to occur within area	In feature area
<u>Thalassarche cauta</u> Shy Albatross [89224]	Endangered	Foraging, feeding or related behaviour likely to occur within area	In feature area
<u>Thalassarche chrysostoma</u> Grey-headed Albatross [66491]	Endangered	Species or species habitat may occur within area	In feature area
<u>Thalassarche impavida</u> Campbell Albatross, Campbell Black- browed Albatross [64459]	Vulnerable	Foraging, feeding or related behaviour likely to occur within area	In feature area
<u>Thalassarche melanophris</u> Black-browed Albatross [66472]	Vulnerable	Foraging, feeding or related behaviour likely to occur within area	In feature area
<u>Thalassarche salvini</u> Salvin's Albatross [64463]	Vulnerable	Foraging, feeding or related behaviour likely to occur within area	In feature area
<u>Thalassarche steadi</u> White-capped Albatross [64462]	Vulnerable	Foraging, feeding or related behaviour known to occur within area	
FISH			
<u>Hoplostethus atlanticus</u> Orange Roughy, Deep-sea Perch, Red Roughy [68455]	Conservation Dependent	Species or species habitat likely to occur within area	In feature area

Scientific Name	Threatened Category	Presence Text	Buffer Status
<u>Seriolella brama</u> Blue Warehou [69374]	Conservation Dependent	Species or species habitat known to occur within area	In feature area
<u>Thunnus maccoyii</u> Southern Bluefin Tuna [69402]	Conservation Dependent	Species or species habitat likely to occur within area	In feature area
MAMMAL			
Balaenoptera borealis Sei Whale [34]	Vulnerable	Foraging, feeding or related behaviour likely to occur within area	In feature area
<u>Balaenoptera musculus</u> Blue Whale [36]	Endangered	Foraging, feeding or related behaviour known to occur within area	In feature area
Balaenoptera physalus Fin Whale [37]	Vulnerable	Foraging, feeding or related behaviour likely to occur within area	In feature area
<u>Eubalaena australis</u> Southern Right Whale [40]	Endangered	Species or species habitat known to occur within area	In feature area
REPTILE			
<u>Caretta caretta</u> Loggerhead Turtle [1763]	Endangered	Species or species habitat likely to occur within area	In feature area
<u>Chelonia mydas</u> Green Turtle [1765]	Vulnerable	Species or species habitat may occur within area	In feature area
Dermochelys coriacea Leatherback Turtle, Leathery Turtle, Luth [1768]	Endangered	Species or species habitat likely to occur within area	In feature area
SHARK			
<u>Carcharodon carcharias</u> White Shark, Great White Shark [64470]	Vulnerable	Species or species habitat known to occur within area	In feature area

Scientific Name	Threatened Category	Presence Text	Buffer Status
<u>Centrophorus zeehaani</u> Southern Dogfish, Endeavour Dogfish, Little Gulper Shark [82679]	Conservation Dependent	Species or species habitat likely to occur within area	In feature area
<u>Galeorhinus galeus</u> School Shark, Eastern School Shark, Snapper Shark, Tope, Soupfin Shark [68453]	Conservation Dependent	Species or species habitat may occur within area	In feature area
Listed Migratory Species		[Re:	source Information]
Scientific Name	Threatened Category	Presence Text	Buffer Status
Migratory Marine Birds			
<u>Ardenna carneipes</u> Flesh-footed Shearwater, Fleshy-footed Shearwater [82404]		Foraging, feeding or related behaviour likely to occur within area	In feature area
<u>Ardenna grisea</u>			
Sooty Shearwater [82651]		Species or species habitat may occur within area	In feature area
Diomedea antipodensis			
Antipodean Albatross [64458]	Vulnerable	Foraging, feeding or related behaviour likely to occur within area	In feature area
Diomedea epomophora			
Southern Royal Albatross [89221]	Vulnerable	Foraging, feeding or related behaviour likely to occur within area	In feature area
Diomedea exulans			
Wandering Albatross [89223]	Vulnerable	Foraging, feeding or related behaviour likely to occur within area	In feature area
Diomedea sanfordi			
Northern Royal Albatross [64456]	Endangered	Foraging, feeding or related behaviour likely to occur within area	In feature area
<u>Macronectes giganteus</u> Southern Giant-Petrel, Southern Giant Petrel [1060]	Endangered	Species or species habitat may occur within area	In feature area

Scientific Name	Threatened Category	Presence Text	Buffer Status
<u>Macronectes halli</u> Northern Giant Petrel [1061]	Vulnerable	Foraging, feeding or related behaviour likely to occur within area	In feature area
<u>Phoebetria fusca</u> Sooty Albatross [1075]	Vulnerable	Species or species habitat likely to occur within area	In feature area
<u>Thalassarche bulleri</u> Buller's Albatross, Pacific Albatross [64460]	Vulnerable	Foraging, feeding or related behaviour likely to occur within area	In feature area
<u>Thalassarche carteri</u> Indian Yellow-nosed Albatross [64464]	Vulnerable	Species or species habitat likely to occur within area	In feature area
<u>Thalassarche cauta</u> Shy Albatross [89224]	Endangered	Foraging, feeding or related behaviour likely to occur within area	In feature area
<u>Thalassarche chrysostoma</u> Grey-headed Albatross [66491]	Endangered	Species or species habitat may occur within area	In feature area
<u>Thalassarche impavida</u> Campbell Albatross, Campbell Black- browed Albatross [64459]	Vulnerable	Foraging, feeding or related behaviour likely to occur within area	In feature area
<u>Thalassarche melanophris</u> Black-browed Albatross [66472]	Vulnerable	Foraging, feeding or related behaviour likely to occur within area	In feature area
<u>Thalassarche salvini</u> Salvin's Albatross [64463]	Vulnerable	Foraging, feeding or related behaviour likely to occur within area	In feature area
<u>Thalassarche steadi</u> White-capped Albatross [64462]	Vulnerable	Foraging, feeding or related behaviour known to occur within area	

Scientific Name	Threatened Category	Presence Text	Buffer Status
<u>Balaenoptera bonaerensis</u> Antarctic Minke Whale, Dark-shoulder Minke Whale [67812]		Species or species habitat likely to occur within area	In feature area
Balaenoptera borealis Sei Whale [34]	Vulnerable	Foraging, feeding or related behaviour likely to occur within area	In feature area
<u>Balaenoptera musculus</u> Blue Whale [36]	Endangered	Foraging, feeding or related behaviour known to occur within area	
<u>Balaenoptera physalus</u> Fin Whale [37]	Vulnerable	Foraging, feeding or related behaviour likely to occur within area	In feature area
<u>Caperea marginata</u> Pygmy Right Whale [39]		Foraging, feeding or related behaviour ma occur within area	
<u>Carcharodon carcharias</u> White Shark, Great White Shark [64470]	Vulnerable	Species or species habitat known to occur within area	In feature area
<u>Caretta caretta</u> Loggerhead Turtle [1763]	Endangered	Species or species habitat likely to occur within area	In feature area
<u>Chelonia mydas</u> Green Turtle [1765]	Vulnerable	Species or species habitat may occur within area	In feature area
<u>Dermochelys coriacea</u> Leatherback Turtle, Leathery Turtle, Luth [1768]	Endangered	Species or species habitat likely to occur within area	In feature area
<u>Eubalaena australis as Balaena glacialis</u> Southern Right Whale [40]	australis Endangered	Species or species habitat known to occur within area	In feature area

Scientific Name	Threatened Category	Presence Text	Buffer Status
<u>Isurus oxyrinchus</u> Shortfin Mako, Mako Shark [79073]		Species or species habitat likely to occur within area	In feature area
<u>Lagenorhynchus obscurus</u> Dusky Dolphin [43]		Species or species habitat likely to occur within area	In feature area
<u>Lamna nasus</u> Porbeagle, Mackerel Shark [83288]		Species or species habitat likely to occur within area	In feature area
<u>Megaptera novaeangliae</u> Humpback Whale [38]		Species or species habitat likely to occur within area	In feature area
<u>Orcinus orca</u> Killer Whale, Orca [46]		Species or species habitat likely to occur within area	In feature area
<u>Physeter macrocephalus</u> Sperm Whale [59]		Species or species habitat may occur within area	In feature area
Migratory Wetlands Species			
Actitis hypoleucos Common Sandpiper [59309]		Species or species habitat may occur within area	In feature area
<u>Calidris acuminata</u> Sharp-tailed Sandpiper [874]		Species or species habitat may occur within area	In feature area
<u>Calidris canutus</u> Red Knot, Knot [855]	Endangered	Species or species habitat may occur within area	In feature area
<u>Calidris ferruginea</u> Curlew Sandpiper [856]	Critically Endangered	Species or species habitat may occur within area	In feature area
<u>Calidris melanotos</u> Pectoral Sandpiper [858]		Species or species habitat may occur within area	In feature area

Scientific Name	Threatened Category	Presence Text	Buffer Status
Numenius madagascariensis			
Eastern Curlew, Far Eastern Curlew [847]	Critically Endangered	Species or species habitat may occur within area	In feature area

Other Matters Protected by the EPBC Act

Listed Marine Species		[<u>Re</u>	source Information]
Scientific Name	Threatened Category	Presence Text	Buffer Status
Bird			
<u>Actitis hypoleucos</u> Common Sandpiper [59309]		Species or species	In feature area
		habitat may occur within area	
Ardenna carneipes as Puffinus carneipes	<u>5</u>	Foraging fooding or	In foaturo aroa
Flesh-footed Shearwater, Fleshy-footed Shearwater [82404]		Foraging, feeding or related behaviour likely to occur within area	In feature area
<u>Ardenna grisea as Puffinus griseus</u>			
Sooty Shearwater [82651]		Species or species habitat may occur within area	In feature area
Calidris acuminata			
Sharp-tailed Sandpiper [874]		Species or species habitat may occur within area	In feature area
<u>Calidris canutus</u>			
Red Knot, Knot [855]	Endangered	Species or species habitat may occur within area overfly marine area	In feature area
<u>Calidris ferruginea</u>			
Curlew Sandpiper [856]	Critically Endangered	Species or species habitat may occur within area overfly marine area	In feature area
<u>Calidris melanotos</u>			
Pectoral Sandpiper [858]		Species or species habitat may occur within area overfly marine area	In feature area

Scientific Name	Threatened Category	Presence Text	Buffer Status
<u>Diomedea antipodensis</u> Antipodean Albatross [64458]	Vulnerable	Foraging, feeding or related behaviour likely to occur within area	In feature area
Diomedea epomophora Southern Royal Albatross [89221]	Vulnerable	Foraging, feeding or related behaviour likely to occur within area	In feature area
<u>Diomedea exulans</u> Wandering Albatross [89223]	Vulnerable	Foraging, feeding or related behaviour likely to occur within area	In feature area
<u>Diomedea sanfordi</u> Northern Royal Albatross [64456]	Endangered	Foraging, feeding or related behaviour likely to occur within area	In feature area
<u>Halobaena caerulea</u> Blue Petrel [1059]	Vulnerable	Species or species habitat may occur within area	In feature area
<u>Macronectes giganteus</u> Southern Giant-Petrel, Southern Giant Petrel [1060]	Endangered	Species or species habitat may occur within area	In feature area
<u>Macronectes halli</u> Northern Giant Petrel [1061]	Vulnerable	Foraging, feeding or related behaviour likely to occur within area	In feature area
<u>Neophema chrysogaster</u> Orange-bellied Parrot [747]	Critically Endangered	Migration route likely to occur within area overfly marine area	In buffer area only
<u>Numenius madagascariensis</u> Eastern Curlew, Far Eastern Curlew [847]	Critically Endangered	Species or species habitat may occur within area	In feature area
<u>Pachyptila turtur</u> Fairy Prion [1066]		Species or species habitat may occur within area	In feature area

Scientific Name	Threatened Category	Presence Text	Buffer Status
<u>Phoebetria fusca</u> Sooty Albatross [1075]	Vulnerable	Species or species habitat likely to occur within area	In feature area
<u>Pterodroma mollis</u> Soft-plumaged Petrel [1036]	Vulnerable	Species or species habitat may occur within area	In feature area
<u>Stercorarius skua as Catharacta skua</u> Great Skua [823]		Species or species habitat may occur within area	In feature area
<u>Thalassarche bulleri</u> Buller's Albatross, Pacific Albatross [64460]	Vulnerable	Foraging, feeding or related behaviour likely to occur within area	In feature area
Thalassarche bulleri platei as Thalassarc	the sp. nov		
Northern Buller's Albatross, Pacific Albatross [82273]	Vulnerable	Foraging, feeding or related behaviour likely to occur within area	In feature area
<u>Thalassarche carteri</u> Indian Yellow-nosed Albatross [64464]	Vulnerable	Species or species habitat likely to occur within area	In feature area
<u>Thalassarche cauta</u> Shy Albatross [89224]	Endangered	Foraging, feeding or related behaviour likely to occur within area	In feature area
<u>Thalassarche chrysostoma</u> Grey-headed Albatross [66491]	Endangered	Species or species habitat may occur within area	In feature area
<u>Thalassarche impavida</u> Campbell Albatross, Campbell Black- browed Albatross [64459]	Vulnerable	Foraging, feeding or related behaviour likely to occur within area	In feature area
<u>Thalassarche melanophris</u> Black-browed Albatross [66472]	Vulnerable	Foraging, feeding or related behaviour likely to occur within area	In feature area

Scientific Name	Threatened Category	Presence Text	Buffer Status
<u>Thalassarche salvini</u> Salvin's Albatross [64463]	Vulnerable	Foraging, feeding or related behaviour likely to occur within area	In feature area
<u>Thalassarche steadi</u> White-capped Albatross [64462]	Vulnerable	Foraging, feeding or related behaviour known to occur within area	
Fish			
<u>Heraldia nocturna</u> Upside-down Pipefish, Eastern Upside- down Pipefish, Eastern Upside-down Pipefish [66227]		Species or species habitat may occur within area	In feature area
<u>Hippocampus abdominalis</u> Big-belly Seahorse, Eastern Potbelly Seahorse, New Zealand Potbelly Seahorse [66233]		Species or species habitat may occur within area	In feature area
<u>Hippocampus breviceps</u> Short-head Seahorse, Short-snouted Seahorse [66235]		Species or species habitat may occur within area	In feature area
<u>Histiogamphelus briggsii</u> Crested Pipefish, Briggs' Crested Pipefish, Briggs' Pipefish [66242]		Species or species habitat may occur within area	In feature area
<u>Histiogamphelus cristatus</u> Rhino Pipefish, Macleay's Crested Pipefish, Ring-back Pipefish [66243]		Species or species habitat may occur within area	In feature area
<u>Hypselognathus rostratus</u> Knifesnout Pipefish, Knife-snouted Pipefish [66245]		Species or species habitat may occur within area	In feature area
<u>Kaupus costatus</u> Deepbody Pipefish, Deep-bodied Pipefish [66246]		Species or species habitat may occur within area	In feature area
<u>Leptoichthys fistularius</u> Brushtail Pipefish [66248]		Species or species habitat may occur within area	In feature area
<u>Lissocampus caudalis</u> Australian Smooth Pipefish, Smooth Pipefish [66249]		Species or species habitat may occur within area	In feature area

Scientific Name	Threatened Category	Presence Text	Buffer Status
<u>Lissocampus runa</u> Javelin Pipefish [66251]		Species or species habitat may occur within area	In feature area
<u>Maroubra perserrata</u> Sawtooth Pipefish [66252]		Species or species habitat may occur within area	In feature area
<u>Mitotichthys semistriatus</u> Halfbanded Pipefish [66261]		Species or species habitat may occur within area	In feature area
<u>Mitotichthys tuckeri</u> Tucker's Pipefish [66262]		Species or species habitat may occur within area	In feature area
<u>Notiocampus ruber</u> Red Pipefish [66265]		Species or species habitat may occur within area	In feature area
<u>Phycodurus eques</u> Leafy Seadragon [66267]		Species or species habitat may occur within area	In feature area
<u>Phyllopteryx taeniolatus</u> Common Seadragon, Weedy Seadrago [66268]	n	Species or species habitat may occur within area	In feature area
<u>Pugnaso curtirostris</u> Pugnose Pipefish, Pug-nosed Pipefish [66269]		Species or species habitat may occur within area	In feature area
<u>Solegnathus robustus</u> Robust Pipehorse, Robust Spiny Pipehorse [66274]		Species or species habitat may occur within area	In feature area
<u>Solegnathus spinosissimus</u> Spiny Pipehorse, Australian Spiny Pipehorse [66275]		Species or species habitat may occur within area	In feature area
<u>Stigmatopora argus</u> Spotted Pipefish, Gulf Pipefish, Peacocl Pipefish [66276]	<	Species or species habitat may occur within area	In feature area

Scientific Name	Threatened Category	Presence Text	Buffer Status
<u>Stigmatopora nigra</u> Widebody Pipefish, Wide-bodied Pipefish, Black Pipefish [66277]		Species or species habitat may occur within area	In feature area
<u>Stipecampus cristatus</u> Ringback Pipefish, Ring-backed Pipefish [66278]		Species or species habitat may occur within area	In feature area
<u>Urocampus carinirostris</u> Hairy Pipefish [66282]		Species or species habitat may occur within area	In feature area
<u>Vanacampus margaritifer</u> Mother-of-pearl Pipefish [66283]		Species or species habitat may occur within area	In feature area
<u>Vanacampus phillipi</u> Port Phillip Pipefish [66284]		Species or species habitat may occur within area	In feature area
<u>Vanacampus poecilolaemus</u> Longsnout Pipefish, Australian Long- snout Pipefish, Long-snouted Pipefish [66285]		Species or species habitat may occur within area	In feature area
Mammal			
<u>Arctocephalus forsteri</u> Long-nosed Fur-seal, New Zealand Fur- seal [20]		Species or species habitat may occur within area	In feature area
<u>Arctocephalus pusillus</u> Australian Fur-seal, Australo-African Fur-seal [21]		Species or species habitat may occur within area	In feature area
Reptile			
<u>Caretta caretta</u> Loggerhead Turtle [1763]	Endangered	Species or species habitat likely to occur within area	In feature area
<u>Chelonia mydas</u> Green Turtle [1765]	Vulnerable	Species or species habitat may occur within area	In feature area
<u>Dermochelys coriacea</u> Leatherback Turtle, Leathery Turtle, Luth [1768]	Endangered	Species or species habitat likely to occur within area	In feature area

Whales and Other Cetaceans		[<u>Re</u> :	source Information]
Current Scientific Name	Status	Type of Presence	Buffer Status
Mammal			
<u>Balaenoptera acutorostrata</u> Minke Whale [33]		Species or species habitat may occur within area	In feature area
<u>Balaenoptera bonaerensis</u> Antarctic Minke Whale, Dark-shoulder Minke Whale [67812]		Species or species habitat likely to occur within area	In feature area
<u>Balaenoptera borealis</u> Sei Whale [34]	Vulnerable	Foraging, feeding or related behaviour likely to occur within area	In feature area
<u>Balaenoptera musculus</u> Blue Whale [36]	Endangered	Foraging, feeding or related behaviour known to occur within area	
<u>Balaenoptera physalus</u> Fin Whale [37]	Vulnerable	Foraging, feeding or related behaviour likely to occur within area	In feature area
<u>Berardius arnuxii</u> Arnoux's Beaked Whale [70]		Species or species habitat may occur within area	In feature area
<u>Caperea marginata</u> Pygmy Right Whale [39]		Foraging, feeding or related behaviour ma occur within area	
<u>Delphinus delphis</u> Common Dolphin, Short-beaked Common Dolphin [60]		Species or species habitat may occur within area	In feature area
<u>Eubalaena australis</u> Southern Right Whale [40]	Endangered	Species or species habitat known to occur within area	In feature area
<u>Globicephala macrorhynchus</u> Short-finned Pilot Whale [62]		Species or species habitat may occur within area	In feature area

Current Scientific Name	Status	Type of Presence	Buffer Status
<u>Globicephala melas</u> Long-finned Pilot Whale [59282]		Species or species habitat may occur within area	In feature area
<u>Grampus griseus</u> Risso's Dolphin, Grampus [64]		Species or species habitat may occur within area	In feature area
<u>Kogia breviceps</u> Pygmy Sperm Whale [57]		Species or species habitat may occur within area	In feature area
<u>Kogia sima as Kogia simus</u> Dwarf Sperm Whale [85043]		Species or species habitat may occur within area	In feature area
<u>Lagenorhynchus obscurus</u> Dusky Dolphin [43]		Species or species habitat likely to occur within area	In feature area
<u>Lissodelphis peronii</u> Southern Right Whale Dolphin [44]		Species or species habitat may occur within area	In feature area
<u>Megaptera novaeangliae</u> Humpback Whale [38]		Species or species habitat likely to occur within area	In feature area
<u>Mesoplodon bowdoini</u> Andrew's Beaked Whale [73]		Species or species habitat may occur within area	In feature area
<u>Mesoplodon densirostris</u> Blainville's Beaked Whale, Dense- beaked Whale [74]		Species or species habitat may occur within area	In feature area
<u>Mesoplodon hectori</u> Hector's Beaked Whale [76]		Species or species habitat may occur within area	In feature area
<u>Mesoplodon layardii</u> Strap-toothed Beaked Whale, Strap- toothed Whale, Layard's Beaked Wha [25556]	le	Species or species habitat may occur within area	In feature area

Current Scientific Name	Status	Type of Presence	Buffer Status
<u>Mesoplodon mirus</u> True's Beaked Whale [54]		Species or species habitat may occur within area	In feature area
<u>Orcinus orca</u> Killer Whale, Orca [46]		Species or species habitat likely to occur within area	In feature area
<u>Physeter macrocephalus</u> Sperm Whale [59]		Species or species habitat may occur within area	In feature area
<u>Pseudorca crassidens</u> False Killer Whale [48]		Species or species habitat likely to occur within area	In feature area
<u>Tursiops truncatus s. str.</u> Bottlenose Dolphin [68417]		Species or species habitat may occur within area	In feature area
<u>Ziphius cavirostris</u> Cuvier's Beaked Whale, Goose-beaked Whale [56]		Species or species habitat may occur within area	In feature area

Extra Information

EPBC Act Referrals			[Resou	rce Information]
Title of referral	Reference	Referral Outcome	Assessment Status	Buffer Status
Controlled action				
Otway Development	2002/621	Controlled Action	Post-Approval	In feature area
VICP61 2D Marine Seismic Survey	2008/4075	Controlled Action	Completed	In feature area
Not controlled action				
INDIGO Central Submarine Telecommunications Cable	2017/8127	Not Controlled Action	Completed	In feature area
Not controlled action (particular manned	er)			
2D Marine Seismic Survey	2005/2295	Not Controlled Action (Particular Manner)	Post-Approval	In buffer area only
2D Seismic Survey	2003/1214	Not Controlled Action	Post-Approval	In buffer area only

Title of referral	Reference	Referral Outcome	Assessment Status	Buffer Status
Not controlled action (particular manne	er)	(Particular		
		Manner)		
<u>3D marine seismic survey near King</u> <u>Island</u>	2004/1461	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
Astrolabe 3D Marine Seismic Survey	2011/6048	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
BHPBilliton Otway 3D Seismic Survey	2007/3443	Not Controlled Action (Particular Manner)	Post-Approval	In buffer area only
Deepwater Sorell Basin 2001 Non- Exclusive 2D Seismic Survey	2001/156	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
Drill and Profile Exploration Well Somerset 1, License Area T34P	2009/5037	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
Geographe-A gas exploration well	2000/82	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
INDIGO Marine Cable Route Survey (INDIGO)	2017/7996	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
<u>La Bella 3D Marine Seismic Survey,</u> <u>Otway Basin, VIC</u>	2012/6683	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
<u>Otway Astrolabe 3D Marine Seismic</u> <u>Survey, Otway Basin</u>	2012/6421	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
<u>Otway Basin Exploration Drilling</u> <u>Campaign, Vic</u>	2011/6125	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
Thylacine-A Exploration Well	2000/81	Not Controlled Action (Particular Manner)	Post-Approval	In feature area

Title of referral	Reference	Referral Outcome	Assessment Status	Buffer Status
Not controlled action (particular manne	er)			
<u>Undertake a three dimensional</u> marine seismic survey	2010/5700	Not Controlled Action (Particular Manner)	Post-Approval	In feature area
<u>Vic-P51 and Vic-P52 2D seismic</u> <u>survey</u>	2002/811	Not Controlled Action (Particular Manner)	Post-Approval	In buffer area only
Referral decision				
VICP61 2D Marine Seismic Survey	2008/3975	Referral Decision	Completed	In feature area

Key Ecological Features	[Resource Information]
Key Ecological Features are the parts of the marine ecosystem that are consider biodiversity or ecosystem functioning and integrity of the Commonwealth Marine	•

Name	Region	Buffer Status
West Tasmania Canyons	South-east	In feature area

Biologically Important Areas			
Scientific Name	Behaviour	Presence	Buffer Status
Seabirds			
<u>Ardenna pacifica</u> Wedge-tailed Shearwater [84292]	Foraging	Likely to occur	In feature area
<u>Ardenna tenuirostris</u> Short-tailed Shearwater [82652]	Foraging	Known to occur	In feature area
<u>Diomedea exulans (sensu lato)</u> Wandering Albatross [1073]	Foraging	Known to occur	In feature area
<u>Diomedea exulans antipodensis</u> Antipodean Albatross [82269]	Foraging	Known to occur	In feature area
<u>Pelecanoides urinatrix</u> Common Diving-petrel [1018]	Foraging	Known to occur	In feature area
<u>Thalassarche bulleri</u> Bullers Albatross [64460]	Foraging	Known to occur	In feature area
<u>Thalassarche cauta cauta</u> Shy Albatross [82345]	Foraging likely	Likely to occur	In feature area

Scientific Name	Behaviour	Presence	Buffer Status
<u>Thalassarche chlororhynchos bassi</u> Indian Yellow-nosed Albatross [85249]	Foraging	Known to occur	In feature area
<u>Thalassarche melanophris</u> Black-browed Albatross [66472]	Foraging	Known to occur	In feature area
<u>Thalassarche melanophris impavida</u> Campbell Albatross [82449]	Foraging	Known to occur	In feature area
Sharks			
<u>Carcharodon carcharias</u> White Shark [64470]	Distribution	Known to occur	In feature area
<u>Carcharodon carcharias</u> White Shark [64470]	Distribution	Likely to occur	In feature area
<u>Carcharodon carcharias</u> White Shark [64470]	Distribution (low density)	Likely to occur	In feature area
<u>Carcharodon carcharias</u> White Shark [64470]	Known distribution	Known to occur	In feature area
Whales			
<u>Balaenoptera musculus brevicauda</u> Pygmy Blue Whale [81317]	Distribution	Known to occur	In feature area
Balaenoptera musculus brevicauda Pygmy Blue Whale [81317]	Foraging	Likely to be present	In feature area
<u>Balaenoptera musculus brevicauda</u> Pygmy Blue Whale [81317]	Foraging (annual high use area)	Known to occur	In feature area
<u>Eubalaena australis</u> Southern Right Whale [40]	Known core range	Known to occur	In feature area

Caveat

I PURPOSE

This report is designed to assist in identifying the location of matters of national environmental significance (MNES) and other matters protected by the Environment Protection and Biodiversity Conservation Act 1999 (Cth) (EPBC Act) which may be relevant in determining obligations and requirements under the EPBC Act.

The report contains the mapped locations of:

- World and National Heritage properties;
- Wetlands of International and National Importance;
- Commonwealth and State/Territory reserves;
- distribution of listed threatened, migratory and marine species;
- listed threatened ecological communities; and
- other information that may be useful as an indicator of potential habitat value.

2 DISCLAIMER

This report is not intended to be exhaustive and should only be relied upon as a general guide as mapped data is not available for all species or ecological communities listed under the EPBC Act (see below). Persons seeking to use the information contained in this report to inform the referral of a proposed action under the EPBC Act should consider the limitations noted below and whether additional information is required to determine the existence and location of MNES and other protected matters.

Where data are available to inform the mapping of protected species, the presence type (e.g. known, likely or may occur) that can be determined from the data is indicated in general terms. It is the responsibility of any person using or relying on the information in this report to ensure that it is suitable for the circumstances of any proposed use. The Commonwealth cannot accept responsibility for the consequences of any use of the report or any part thereof. To the maximum extent allowed under governing law, the Commonwealth will not be liable for any loss or damage that may be occasioned directly or indirectly through the use of, or reliance

3 DATA SOURCES

Threatened ecological communities

For threatened ecological communities where the distribution is well known, maps are generated based on information contained in recovery plans, State vegetation maps and remote sensing imagery and other sources. Where threatened ecological community distributions are less well known, existing vegetation maps and point location data are used to produce indicative distribution maps.

Threatened, migratory and marine species

Threatened, migratory and marine species distributions have been discerned through a variety of methods. Where distributions are well known and if time permits, distributions are inferred from either thematic spatial data (i.e. vegetation, soils, geology, elevation, aspect, terrain, etc.) together with point locations and described habitat; or modelled (MAXENT or BIOCLIM habitat modelling) using

Where little information is available for a species or large number of maps are required in a short time-frame, maps are derived either from 0.04 or 0.02 decimal degree cells; by an automated process using polygon capture techniques (static two kilometre grid cells, alpha-hull and convex hull); or captured manually or by using topographic features (national park boundaries, islands, etc.).

In the early stages of the distribution mapping process (1999-early 2000s) distributions were defined by degree blocks, 100K or 250K map sheets to rapidly create distribution maps. More detailed distribution mapping methods are used to update these distributions

4 LIMITATIONS

The following species and ecological communities have not been mapped and do not appear in this report:

- threatened species listed as extinct or considered vagrants;
- · some recently listed species and ecological communities;
- · some listed migratory and listed marine species, which are not listed as threatened species; and
- migratory species that are very widespread, vagrant, or only occur in Australia in small numbers.

The following groups have been mapped, but may not cover the complete distribution of the species:

- listed migratory and/or listed marine seabirds, which are not listed as threatened, have only been mapped for recorded
- seals which have only been mapped for breeding sites near the Australian continent

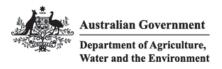
The breeding sites may be important for the protection of the Commonwealth Marine environment.

Refer to the metadata for the feature group (using the Resource Information link) for the currency of the information.

Acknowledgements

This database has been compiled from a range of data sources. The department acknowledges the following custodians who have contributed valuable data and advice:

-Office of Environment and Heritage, New South Wales -Department of Environment and Primary Industries, Victoria -Department of Primary Industries, Parks, Water and Environment, Tasmania -Department of Environment, Water and Natural Resources, South Australia -Department of Land and Resource Management, Northern Territory -Department of Environmental and Heritage Protection, Queensland -Department of Parks and Wildlife, Western Australia -Environment and Planning Directorate, ACT -Birdlife Australia -Australian Bird and Bat Banding Scheme -Australian National Wildlife Collection -Natural history museums of Australia -Museum Victoria -Australian Museum -South Australian Museum -Queensland Museum -Online Zoological Collections of Australian Museums -Queensland Herbarium -National Herbarium of NSW -Royal Botanic Gardens and National Herbarium of Victoria -Tasmanian Herbarium -State Herbarium of South Australia -Northern Territory Herbarium -Western Australian Herbarium -Australian National Herbarium, Canberra -University of New England -Ocean Biogeographic Information System -Australian Government, Department of Defence Forestry Corporation, NSW -Geoscience Australia -CSIRO -Australian Tropical Herbarium, Cairns -eBird Australia -Australian Government – Australian Antarctic Data Centre -Museum and Art Gallery of the Northern Territory -Australian Government National Environmental Science Program -Australian Institute of Marine Science -Reef Life Survey Australia -American Museum of Natural History -Queen Victoria Museum and Art Gallery, Inveresk, Tasmania -Tasmanian Museum and Art Gallery, Hobart, Tasmania -Other groups and individuals


The Department is extremely grateful to the many organisations and individuals who provided expert advice and information on numerous draft distributions.

© Commonwealth of Australia

Department of Agriculture Water and the Environment GPO Box 858 Canberra City ACT 2601 Australia +61 2 6274 1111

S4121AF728393

Spill EMBA – Socio-economic

EPBC Act Protected Matters Report

This report provides general guidance on matters of national environmental significance and other matters protected by the EPBC Act in the area you have selected. Please see the caveat for interpretation of information provided here.

Report created: 05-Aug-2022

Summary Details Matters of NES Other Matters Protected by the EPBC Act Extra Information Caveat Acknowledgements

Summary

Matters of National Environment Significance

This part of the report summarises the matters of national environmental significance that may occur in, or may relate to, the area you nominated. Further information is available in the detail part of the report, which can be accessed by scrolling or following the links below. If you are proposing to undertake an activity that may have a significant impact on one or more matters of national environmental significance then you should consider the <u>Administrative Guidelines on Significance</u>.

World Heritage Properties:	None
National Heritage Places:	3
Wetlands of International Importance (Ramsar	3
Great Barrier Reef Marine Park:	None
Commonwealth Marine Area:	1
Listed Threatened Ecological Communities:	9
Listed Threatened Species:	119
Listed Migratory Species:	71

Other Matters Protected by the EPBC Act

This part of the report summarises other matters protected under the Act that may relate to the area you nominated. Approval may be required for a proposed activity that significantly affects the environment on Commonwealth land, when the action is outside the Commonwealth land, or the environment anywhere when the action is taken on Commonwealth land. Approval may also be required for the Commonwealth or Commonwealth agencies proposing to take an action that is likely to have a significant impact on the

The EPBC Act protects the environment on Commonwealth land, the environment from the actions taken on Commonwealth land, and the environment from actions taken by Commonwealth agencies. As heritage values of a place are part of the 'environment', these aspects of the EPBC Act protect the Commonwealth Heritage values of a Commonwealth Heritage place. Information on the new heritage laws can be found at http://www.environment.gov.au/heritage

A <u>permit</u> may be required for activities in or on a Commonwealth area that may affect a member of a listed threatened species or ecological community, a member of a listed migratory species, whales and other cetaceans, or a member of a listed marine species.

Commonwealth Lands:	13
Commonwealth Heritage Places:	2
Listed Marine Species:	116
Whales and Other Cetaceans:	29
Critical Habitats:	None
Commonwealth Reserves Terrestrial:	None
Australian Marine Parks:	6
Habitat Critical to the Survival of Marine Turtles:	None

Extra Information

This part of the report provides information that may also be relevant to the area you have

State and Territory Reserves:	94
Regional Forest Agreements:	3
Nationally Important Wetlands:	12
EPBC Act Referrals:	142
Key Ecological Features (Marine):	1
Biologically Important Areas:	33
Bioregional Assessments:	1
Geological and Bioregional Assessments:	None

Details

Matters of National Environmental Significance

National Heritage Places		[Resource Information]
Name	State	Legal Status
Historic		
Great Ocean Road and Scenic Environs	VIC	Listed place
Point Nepean Defence Sites and Quarantine Station Area	VIC	Listed place
Quarantine Station and Surrounds	VIC	Within listed place

Wetlands of International Importance (Ramsar Wetlands)	[Resource Information]
Ramsar Site Name	Proximity
Lavinia	Within Ramsar site
Port phillip bay (western shoreline) and bellarine peninsula	Within Ramsar site
Western port	Within 10km of Ramsar site

Commonwealth Marine Area

Approval is required for a proposed activity that is located within the Commonwealth Marine Area which has, will have, or is likely to have a significant impact on the environment. Approval may be required for a proposed action taken outside a Commonwealth Marine Area but which has, may have or is likely to have a significant impact on the environ taken outside in the Commonwealth Marine Area but which has, may have or is likely to have a significant impact on the environ taken outside a Commonwealth Marine Area but which has, may have or is likely to have a significant impact on the environment.

Feature Name

EEZ and Territorial Sea

Listed Threatened Ecological Communities

For threatened ecological communities where the distribution is well known, maps are derived from recovery plans, State vegetation maps, remote sensing imagery and other sources. Where threatened ecological community distributions are less well known, existing vegetation maps and point location data are used to produce indicative distribution maps.

Status of Vulnerable, Disallowed and Ineligible are not MNES under the EPBC Act.

Community Name	Threatened Category	Presence Text
Assemblages of species associated with open-coast salt-wedge estuaries of western and central Victoria ecological community	Endangered	Community likely to occur within area
<u>Giant Kelp Marine Forests of South East</u> <u>Australia</u>	Endangered	Community may occur within area
<u>Grassy Eucalypt Woodland of the</u> <u>Victorian Volcanic Plain</u>	Critically Endangered	Community may occur within area

[Resource Information]

[Resource Information]

Community Name	Threatened Category	Presence Text
Natural Damp Grassland of the Victorian Coastal Plains	Critically Endangered	Community likely to occur within area
<u>Natural Temperate Grassland of the</u> <u>Victorian Volcanic Plain</u>	Critically Endangered	Community likely to occur within area
Subtropical and Temperate Coastal Saltmarsh	Vulnerable	Community likely to occur within area
<u>Tasmanian Forests and Woodlands</u> <u>dominated by black gum or Brookers</u> gum (Eucalyptus ovata / E. brookeriana)	Critically Endangered	Community likely to occur within area
<u>Tasmanian white gum (Eucalyptus</u> <u>viminalis) wet forest</u>	Critically Endangered	Community may occur within area
<u>White Box-Yellow Box-Blakely's Red</u> <u>Gum Grassy Woodland and Derived</u> <u>Native Grassland</u>	Critically Endangered	Community likely to occur within area

Listed Threatened Species		[Resource Information]
Status of Conservation Dependent and E Number is the current name ID.	xtinct are not MNES unde	er the EPBC Act.
Scientific Name	Threatened Category	Presence Text
BIRD	0,	
Acanthiza pusilla magnirostris listed as A	<u>canthiza pusilla archibaldi</u>	
King Island Brown Thornbill, Brown Thornbill (King Island) [91709]	Endangered	Species or species habitat known to occur within area
<u>Acanthornis magna greeniana</u> King Island Scrubtit, Scrubtit (King Island) [82329]	Critically Endangered	Species or species habitat known to occur within area
<u>Anthochaera phrygia</u> Regent Honeyeater [82338]	Critically Endangered	Foraging, feeding or related behaviour likely to occur within area
<u>Aquila audax fleayi</u> Tasmanian Wedge-tailed Eagle, Wedge- tailed Eagle (Tasmanian) [64435]	Endangered	Species or species habitat likely to occur within area
<u>Botaurus poiciloptilus</u> Australasian Bittern [1001]	Endangered	Species or species habitat known to occur within area
<u>Calidris canutus</u> Red Knot, Knot [855]	Endangered	Species or species habitat known to occur within area

Scientific Name	Threatened Category	Presence Text
<u>Calidris ferruginea</u> Curlew Sandpiper [856]	Critically Endangered	Species or species habitat known to occur within area
<u>Calidris tenuirostris</u> Great Knot [862]	Critically Endangered	Roosting known to occur within area
<u>Callocephalon fimbriatum</u> Gang-gang Cockatoo [768]	Endangered	Species or species habitat known to occur within area
<u>Ceyx azureus diemenensis</u> Tasmanian Azure Kingfisher [25977]	Endangered	Species or species habitat known to occur within area
<u>Charadrius leschenaultii</u> Greater Sand Plover, Large Sand Plover [877]	Vulnerable	Species or species habitat likely to occur within area
<u>Charadrius mongolus</u> Lesser Sand Plover, Mongolian Plover [879]	Endangered	Roosting known to occur within area
<u>Diomedea antipodensis</u> Antipodean Albatross [64458]	Vulnerable	Foraging, feeding or related behaviour likely to occur within area
<u>Diomedea antipodensis gibsoni</u> Gibson's Albatross [82270]	Vulnerable	Foraging, feeding or related behaviour likely to occur within area
<u>Diomedea epomophora</u> Southern Royal Albatross [89221]	Vulnerable	Foraging, feeding or related behaviour likely to occur within area
<u>Diomedea exulans</u> Wandering Albatross [89223]	Vulnerable	Foraging, feeding or related behaviour likely to occur within area
<u>Diomedea sanfordi</u> Northern Royal Albatross [64456]	Endangered	Foraging, feeding or related behaviour likely to occur within area

Scientific Name	Threatened Category	Presence Text
<u>Falco hypoleucos</u> Grey Falcon [929]	Vulnerable	Species or species habitat likely to occur within area
<u>Fregetta grallaria grallaria</u> White-bellied Storm-Petrel (Tasman Sea), White-bellied Storm-Petrel (Australasian) [64438]	Vulnerable	Species or species habitat likely to occur within area
<u>Grantiella picta</u> Painted Honeyeater [470]	Vulnerable	Species or species habitat known to occur within area
<u>Halobaena caerulea</u> Blue Petrel [1059]	Vulnerable	Species or species habitat may occur within area
<u>Hirundapus caudacutus</u> White-throated Needletail [682]	Vulnerable	Species or species habitat known to occur within area
<u>Lathamus discolor</u> Swift Parrot [744]	Critically Endangered	Species or species habitat known to occur within area
<u>Limosa lapponica baueri</u> Nunivak Bar-tailed Godwit, Western Alaskan Bar-tailed Godwit [86380]	Vulnerable	Species or species habitat known to occur within area
<u>Macronectes giganteus</u> Southern Giant-Petrel, Southern Giant Petrel [1060]	Endangered	Foraging, feeding or related behaviour likely to occur within area
<u>Macronectes halli</u> Northern Giant Petrel [1061]	Vulnerable	Foraging, feeding or related behaviour likely to occur within area
<u>Neophema chrysogaster</u> Orange-bellied Parrot [747]	Critically Endangered	Migration route known to occur within area
<u>Numenius madagascariensis</u> Eastern Curlew, Far Eastern Curlew [847]	Critically Endangered	Species or species habitat known to occur within area

Scientific Name	Threatened Category	Presence Text
Pachyptila turtur subantarctica Fairy Prion (southern) [64445]	Vulnerable	Species or species habitat known to occur within area
Pedionomus torquatus Plains-wanderer [906]	Critically Endangered	Species or species habitat likely to occur within area
<u>Phoebetria fusca</u> Sooty Albatross [1075]	Vulnerable	Species or species habitat likely to occur within area
Platycercus caledonicus brownii Green Rosella (King Island) [67041]	Vulnerable	Species or species habitat known to occur within area
<u>Pterodroma leucoptera leucoptera</u> Gould's Petrel, Australian Gould's Petrel [26033]	Endangered	Species or species habitat may occur within area
<u>Pterodroma mollis</u> Soft-plumaged Petrel [1036]	Vulnerable	Species or species habitat may occur within area
Pycnoptilus floccosus Pilotbird [525]	Vulnerable	Species or species habitat may occur within area
<u>Rostratula australis</u> Australian Painted Snipe [77037]	Endangered	Species or species habitat known to occur within area
<u>Sternula nereis nereis</u> Australian Fairy Tern [82950]	Vulnerable	Species or species habitat known to occur within area
<u>Strepera fuliginosa colei</u> Black Currawong (King Island) [67113]	Vulnerable	Breeding likely to occur within area
<u>Thalassarche bulleri</u> Buller's Albatross, Pacific Albatross [64460]	Vulnerable	Foraging, feeding or related behaviour likely to occur within area

Thalassarche bulleri jaladi Albatross [82273]VulnerableForaging, feeding or related behaviour likely to occur within areaThalassarche carteri Indian Yellow-nosed Albatross [64464]VulnerableSpecies or species habitat likely to occur within areaThalassarche cauta Shy Albatross [83224]EndangeredForaging, feeding or related behaviour likely to occur within areaThalassarche cauta Shy Albatross [83224]EndangeredForaging, feeding or related behaviour likely to occur within areaThalassarche cauta Shy Albatross [66491]EndangeredSpecies or species habitat inkely to occur within areaThalassarche impavida Campbell Albatross [66491]EndangeredSpecies or species habitat may occur within areaThalassarche impavida Campbell Albatross [64459]VulnerableForaging, feeding or related behaviour likely to occur within areaThalassarche melanophris Black-browed Albatross [6442]VulnerableForaging, feeding or related behaviour likely to occur within areaThalassarche salvini Salvin's Albatross [64463]VulnerableForaging, feeding or related behaviour likely to occur within areaThalassarche steadi White-capped Albatross [64462]VulnerableForaging, feeding or related behaviour likely to occur within areaThalassarche steadi White-capped Albatross [64462]VulnerableForaging, feeding or related behaviour likely to occur within areaThalassarche steadi White-capped Albatross [64462]VulnerableForaging, feeding or related behaviour likely to occur within 	Scientific Name	Threatened Category	Presence Text
Indian Yellow-nosed Albatross [64464]VulnerableSpecies or species habitat likely to occur within areaThalassarche cauta Shy Albatross [89224]EndangeredForaging, feeding or related behaviour likely to occur within areaThalassarche chrysostoma Grey-headed Albatross [66491]EndangeredSpecies or species habitat may occur within areaThalassarche impavida Campbell Albatross, Campbell Black- browed Albatross [64459]VulnerableForaging, feeding or related behaviour ilkely to occur within areaThalassarche melanophris Black-browed Albatross [66472]VulnerableForaging, feeding or related behaviour likely to occur within areaThalassarche salvini Salvin's Albatross [64463]VulnerableForaging, feeding or related behaviour likely to occur within areaThalassarche salvini Salvin's Albatross [64462]VulnerableForaging, feeding or related behaviour likely to occur within areaThalassarche steadi White-capped Albatross [64462]VulnerableForaging, feeding or related behaviour likely to occur within areaThalassarche steadi White-capped Albatross [64462]VulnerableForaging, feeding or related behaviour likely to occur within areaThalassarche steadi White-capped Albatross [64462]VulnerableForaging, feeding or related behaviour likely to occur within areaThalassarche steadi White-capped Albatross [64462]VulnerableForaging, feeding or related behaviour likely to occur within areaThalassarche steadi Wonte-capped Albatross [64462]VulnerableForaging, feedin	Northern Buller's Albatross, Pacific	Vulnerable	related behaviour likely to occur within
Shy Albatross [89224]EndangeredForaging, feeding or related behaviour likely to occur within areaThalassarche chrysostoma 		Vulnerable	habitat likely to occur
Grey-headed Albatross [66491]EndangeredSpecies or species habitat may occur within areaThalassarche impavida Campbell Albatross, Campbell Black- browed Albatross [64459]VulnerableForaging, feeding or related behaviour likely to occur within areaThalassarche melanophris Black-browed Albatross [66472]VulnerableForaging, feeding or related behaviour likely to occur within areaThalassarche salvini Salvin's Albatross [64463]VulnerableForaging, feeding or related behaviour likely to occur within areaThalassarche steadi White-capped Albatross [64462]VulnerableForaging, feeding or related behaviour likely to occur within areaThalassarche steadi White-capped Albatross [64462]VulnerableForaging, feeding or related behaviour kikely to occur within areaThinomis cucultatus cucultatus Eastern Hooded Plover, Eastern Hooded Vulnerable Plover [90381]Species or species habitat known to occur within areaTyto novaehollandiae castanops (Tasmanian population) Masked Owl (Tasmanian) [67051]VulnerableBreeding known to occur within area		Endangered	related behaviour likely to occur within
Campbell Albatross, Campbell Black- browed Albatross [64459]VulnerableForaging, feeding or related behaviour likely to occur within 	-	Endangered	habitat may occur
Black-browed Albatross [66472]VulnerableForaging, feeding or related behaviour likely to occur within areaThalassarche salvini Salvin's Albatross [64463]VulnerableForaging, feeding or related behaviour likely to occur within areaThalassarche steadi White-capped Albatross [64462]VulnerableForaging, feeding or related behaviour likely to occur within areaThalassarche steadi White-capped Albatross [64462]VulnerableForaging, feeding or related behaviour known to occur within areaThinomis cucultatus cucultatus Eastern Hooded Plover, Eastern Hooded Vulnerable Plover [90381]Species or species habitat known to occur within areaTyto novaehollandiae castanops (Tasmanian population) Masked Owl (Tasmanian) [67051]VulnerableBreeding known to occur within area	Campbell Albatross, Campbell Black-	Vulnerable	related behaviour likely to occur within
Salvin's Albatross [64463]VulnerableForaging, feeding or related behaviour likely to occur within areaThalassarche steadi 	-	Vulnerable	related behaviour likely to occur within
White-capped Albatross [64462]VulnerableForaging, feeding or related behaviour known to occur within areaThinornis cucullatus cucullatus 		Vulnerable	related behaviour likely to occur within
Eastern Hooded Plover, Eastern Hooded Vulnerable Plover [90381]Species or species habitat known to occur within areaTyto novaehollandiae castanops (Tasmanian population) 		Vulnerable	related behaviour known to occur within
Masked Owl (Tasmanian) [67051] Vulnerable Breeding known to occur within area	Eastern Hooded Plover, Eastern Hooded	Vulnerable	habitat known to
CRUSTACEAN			
	CRUSTACEAN		

Scientific Name	Threatened Category	Presence Text
<u>Astacopsis gouldi</u> Giant Freshwater Crayfish, Tasmanian Giant Freshwater Lobster [64415]	Vulnerable	Species or species habitat may occur within area
FISH		
<u>Galaxiella pusilla</u> Eastern Dwarf Galaxias, Dwarf Galaxias [56790]	Vulnerable	Species or species habitat likely to occur within area
<u>Hoplostethus atlanticus</u> Orange Roughy, Deep-sea Perch, Red Roughy [68455]	Conservation Dependent	Species or species habitat likely to occur within area
<u>Nannoperca obscura</u> Yarra Pygmy Perch [26177]	Vulnerable	Species or species habitat known to occur within area
Prototroctes maraena Australian Grayling [26179]	Vulnerable	Species or species habitat known to occur within area
<u>Rexea solandri (eastern Australian popul</u> Eastern Gemfish [76339]	l <u>ation)</u> Conservation Dependent	Species or species habitat likely to occur within area
<u>Seriolella brama</u> Blue Warehou [69374]	Conservation Dependent	Species or species habitat known to occur within area
<u>Thunnus maccoyii</u> Southern Bluefin Tuna [69402]	Conservation Dependent	Species or species habitat likely to occur within area
FROG <u>Litoria raniformis</u> Growling Grass Frog, Southern Bell Frog, Green and Golden Frog, Warty Swamp Frog, Golden Bell Frog [1828]	Vulnerable	Species or species habitat known to occur within area
<u>Oreisplanus munionga larana</u> Marrawah Skipper, Alpine Sedge Skipper, Alpine Skipper [77747]	Vulnerable	Species or species habitat may occur within area
<u>Synemon plana</u> Golden Sun Moth [25234]	Vulnerable	Species or species habitat may occur within area

Scientific Name	Threatened Category	Presence Text
MAMMAL		
<u>Antechinus minimus maritimus</u> Swamp Antechinus (mainland) [83086]	Vulnerable	Species or species habitat known to occur within area
<u>Balaenoptera borealis</u> Sei Whale [34]	Vulnerable	Foraging, feeding or related behaviour likely to occur within area
Balaenoptera musculus Blue Whale [36]	Endangered	Foraging, feeding or related behaviour known to occur within area
<u>Balaenoptera physalus</u> Fin Whale [37]	Vulnerable	Foraging, feeding or related behaviour likely to occur within area
Dasyurus maculatus maculatus (SE main Spot-tailed Quoll, Spotted-tail Quoll, Tiger Quoll (southeastern mainland population) [75184]	<u>nland population)</u> Endangered	Species or species habitat known to occur within area
Dasyurus maculatus maculatus (Tasmar Spotted-tail Quoll, Spot-tailed Quoll, Tiger Quoll (Tasmanian population) [75183]	<u>nian population)</u> Vulnerable	Species or species habitat known to occur within area
<u>Eubalaena australis</u> Southern Right Whale [40]	Endangered	Breeding known to occur within area
<u>Isoodon obesulus obesulus</u> Southern Brown Bandicoot (eastern), Southern Brown Bandicoot (south- eastern) [68050]	Endangered	Species or species habitat known to occur within area
<u>Mastacomys fuscus mordicus</u> Broad-toothed Rat (mainland), Tooarrana [87617]	Vulnerable	Species or species habitat known to occur within area
<u>Miniopterus orianae bassanii</u> Southern Bent-wing Bat [87645]	Critically Endangered	Roosting known to occur within area
<u>Neophoca cinerea</u> Australian Sea-lion, Australian Sea Lion [22]	Endangered	Species or species habitat known to occur within area

Scientific Name	Threatened Category	Presence Text
<u>Perameles gunnii gunnii</u>		
Eastern Barred Bandicoot (Tasmania) [66651]	Vulnerable	Species or species habitat likely to occur within area
<u>Petauroides volans</u> Greater Glider (southern and central) [254]	Endangered	Species or species habitat may occur within area
<u>Petaurus australis australis</u> Yellow-bellied Glider (south-eastern) [87600]	Vulnerable	Species or species habitat known to occur within area
Potorous tridactylus trisulcatus Long-nosed Potoroo (southern mainland) [86367]	Vulnerable	Species or species habitat known to occur within area
<u>Pseudomys fumeus</u> Smoky Mouse, Konoom [88]	Endangered	Species or species habitat may occur within area
<u>Pseudomys novaehollandiae</u> New Holland Mouse, Pookila [96]	Vulnerable	Species or species habitat known to occur within area
Pteropus poliocephalus Grey-headed Flying-fox [186]	Vulnerable	Roosting known to occur within area
<u>Sarcophilus harrisii</u> Tasmanian Devil [299]	Endangered	Species or species habitat likely to occur within area
PLANT		
Amphibromus fluitans		
River Swamp Wallaby-grass, Floating Swamp Wallaby-grass [19215]	Vulnerable	Species or species habitat likely to occur within area
<u>Astelia australiana</u> Tall Astelia [10851]	Vulnerable	Species or species habitat may occur within area
<u>Caladenia dienema</u> Windswept Spider-orchid [64858]	Endangered	Species or species habitat likely to occur within area

Scientific Name	Threatened Category	Presence Text
<u>Caladenia orientalis</u> Eastern Spider Orchid [83410]	Endangered	Species or species habitat known to occur within area
<u>Caladenia robinsonii</u> Frankston Spider-orchid [24375]	Endangered	Species or species habitat likely to occur within area
<u>Caladenia tessellata</u> Thick-lipped Spider-orchid, Daddy Long- legs [2119]	Vulnerable	Species or species habitat likely to occur within area
<u>Corunastylis brachystachya</u> Short-spiked Midge-orchid [76410]	Endangered	Species or species habitat may occur within area
<u>Dianella amoena</u> Matted Flax-lily [64886]	Endangered	Species or species habitat may occur within area
<u>Dodonaea procumbens</u> Trailing Hop-bush [12149]	Vulnerable	Species or species habitat may occur within area
<u>Eucalyptus strzeleckii</u> Strzelecki Gum [55400]	Vulnerable	Species or species habitat known to occur within area
Euphrasia collina subsp. muelleri Purple Eyebright, Mueller's Eyebright [16151]	Endangered	Species or species habitat known to occur within area
<u>Glycine latrobeana</u> Clover Glycine, Purple Clover [13910]	Vulnerable	Species or species habitat known to occur within area
<u>Grevillea infecunda</u> Anglesea Grevillea [22026]	Vulnerable	Species or species habitat known to occur within area
<u>Haloragis exalata subsp. exalata</u> Wingless Raspwort, Square Raspwort [24636]	Vulnerable	Species or species habitat known to occur within area

Scientific Name	Threatened Category	Presence Text
<u>Hiya distans listed as Hypolepis distans</u> Scrambling Ground-fern [92548]	Endangered	Species or species habitat known to occur within area
<u>Lachnagrostis adamsonii</u> Adamson's Blown-grass, Adamson's Blowngrass [76211]	Endangered	Species or species habitat may occur within area
<u>Leiocarpa gatesii</u> Wrinkled Buttons [76212]	Vulnerable	Species or species habitat likely to occur within area
<u>Lepidium aschersonii</u> Spiny Pepper-cress [10976]	Vulnerable	Species or species habitat likely to occur within area
<u>Lepidium hyssopifolium</u> Basalt Pepper-cress, Peppercress, Rubble Pepper-cress, Pepperweed [16542]	Endangered	Species or species habitat may occur within area
Pimelea spinescens subsp. spinescens Plains Rice-flower, Spiny Rice-flower, Prickly Pimelea [21980]	Critically Endangered	Species or species habitat likely to occur within area
Prasophyllum favonium Western Leek-orchid [64949]	Critically Endangered	Species or species habitat likely to occur within area
Prasophyllum pulchellum Pretty Leek-orchid [64953]	Critically Endangered	Species or species habitat may occur within area
Prasophyllum secutum Northern Leek-orchid [64954]	Endangered	Species or species habitat likely to occur within area
Prasophyllum spicatum Dense Leek-orchid [55146]	Vulnerable	Species or species habitat known to occur within area
Pterostylis chlorogramma Green-striped Greenhood [56510]	Vulnerable	Species or species habitat known to occur within area

Scientific Name	Threatened Category	Presence Text
<u>Pterostylis cucullata</u>		
Leafy Greenhood [15459]	Vulnerable	Species or species habitat known to occur within area
<u>Pterostylis tenuissima</u> Swamp Greenhood, Dainty Swamp Orchid [13139]	Vulnerable	Species or species habitat known to occur within area
<u>Pterostylis ziegeleri</u> Grassland Greenhood, Cape Portland Greenhood [64971]	Vulnerable	Species or species habitat likely to occur within area
<u>Senecio macrocarpus</u> Large-fruit Fireweed, Large-fruit Groundsel [16333]	Vulnerable	Species or species habitat likely to occur within area
<u>Senecio psilocarpus</u> Swamp Fireweed, Smooth-fruited Groundsel [64976]	Vulnerable	Species or species habitat known to occur within area
<u>Thelymitra epipactoides</u> Metallic Sun-orchid [11896]	Endangered	Species or species habitat known to occur within area
<u>Thelymitra matthewsii</u> Spiral Sun-orchid [4168]	Vulnerable	Species or species habitat known to occur within area
<u>Xerochrysum palustre</u> Swamp Everlasting, Swamp Paper Daisy [76215]	Vulnerable	Species or species habitat likely to occur within area
REPTILE		
<u>Caretta caretta</u> Loggerhead Turtle [1763]	Endangered	Foraging, feeding or related behaviour known to occur within area
<u>Chelonia mydas</u> Green Turtle [1765]	Vulnerable	Species or species habitat may occur within area
<u>Delma impar</u> Striped Legless Lizard, Striped Snake- lizard [1649]	Vulnerable	Species or species habitat may occur within area

Scientific Name	Threatened Category	Presence Text
<u>Dermochelys coriacea</u> Leatherback Turtle, Leathery Turtle, Luth [1768]	Endangered	Foraging, feeding or related behaviour known to occur within area
SHARK		
Carcharodon carcharias		
White Shark, Great White Shark [64470]	Vulnerable	Foraging, feeding or related behaviour known to occur within area
Centrophorus zeehaani		
Southern Dogfish, Endeavour Dogfish, Little Gulper Shark [82679]	Conservation Dependent	Species or species habitat likely to occur within area
<u>Galeorhinus galeus</u> School Shark, Eastern School Shark, Snapper Shark, Tope, Soupfin Shark [68453]	Conservation Dependent	Species or species habitat likely to occur within area
Listed Migratory Species		[Resource Information]
Scientific Name	Threatened Category	Presence Text
Migratory Marine Birds		
<u>Anous stolidus</u> Common Noddy [825]		Species or species habitat likely to occur within area
Apus pacificus		
Fork-tailed Swift [678]		Species or species habitat likely to occur within area
<u>Ardenna carneipes</u>		
Flesh-footed Shearwater, Fleshy-footed Shearwater [82404]		Foraging, feeding or related behaviour likely to occur within area
<u>Ardenna grisea</u>		
Sooty Shearwater [82651]		Species or species habitat may occur within area
Ardenna tenuirostris		
Short-tailed Shearwater [82652]		Breeding known to occur within area
Diomedea antipodensis		
Antipodean Albatross [64458]	Vulnerable	Foraging, feeding or related behaviour

likely to occur within

area

Scientific Name	Threatened Category	Presence Text
<u>Diomedea epomophora</u> Southern Royal Albatross [89221]	Vulnerable	Foraging, feeding or related behaviour likely to occur within area
<u>Diomedea exulans</u> Wandering Albatross [89223]	Vulnerable	Foraging, feeding or related behaviour likely to occur within area
<u>Diomedea sanfordi</u> Northern Royal Albatross [64456]	Endangered	Foraging, feeding or related behaviour likely to occur within area
<u>Macronectes giganteus</u> Southern Giant-Petrel, Southern Giant Petrel [1060]	Endangered	Foraging, feeding or related behaviour likely to occur within area
<u>Macronectes halli</u> Northern Giant Petrel [1061]	Vulnerable	Foraging, feeding or related behaviour likely to occur within area
<u>Phoebetria fusca</u> Sooty Albatross [1075]	Vulnerable	Species or species habitat likely to occur within area
<u>Sternula albifrons</u> Little Tern [82849]		Species or species habitat may occur within area
<u>Thalassarche bulleri</u> Buller's Albatross, Pacific Albatross [64460]	Vulnerable	Foraging, feeding or related behaviour likely to occur within area
<u>Thalassarche carteri</u> Indian Yellow-nosed Albatross [64464]	Vulnerable	Species or species habitat likely to occur within area
<u>Thalassarche cauta</u> Shy Albatross [89224]	Endangered	Foraging, feeding or related behaviour likely to occur within area

Scientific Name	Threatened Category	Presence Text
<u>Thalassarche chrysostoma</u> Grey-headed Albatross [66491]	Endangered	Species or species habitat may occur within area
<u>Thalassarche impavida</u> Campbell Albatross, Campbell Black- browed Albatross [64459]	Vulnerable	Foraging, feeding or related behaviour likely to occur within area
<u>Thalassarche melanophris</u> Black-browed Albatross [66472]	Vulnerable	Foraging, feeding or related behaviour likely to occur within area
<u>Thalassarche salvini</u> Salvin's Albatross [64463]	Vulnerable	Foraging, feeding or related behaviour likely to occur within area
<u>Thalassarche steadi</u> White-capped Albatross [64462]	Vulnerable	Foraging, feeding or related behaviour known to occur within area
Migratory Marine Species		
<u>Balaenoptera bonaerensis</u> Antarctic Minke Whale, Dark-shoulder Minke Whale [67812]		Species or species habitat likely to occur within area
Balaenoptera borealis Sei Whale [34]	Vulnerable	Foraging, feeding or related behaviour likely to occur within area
Balaenoptera musculus Blue Whale [36]	Endangered	Foraging, feeding or related behaviour known to occur within area
<u>Balaenoptera physalus</u> Fin Whale [37]	Vulnerable	Foraging, feeding or related behaviour likely to occur within area

Scientific Name	Threatened Category	Presence Text
<u>Caperea marginata</u> Pygmy Right Whale [39]		Foraging, feeding or related behaviour may occur within area
<u>Carcharodon carcharias</u> White Shark, Great White Shark [64470]	Vulnerable	Foraging, feeding or related behaviour known to occur within area
<u>Caretta caretta</u> Loggerhead Turtle [1763]	Endangered	Foraging, feeding or related behaviour known to occur within area
<u>Chelonia mydas</u> Green Turtle [1765]	Vulnerable	Species or species habitat may occur within area
<u>Dermochelys coriacea</u> Leatherback Turtle, Leathery Turtle, Luth [1768]	Endangered	Foraging, feeding or related behaviour known to occur within area
<u>Eubalaena australis as Balaena glacialis</u> Southern Right Whale [40]	<u>australis</u> Endangered	Breeding known to occur within area
<u>Isurus oxyrinchus</u> Shortfin Mako, Mako Shark [79073]		Species or species habitat likely to occur within area
<u>Lagenorhynchus obscurus</u> Dusky Dolphin [43]		Species or species habitat likely to occur within area
<u>Lamna nasus</u> Porbeagle, Mackerel Shark [83288]		Species or species habitat likely to occur within area
<u>Megaptera novaeangliae</u> Humpback Whale [38]		Species or species habitat known to occur within area
<u>Orcinus orca</u> Killer Whale, Orca [46]		Species or species habitat likely to occur within area

within area

Scientific Name	Threatened Category	Presence Text
<u>Physeter macrocephalus</u> Sperm Whale [59]		Species or species habitat may occur within area
Migratory Terrestrial Species		
<u>Hirundapus caudacutus</u> White-throated Needletail [682]	Vulnerable	Species or species habitat known to occur within area
<u>Monarcha melanopsis</u> Black-faced Monarch [609]		Species or species habitat known to occur within area
<u>Motacilla flava</u> Yellow Wagtail [644]		Species or species habitat likely to occur within area
<u>Myiagra cyanoleuca</u> Satin Flycatcher [612]		Breeding known to occur within area
<u>Rhipidura rufifrons</u> Rufous Fantail [592]		Species or species habitat known to occur within area
Migratory Wetlands Species		
<u>Actitis hypoleucos</u> Common Sandpiper [59309]		Species or species habitat known to occur within area
<u>Arenaria interpres</u> Ruddy Turnstone [872]		Roosting known to occur within area
Calidris acuminata Sharp-tailed Sandpiper [874]		Roosting known to occur within area
<u>Calidris alba</u> Sanderling [875]		Roosting known to occur within area
<u>Calidris canutus</u> Red Knot, Knot [855]	Endangered	Species or species habitat known to occur within area
<u>Calidris ferruginea</u> Curlew Sandpiper [856]	Critically Endangered	Species or species habitat known to occur within area

Scientific Name	Threatened Category	Presence Text
<u>Calidris melanotos</u> Pectoral Sandpiper [858]		Species or species habitat known to occur within area
<u>Calidris ruficollis</u> Red-necked Stint [860]		Roosting known to occur within area
<u>Calidris tenuirostris</u> Great Knot [862]	Critically Endangered	Roosting known to occur within area
<u>Charadrius bicinctus</u> Double-banded Plover [895]		Roosting known to occur within area
<u>Charadrius leschenaultii</u> Greater Sand Plover, Large Sand Plover [877]	Vulnerable	Species or species habitat likely to occur within area
<u>Charadrius mongolus</u> Lesser Sand Plover, Mongolian Plover [879]	Endangered	Roosting known to occur within area
<u>Gallinago hardwickii</u> Latham's Snipe, Japanese Snipe [863]		Species or species habitat known to occur within area
<u>Gallinago megala</u> Swinhoe's Snipe [864]		Roosting likely to occur within area
<u>Gallinago stenura</u> Pin-tailed Snipe [841]		Roosting likely to occur within area
<u>Limosa Iapponica</u> Bar-tailed Godwit [844]		Species or species habitat known to occur within area
<u>Limosa limosa</u> Black-tailed Godwit [845]		Roosting known to occur within area
<u>Numenius madagascariensis</u> Eastern Curlew, Far Eastern Curlew [847]	Critically Endangered	Species or species habitat known to occur within area
<u>Numenius minutus</u> Little Curlew, Little Whimbrel [848]		Roosting likely to occur within area

Scientific Name <u>Numenius phaeopus</u> Whimbrel [849]

Pandion haliaetus Osprey [952]

Phalaropus lobatus Red-necked Phalarope [838]

<u>Pluvialis fulva</u> Pacific Golden Plover [25545]

<u>Pluvialis squatarola</u> Grey Plover [865]

<u>Thalasseus bergii</u> Greater Crested Tern [83000]

<u>Tringa brevipes</u> Grey-tailed Tattler [851]

<u>Tringa nebularia</u> Common Greenshank, Greenshank [832]

<u>Tringa stagnatilis</u> Marsh Sandpiper, Little Greenshank [833]

<u>Xenus cinereus</u> Terek Sandpiper [59300] Threatened Category Presence Text

Roosting known to occur within area

Species or species habitat known to occur within area

Roosting known to occur within area

Roosting known to occur within area

Roosting known to occur within area

Breeding known to occur within area

Roosting known to occur within area

Species or species habitat known to occur within area

Roosting known to occur within area

Roosting known to occur within area

Other Matters Protected by the EPBC Act

 Commonwealth Lands
 [Resource Information]

 The Commonwealth area listed below may indicate the presence of Commonwealth land in this vicinity. Due to the unreliability of the data source, all proposals should be checked as to whether it impacts on a Commonwealth area, before making a definitive decision. Contact the State or Territory government land department for further information.

Commonwealth Land Name	State
Defence	
Defence - TRAINING CENTRE (Norris Barracks) - Portsea [21025]	VIC

Commonwealth Land Name Defence - WEST HEAD GUNNERY RANGE [21112]	State VIC
Unknown	
Commonwealth Land - [60112]	TAS
Commonwealth Land - [60115]	TAS
Commonwealth Land - [22391]	VIC
Commonwealth Land - [60111]	TAS
Commonwealth Land - [21570]	VIC
Commonwealth Land - [60113]	TAS
Commonwealth Land - [21492]	VIC
Commonwealth Land - [21583]	VIC
Commonwealth Land - [21582]	VIC
Commonwealth Land - [21509]	VIC
Commonwealth Land - [60114]	TAS

Commonwealth Heritage Places			[Resource Information]
Name	State	Status	
Historic			
Cape Wickham Lighthouse	TAS	Listed place	
Sorrento Post Office	VIC	Listed place	

Listed Marine Species		[Resource Information]
Scientific Name	Threatened Category	Presence Text
Bird		
Actitis hypoleucos		
Common Sandpiper [59309]		Species or species habitat known to occur within area
Anous stolidus		
Common Noddy [825]		Species or species habitat likely to occur within area
Anseranas semipalmata		
Magpie Goose [978]		Species or species habitat may occur within area overfly marine area

Scientific Name Apus pacificus Fork-tailed Swift [678]

Ardenna carneipes as Puffinus carneipes

Flesh-footed Shearwater, Fleshy-footed Shearwater [82404]

<u>Ardenna grisea as Puffinus griseus</u> Sooty Shearwater [82651]

Ardenna tenuirostris as Puffinus tenuirostris Short-tailed Shearwater [82652]

<u>Arenaria interpres</u> Ruddy Turnstone [872]

Bubulcus ibis as Ardea ibis Cattle Egret [66521]

Calidris acuminata Sharp-tailed Sandpiper [874]

<u>Calidris alba</u> Sanderling [875]

<u>Calidris canutus</u> Red Knot, Knot [855]

Endangered

Presence Text

Threatened Category

Species or species habitat likely to occur within area overfly marine area

Foraging, feeding or related behaviour likely to occur within area

Species or species habitat may occur within area

Breeding known to occur within area

Roosting known to occur within area

Species or species habitat may occur within area overfly marine area

Roosting known to occur within area

Roosting known to occur within area

Species or species habitat known to occur within area overfly marine area

Critically Endangered Species habitat k occur w

Species or species habitat known to occur within area overfly marine area

Species or species habitat known to occur within area overfly marine area

<u>Calidris ferruginea</u> Curlew Sandpiper [856]

<u>Calidris melanotos</u> Pectoral Sandpiper [858]

Scientific Name	Threatened Category	Presence Text
<u>Calidris ruficollis</u> Red-necked Stint [860]		Roosting known to occur within area overfly marine area
<u>Calidris tenuirostris</u> Great Knot [862]	Critically Endangered	Roosting known to occur within area overfly marine area
Chalcites osculans as Chrysococcyx oscu Black-eared Cuckoo [83425]	<u>ulans</u>	Species or species habitat known to occur within area overfly marine area
<u>Charadrius bicinctus</u> Double-banded Plover [895]		Roosting known to occur within area overfly marine area
<u>Charadrius leschenaultii</u> Greater Sand Plover, Large Sand Plover [877]	Vulnerable	Species or species habitat likely to occur within area
<u>Charadrius mongolus</u> Lesser Sand Plover, Mongolian Plover [879]	Endangered	Roosting known to occur within area
<u>Charadrius ruficapillus</u> Red-capped Plover [881]		Roosting known to occur within area overfly marine area
<u>Chroicocephalus novaehollandiae as Larr</u> Silver Gull [82326]	<u>us novaehollandiae</u>	Breeding known to occur within area
<u>Diomedea antipodensis</u> Antipodean Albatross [64458]	Vulnerable	Foraging, feeding or related behaviour likely to occur within area
<u>Diomedea antipodensis gibsoni as Diome</u> Gibson's Albatross [82270]	edea gibsoni Vulnerable	Foraging, feeding or related behaviour likely to occur within area
<u>Diomedea epomophora</u> Southern Royal Albatross [89221]	Vulnerable	Foraging, feeding or related behaviour likely to occur within area

Scientific Name	Threatened Category	Presence Text
<u>Diomedea exulans</u> Wandering Albatross [89223]	Vulnerable	Foraging, feeding or related behaviour likely to occur within area
<u>Diomedea sanfordi</u> Northern Royal Albatross [64456]	Endangered	Foraging, feeding or related behaviour likely to occur within area
<u>Eudyptula minor</u> Little Penguin [1085]		Breeding known to occur within area
<u>Gallinago hardwickii</u> Latham's Snipe, Japanese Snipe [863]		Species or species habitat known to occur within area overfly marine area
<u>Gallinago megala</u> Swinhoe's Snipe [864]		Roosting likely to occur within area overfly marine area
<u>Gallinago stenura</u> Pin-tailed Snipe [841]		Roosting likely to occur within area overfly marine area
<u>Haliaeetus leucogaster</u> White-bellied Sea-Eagle [943]		Breeding known to occur within area
<u>Halobaena caerulea</u> Blue Petrel [1059]	Vulnerable	Species or species habitat may occur within area
<u>Himantopus himantopus</u> Pied Stilt, Black-winged Stilt [870]		Roosting known to occur within area overfly marine area
<u>Hirundapus caudacutus</u> White-throated Needletail [682]	Vulnerable	Species or species habitat known to occur within area overfly marine area
<u>Larus dominicanus</u> Kelp Gull [809]		Breeding known to occur within area

Scientific Name	Threatened Category	Presence Text
<u>Larus pacificus</u> Pacific Gull [811]		Breeding known to occur within area
<u>Lathamus discolor</u> Swift Parrot [744]	Critically Endangered	Species or species habitat known to occur within area overfly marine area
<u>Limosa lapponica</u> Bar-tailed Godwit [844]		Species or species habitat known to occur within area
<u>Limosa limosa</u> Black-tailed Godwit [845]		Roosting known to occur within area overfly marine area
<u>Macronectes giganteus</u> Southern Giant-Petrel, Southern Giant Petrel [1060]	Endangered	Foraging, feeding or related behaviour likely to occur within area
<u>Macronectes halli</u> Northern Giant Petrel [1061]	Vulnerable	Foraging, feeding or related behaviour likely to occur within area
<u>Merops ornatus</u> Rainbow Bee-eater [670]		Species or species habitat may occur within area overfly marine area
<u>Monarcha melanopsis</u> Black-faced Monarch [609]		Species or species habitat known to occur within area overfly marine area
<u>Motacilla flava</u> Yellow Wagtail [644]		Species or species habitat likely to occur within area overfly marine area
<u>Myiagra cyanoleuca</u> Satin Flycatcher [612]		Breeding known to occur within area overfly marine area

Scientific Name	Threatened Category	Presence Text
<u>Neophema chrysogaster</u> Orange-bellied Parrot [747]	Critically Endangered	Migration route known to occur within area overfly marine area
<u>Neophema chrysostoma</u> Blue-winged Parrot [726]		Species or species habitat known to occur within area overfly marine area
<u>Numenius madagascariensis</u> Eastern Curlew, Far Eastern Curlew [847]	Critically Endangered	Species or species habitat known to occur within area
<u>Numenius minutus</u> Little Curlew, Little Whimbrel [848]		Roosting likely to occur within area overfly marine area
<u>Numenius phaeopus</u> Whimbrel [849]		Roosting known to occur within area
<u>Pachyptila turtur</u> Fairy Prion [1066]		Species or species habitat known to occur within area
<u>Pandion haliaetus</u> Osprey [952]		Species or species habitat known to occur within area
Pelecanoides urinatrix Common Diving-Petrel [1018]		Breeding known to occur within area
Phalacrocorax fuscescens Black-faced Cormorant [59660]		Breeding known to occur within area
<u>Phalaropus lobatus</u> Red-necked Phalarope [838]		Roosting known to occur within area
<u>Phoebetria fusca</u> Sooty Albatross [1075]	Vulnerable	Species or species habitat likely to occur within area
<u>Pluvialis fulva</u> Pacific Golden Plover [25545]		Roosting known to occur within area

	T	
Scientific Name	Threatened Category	Presence Text
<u>Pluvialis squatarola</u> Grey Plover [865]		Roosting known to occur within area overfly marine area
Pterodroma mollis Soft-plumaged Petrel [1036]	Vulnerable	Species or species habitat may occur within area
Recurvirostra novaehollandiae Red-necked Avocet [871]		Roosting known to occur within area overfly marine area
<u>Rhipidura rufifrons</u> Rufous Fantail [592]		Species or species habitat known to occur within area overfly marine area
Rostratula australis as Rostratula bengha Australian Painted Snipe [77037]	<u>alensis (sensu lato)</u> Endangered	Species or species habitat known to occur within area overfly marine area
<u>Stercorarius skua as Catharacta skua</u> Great Skua [823]		Species or species habitat may occur within area
<u>Sternula albifrons as Sterna albifrons</u> Little Tern [82849]		Species or species habitat may occur within area
<u>Thalassarche bulleri</u> Buller's Albatross, Pacific Albatross [64460]	Vulnerable	Foraging, feeding or related behaviour likely to occur within area
<u>Thalassarche bulleri platei as Thalassarc</u> Northern Buller's Albatross, Pacific Albatross [82273]	<u>che sp. nov.</u> Vulnerable	Foraging, feeding or related behaviour likely to occur within area
<u>Thalassarche carteri</u> Indian Yellow-nosed Albatross [64464]	Vulnerable	Species or species habitat likely to occur within area

Scientific Name	Threatened Category	Presence Text
<u>Thalassarche cauta</u> Shy Albatross [89224]	Endangered	Foraging, feeding or related behaviour likely to occur within area
<u>Thalassarche chrysostoma</u> Grey-headed Albatross [66491]	Endangered	Species or species habitat may occur within area
<u>Thalassarche impavida</u> Campbell Albatross, Campbell Black- browed Albatross [64459]	Vulnerable	Foraging, feeding or related behaviour likely to occur within area
<u>Thalassarche melanophris</u> Black-browed Albatross [66472]	Vulnerable	Foraging, feeding or related behaviour likely to occur within area
<u>Thalassarche salvini</u> Salvin's Albatross [64463]	Vulnerable	Foraging, feeding or related behaviour likely to occur within area
<u>Thalassarche steadi</u> White-capped Albatross [64462]	Vulnerable	Foraging, feeding or related behaviour known to occur within area
<u>Thalasseus bergii as Sterna bergii</u> Greater Crested Tern [83000]		Breeding known to occur within area
Thinornis cucullatus as Thinornis rubricollis Hooded Plover, Hooded Dotterel [87735]		Species or species habitat known to occur within area overfly marine area
Thinornis cucullatus cucullatus as Thinornis rubricollis rubricollis Eastern Hooded Plover, Eastern Hooded Vulnerable Plover [90381]		Species or species habitat known to occur within area overfly marine area
<u>Tringa brevipes as Heteroscelus brevipe</u> Grey-tailed Tattler [851]	<u>s</u>	Roosting known to occur within area

Scientific Name

<u>Tringa nebularia</u> Common Greenshank, Greenshank [832]

Tringa stagnatilis

Marsh Sandpiper, Little Greenshank [833]

<u>Xenus cinereus</u>

Terek Sandpiper [59300]

Fish

Heraldia nocturna

Upside-down Pipefish, Eastern Upsidedown Pipefish, Eastern Upside-down Pipefish [66227]

<u>Hippocampus abdominalis</u> Big-belly Seahorse, Eastern Potbelly Seahorse, New Zealand Potbelly Seahorse [66233]

<u>Hippocampus breviceps</u> Short-head Seahorse, Short-snouted Seahorse [66235]

<u>Hippocampus minotaur</u> Bullneck Seahorse [66705]

<u>Histiogamphelus briggsii</u> Crested Pipefish, Briggs' Crested Pipefish, Briggs' Pipefish [66242]

<u>Histiogamphelus cristatus</u> Rhino Pipefish, Macleay's Crested Pipefish, Ring-back Pipefish [66243]

<u>Hypselognathus rostratus</u> Knifesnout Pipefish, Knife-snouted Pipefish [66245]

<u>Kaupus costatus</u> Deepbody Pipefish, Deep-bodied Pipefish [66246]

Threatened Category Presence Text

Species or species habitat known to occur within area overfly marine area

Roosting known to occur within area overfly marine area

Roosting known to occur within area overfly marine area

Species or species habitat may occur within area

Scientific Name

<u>Kimblaeus bassensis</u> Trawl Pipefish, Bass Strait Pipefish [66247]

<u>Leptoichthys fistularius</u> Brushtail Pipefish [66248]

<u>Lissocampus caudalis</u> Australian Smooth Pipefish, Smooth Pipefish [66249]

<u>Lissocampus runa</u> Javelin Pipefish [66251]

<u>Maroubra perserrata</u> Sawtooth Pipefish [66252]

<u>Mitotichthys mollisoni</u> Mollison's Pipefish [66260]

<u>Mitotichthys semistriatus</u> Halfbanded Pipefish [66261]

<u>Mitotichthys tuckeri</u> Tucker's Pipefish [66262]

Notiocampus ruber Red Pipefish [66265]

<u>Phycodurus eques</u> Leafy Seadragon [66267]

Phyllopteryx taeniolatus Common Seadragon, Weedy Seadragon [66268]

Threatened Category

Presence Text

Species or species habitat may occur within area

Scientific Name

Pugnaso curtirostris Pugnose Pipefish, Pug-nosed Pipefish [66269]

Solegnathus robustus

Robust Pipehorse, Robust Spiny Pipehorse [66274]

<u>Solegnathus spinosissimus</u> Spiny Pipehorse, Australian Spiny Pipehorse [66275]

<u>Stigmatopora argus</u> Spotted Pipefish, Gulf Pipefish, Peacock Pipefish [66276]

<u>Stigmatopora nigra</u> Widebody Pipefish, Wide-bodied Pipefish, Black Pipefish [66277]

<u>Stipecampus cristatus</u> Ringback Pipefish, Ring-backed Pipefish [66278]

<u>Urocampus carinirostris</u> Hairy Pipefish [66282]

<u>Vanacampus margaritifer</u> Mother-of-pearl Pipefish [66283]

<u>Vanacampus phillipi</u> Port Phillip Pipefish [66284]

Vanacampus poecilolaemus Longsnout Pipefish, Australian Longsnout Pipefish, Long-snouted Pipefish [66285]

Mammal

<u>Arctocephalus forsteri</u> Long-nosed Fur-seal, New Zealand Furseal [20]

Threatened Category

Presence Text

Species or species habitat may occur within area

<mark>Scientific Name <u>Arctocephalus pusillus</u> Australian Fur-seal, Australo-African Fur-seal [21]</mark>	Threatened Category	Presence Text Breeding known to occur within area
<u>Neophoca cinerea</u> Australian Sea-lion, Australian Sea Lion [22]	Endangered	Species or species habitat known to occur within area
Reptile		
Caretta caretta		
Loggerhead Turtle [1763]	Endangered	Foraging, feeding or related behaviour known to occur within area
<u>Chelonia mydas</u>		
Green Turtle [1765]	Vulnerable	Species or species habitat may occur within area
Dermochelys coriacea		
Leatherback Turtle, Leathery Turtle, Luth [1768]	Endangered	Foraging, feeding or related behaviour known to occur within area

Whales and Other Cetaceans		[Resource Information]
Current Scientific Name	Status	Type of Presence
Mammal		
Balaenoptera acutorostrata		
Minke Whale [33]		Species or species habitat may occur within area
Balaenoptera bonaerensis		
Antarctic Minke Whale, Dark-shoulder Minke Whale [67812]		Species or species habitat likely to occur within area
Balaenoptera borealis		
Sei Whale [34]	Vulnerable	Foraging, feeding or related behaviour likely to occur within area
Balaenoptera musculus		
Blue Whale [36]	Endangered	Foraging, feeding or related behaviour known to occur within area

Current Scientific Name	Status	Type of Presence
<u>Balaenoptera physalus</u> Fin Whale [37]	Vulnerable	Foraging, feeding or related behaviour likely to occur within area
<u>Berardius arnuxii</u> Arnoux's Beaked Whale [70]		Species or species habitat may occur within area
<u>Caperea marginata</u> Pygmy Right Whale [39]		Foraging, feeding or related behaviour may occur within area
<u>Delphinus delphis</u> Common Dolphin, Short-beaked Common Dolphin [60]		Species or species habitat may occur within area
Eubalaena australis Southern Right Whale [40]	Endangered	Breeding known to occur within area
<u>Globicephala macrorhynchus</u> Short-finned Pilot Whale [62]		Species or species habitat may occur within area
<u>Globicephala melas</u> Long-finned Pilot Whale [59282]		Species or species habitat may occur within area
<u>Grampus griseus</u> Risso's Dolphin, Grampus [64]		Species or species habitat may occur within area
<u>Kogia breviceps</u> Pygmy Sperm Whale [57]		Species or species habitat may occur within area
<u>Kogia sima as Kogia simus</u> Dwarf Sperm Whale [85043]		Species or species habitat may occur within area

Lagenorhynchus obscurus Dusky Dolphin [43]

Species or species habitat likely to occur within area

within area

<mark>Current Scientific Name Lissodelphis peronii</mark> Southern Right Whale Dolphin [44]

Megaptera novaeangliae

Humpback Whale [38]

Mesoplodon bowdoini Andrew's Beaked Whale [73]

<u>Mesoplodon densirostris</u> Blainville's Beaked Whale, Densebeaked Whale [74]

<u>Mesoplodon grayi</u> Gray's Beaked Whale, Scamperdown Whale [75]

Mesoplodon hectori Hector's Beaked Whale [76]

<u>Mesoplodon layardii</u> Strap-toothed Beaked Whale, Straptoothed Whale, Layard's Beaked Whale [25556]

<u>Mesoplodon mirus</u> True's Beaked Whale [54]

<u>Orcinus orca</u> Killer Whale, Orca [46]

Physeter macrocephalus Sperm Whale [59]

Pseudorca crassidens False Killer Whale [48]

Status

Type of Presence

Species or species habitat may occur within area

Species or species habitat known to occur within area

Species or species habitat may occur within area

Species or species habitat likely to occur within area

Species or species habitat may occur within area

Species or species habitat likely to occur within area

		T (D
Current Scientific Name	Status	Type of Presence
<u>Tursiops aduncus</u>		
Indian Ocean Bottlenose Dolphin,		Species or species
Spotted Bottlenose Dolphin [68418]		habitat likely to occur
		within area
<u>Tursiops truncatus s. str.</u>		
Bottlenose Dolphin [68417]		Species or species
		habitat may occur
		within area
Ziphius cavirostris		
Cuvier's Beaked Whale, Goose-beaked		Species or species
Whale [56]		habitat may occur
		within area
Australian Marine Parks		[Resource Information]
Park Name	Zone	& IUCN Categories
Apollo	Multip	le Use Zone (IUCN VI)

Multiple Use Zone (IUCN VI)

Special Purpose Zone (IUCN

Beagle

Boags

Franklin

Zeehan

Zeehan

Extra Information

State and Territory Reserves			[Resource Information]
Protected Area Name	Reserve Type	State	
Aire River	Heritage River	VIC	
Aire River W.R.	Natural Features Reserve	VIC	
Aireys Inlet B.R.	Natural Features Reserve	VIC	
Anglesea B.R.	Natural Features Reserve	VIC	
Anser Island	Reference Area	VIC	
Badger Box Creek	Nature Reserve	TAS	
Barham Paradise S.R.	Natural Features Reserve	VIC	

Vİ)

Protected Area Name	Reserve Type	State
Barwon Bluff	Marine Sanctuary	VIC
Bay of Islands Coastal Park	Conservation Park	VIC
Black Pyramid Rock	Nature Reserve	TAS
Bunurong	Marine National Park	VIC
Cape Wickham	State Reserve	TAS
Cape Wickham	Conservation Area	TAS
Cataraqui Point	Conservation Area	TAS
Christmas Island	Nature Reserve	TAS
City of Melbourne Bay	Conservation Area	TAS
Colliers Forest Reserve	Conservation Covenant	TAS
Colliers Swamp	Conservation Area	TAS
Councillor Island	Nature Reserve	TAS
Counsel Hill	Conservation Area	TAS
Currie Lightkeepers Residence	Historic Site	TAS
Deep Lagoons	Conservation Area	TAS
Disappointment Bay	State Reserve	TAS
Eagle Rock	Marine Sanctuary	VIC
East Moncoeur Island	Conservation Area	TAS
Edna Bowman N.C.R.	Natural Features Reserve	VIC
Eldorado	Conservation Area	TAS
Fingal B.R	Natural Features Reserve	VIC
Flinders G234 B.R.	Natural Features	VIC
	Reserve	
Gentle Annie	Reserve Conservation Area	TAS
Gentle Annie Great Otway		TAS VIC

Protected Area Name	Reserve Type	State
Kentford Forest	Conservation Area	TAS
Kentford Forest	Nature Reserve	TAS
Kentford Road	Conservation Covenant	TAS
King Island	Conservation Covenant	TAS
Lake Connewarre W.R	Natural Features Reserve	VIC
Latrobe B.R.	Natural Features Reserve	VIC
Lavinia	State Reserve	TAS
Lily Lagoon	Nature Reserve	TAS
Lily Pond B.R.	Natural Features Reserve	VIC
Loorana	Conservation Covenant	TAS
Lymwood	Conservation Covenant	TAS
Marengo N.C.R.	Nature Conservation Reserve	VIC
Marengo Reefs	Marine Sanctuary	VIC
Millwood Road	Conservation Covenant	TAS
Mornington Peninsula	National Park	VIC
Muddy Lagoon	Nature Reserve	TAS
Mushroom Reef	Marine Sanctuary	VIC
New Year Island	Game Reserve	TAS
Nugara	Conservation Covenant	TAS
Painkalac Creek	Reference Area	VIC
Parker River	Reference Area	VIC
Pegarah	Private Nature Reserve	TAS
Pegarah Forest	Conservation Covenant	TAS
Phillip Island Nature Park	Other	VIC
Point Addis	Marine National Park	VIC

Protected Area Name	Reserve Type	State
Point Danger	Marine Sanctuary	VIC
Point Nepean	National Park	VIC
Porky Beach	Conservation Area	TAS
Port Campbell	National Park	VIC
Port Phillip Heads	Marine National Park	VIC
Princetown W.R	Natural Features Reserve	VIC
Red Hut Point	Conservation Area	TAS
Red Hut Road #1	Conservation Covenant	TAS
Reekara Road #1	Conservation Covenant	TAS
Reekara Road #2	Conservation Covenant	TAS
Reid Rocks	Nature Reserve	TAS
Rodondo Island	Nature Reserve	TAS
Sandfly Beach	Conservation Covenant	TAS
Sea Elephant	Conservation Area	TAS
Sea Elephant Bootlace	Conservation Covenant	TAS
Sea Elephant River	Conservation Covenant	TAS
Seal Rocks	Conservation Area	TAS
Seal Rocks	State Reserve	TAS
Slaves Bay	Conservation Area	TAS
Southern Wilsons Promontory	Remote and Natural Area - Schedule 6, National Parks Act	VIC
Stokes Point	Conservation Area	TAS
Stony Creek (Otways)	Reference Area	VIC
Tambar	Conservation Covenant	TAS
Tathams Lagoon	Conservation Area	TAS
The Arches	Marine Sanctuary	VIC

Protected Area Name	Reserve Type	State
Twelve Apostles	Marine National Park	VIC
Unnamed P0176	Private Nature Reserve	VIC
West Moncoeur Island	Nature Reserve	TAS
Wicks Road Nugara	Conservation Covenant	TAS
Wild Dog B.R.	Natural Features Reserve	VIC
Wild Dog Creek SS.R.	Natural Features Reserve	VIC
Wilsons Promontory	National Park	VIC
Wilsons Promontory	Marine National Park	VIC
Wilsons Promontory Islands	Remote and Natural Area - Schedule 6, National Parks Act	VIC
Wilsons Promontory Marine Reserve	National Parks Act Schedule 4 park or reserve	VIC
Wongarra B.R.	Natural Features Reserve	VIC
Yambacoona	Conservation Covenant	TAS

Regional Forest Agreements		[Resource Information]
Note that all areas with completed RFAs have been included.		
RFA Name	State	
<u>Gippsland RFA</u>	Victoria	
Tasmania RFA	Tasmania	
West Victoria RFA	Victoria	

Nationally Important Wetlands	[Resource Informatio
Wetland Name	State
<u>Aire River</u>	VIC
Bungaree Lagoon	TAS
Lake Connewarre State Wildlife Reserve	VIC
Lake Flannigan	TAS
Lavinia Nature Reserve	TAS

Wetland Name	State
Lower Aire River Wetlands	VIC
Pearshape Lagoon 1	TAS
Pearshape Lagoon 2	TAS
Pearshape Lagoon 3	TAS
Pearshape Lagoon 4	TAS
Princetown Wetlands	VIC
Western Port	VIC

EPBC Act Referrals			[Resource Information]
Title of referral	Reference	Referral Outcome	Assessment Status
<u>Apollo Bay to Skenes Creek Coastal</u> <u>Trail</u>	2022/09274		Referral Decision
Controlled action			
Alston-1 petroleum exploration well, permit VIC/P44	2003/1315	Controlled Action	Post-Approval
Casino Gas Field Development	2003/1295	Controlled Action	Post-Approval
<u>City Of Greater Geelong Mosquito</u> <u>Control Program 2021-2030, Vic</u>	2020/8782	Controlled Action	Further Information Request
Establishment of plantation for use of effluent water	2003/1063	Controlled Action	Completed
Lonsdale Golf Club Redevelopment	2003/969	Controlled Action	Post-Approval
Lorne Golf Course redevelopment	2004/1513	Controlled Action	Post-Approval
<u>Marinus Link underground and</u> subsea electricity interconnector cable	2021/9053	Controlled Action	Assessment Approach
Mosquito Control	2005/2132	Controlled Action	Post-Approval
<u>Otway Development</u>	2002/621	Controlled Action	Post-Approval
Port Phillip Bay Channel Deepening	2002/576	Controlled Action	Post-Approval
Redevelopment of post office and construction of dwellings	2007/3639	Controlled Action	Completed

Title of referral Controlled action	Reference	Referral Outcome	Assessment Status
Schomberg 3D Marine Seismic Survey	2007/3754	Controlled Action	Completed
<u>Strike Oil Gas Exploration Well,</u> <u>Otway Basin (VIC/P44)</u>	2000/97	Controlled Action	Completed
Twelve Apostles Saddle Lookout	2019/8571	Controlled Action	Post-Approval
VICP61 2D Marine Seismic Survey	2008/4075	Controlled Action	Completed
Yolla Gas Field (TRL1) Development	2001/321	Controlled Action	Post-Approval
Not controlled action			
2D seismic survey, Petroleum Exploration Permit Area T/36P	2004/1787	Not Controlled Action	Completed
<u>Airey Inlet water reclamation plant to</u> <u>Anglesea sewerage system</u>	2006/2539	Not Controlled Action	Completed
Amrit-1 exploration well	2004/1572	Not Controlled Action	Completed
<u>Anglesea Mine South Wall Vegetation</u> <u>removal, Anglesea, Vic</u>	2017/8060	Not Controlled Action	Completed
Apollo Bay Water Storage Basin, VIC	2012/6484	Not Controlled Action	Completed
Bluff Heights Estate Stages 2 to 4	2003/1047	Not Controlled Action	Completed
Boneo Park Equestrian Centre	2008/4639	Not Controlled Action	Completed
<u>Capture of Tasmanian Devils from</u> <u>Disease-Free Areas</u>	2007/3883	Not Controlled Action	Completed
<u>CO2 geosequestration - Otway Basin</u> <u>Pilot Project</u>	2006/2699	Not Controlled Action	Completed
Communications tower extension	2003/1099	Not Controlled Action	Completed
Construction of Barwon Heads Bridge	2005/2375	Not Controlled Action	Completed
<u>Construction of Infrastructure to</u> <u>Extract, Treat & Transfer</u> <u>Groundwater to Wurde</u>	2008/4104	Not Controlled Action	Completed
<u>Construction of Overtaking Lanes on</u> <u>Great Ocean Rd</u>	2008/4044	Not Controlled Action	Completed

Title of referral Not controlled action	Reference	Referral Outcome	Assessment Status
construction of pump station for pump diversion from the Barham River	2003/1242	Not Controlled Action	Completed
<u>Construction of the Edgars Road</u> <u>Extension, from Childs Road, Lalor to</u> <u>Cooper Street, Epping</u>	2003/1135	Not Controlled Action	Completed
<u>Development of Pt Nepean</u> <u>Quarantine Station (former) National</u> <u>Centre for Coasts and Climate</u>	2008/4653	Not Controlled Action	Completed
Divestment of Norris Barracks	2003/963	Not Controlled Action	Completed
Enterprise 1 Exploration Drilling Program, near Port Campbell, Vic	2019/8438	Not Controlled Action	Completed
Exploration drilling for liquid/gaseous hydrocarbons	2004/1681	Not Controlled Action	Completed
Exploration Drilling Well Trefoil-1	2003/1058	Not Controlled Action	Completed
<u>Ferry Service Infrastructure</u> <u>Development</u>	2001/269	Not Controlled Action	Completed
Flinders Backlog Sewer Project	2005/2275	Not Controlled Action	Completed
Gas Field Development	2006/2635	Not Controlled Action	Completed
Gas Fields Development	2011/5879	Not Controlled Action	Completed
Golflinks Road Residential Development & Water Storage Facility at Barwon Heads	2004/1793	Not Controlled Action	Completed
<u>Grevillea infecunda tip cuttings and</u> <u>soil samples</u>	2005/1979	Not Controlled Action	Completed
Halladale and Speculant Gas Pipeline Project, North of Port Campbell, Vic	2015/7551	Not Controlled Action	Completed
<u>Henry-1 Exploration Well, Petroleum</u> <u>Permit Area VIC/P44</u>	2005/2147	Not Controlled Action	Completed
Huxley Hill Wind Farm expansion	2005/2499	Not Controlled Action	Completed
Huxley Hill Wind Farm Expansion	2002/570	Not Controlled Action	Completed

Title of referral Not controlled action	Reference	Referral Outcome	Assessment Status
Improving rabbit biocontrol: releasing another strain of RHDV, sthrn two thirds of Australia	2015/7522	Not Controlled Action	Completed
INDIGO Central Submarine Telecommunications Cable	2017/8127	Not Controlled Action	Completed
<u>Installation of a 35 metre</u> <u>telecommunications facility at</u> <u>Jirrahlinga Animal San</u>	2003/1151	Not Controlled Action	Completed
<u>Installation of optic fibre cable from</u> <u>Inverloch, Victoria to Stanley,</u> <u>Tasmania</u>	2002/906	Not Controlled Action	Completed
<u>Maintenance and priority works to</u> <u>heritage buildings at Point Nepean</u> <u>Quarantine</u>	2006/3151	Not Controlled Action	Completed
Maintenance Dredging South Channel 2012	2011/6198	Not Controlled Action	Completed
<u>Maintenance works at Barwon Heads</u> <u>Bridge</u>	2003/1199	Not Controlled Action	Completed
Millwood Road Gravel Quarry	2002/602	Not Controlled Action	Completed
<u>Minerva Cut Back Project, Vic</u>	2017/8036	Not Controlled Action	Completed
<u>New Water Infrastructure Upgrade,</u> <u>Grassy Dam, King Island</u>	2013/6882	Not Controlled Action	Completed
Nirranda South Wind Farm Pty Ltd	2002/763	Not Controlled Action	Completed
Offshore exploration drilling within permit area VIC/P 37(v)	2004/1466	Not Controlled Action	Completed
Point Nepean Quarantine Station (former)/Restoration of Medical Superintendent's	2006/3149	Not Controlled Action	Completed
Port Campbell Headland Walking Trail Realignment	2012/6676	Not Controlled Action	Completed
<u>Port Phillip Channel Deepening</u> <u>Project - Trial Dredge Program</u>	2005/2164	Not Controlled Action	Completed
Proposed replacement of existing road culvert	2013/7077	Not Controlled Action	Completed
Queenscliff Harbour Redevelopment	2004/1352	Not Controlled Action	Completed
<u>Remedial Works to the Swan Island</u> <u>Bridge</u>	2003/1129	Not Controlled Action	Completed

Title of referral Not controlled action	Reference	Referral Outcome	Assessment Status
Residential/Resort/Golf Course development	2002/907	Not Controlled Action	Completed
Residential Dwelling	2004/1896	Not Controlled Action	Completed
<u>To construct a shared trail within the</u> <u>Arthurs Seat Road, road reserve</u> <u>south side from Mornington Fl</u>	2004/1565	Not Controlled Action	Completed
<u>Torquay Sewerage Strategy - pipe</u> replacement between Torquay and the Black Rock	2004/1704	Not Controlled Action	Completed
<u>Track construction - Great Ocean</u> <u>Walk</u>	2002/793	Not Controlled Action	Completed
<u>Transfer of 90ha Point Nepean</u> <u>Quarantine Station from</u> <u>Commonwealth to Victorian</u>	2008/4521	Not Controlled Action	Completed
Upgrade and Repairs to Flinders Pier	2008/4331	Not Controlled Action	Completed
Venus Bay Outfall Extension	2004/1555	Not Controlled Action	Completed
<u>VIC-P44 Stage 2 Gas Field</u> <u>Development</u>	2007/3767	Not Controlled Action	Completed
Victorian Generator Project	2005/1984	Not Controlled Action	Completed
Wind Farm Construction and Operation	2001/471	Not Controlled Action	Completed
Not controlled action (particular manne	er)		
<u>'Moonlight Head' 3D seismic survey,</u> <u>VIC/P38(V), VIC/P43 and VIC/RL8</u>	2005/2236	Not Controlled Action (Particular Manner)	Post-Approval
2D Marine Seismic Survey	2005/2295	Not Controlled Action (Particular Manner)	Post-Approval
2D Marine Seismic Survey in Permit Areas T/32P and T/33P	2002/845	Not Controlled Action (Particular Manner)	Post-Approval
2D Seismic Survey	2003/1214	Not Controlled Action (Particular Manner)	Post-Approval

Title of referral	Reference	Referral Outcome	Assessment Status
Not controlled action (particular manne <u>2D Seismic Survey</u>	2008/3962	Not Controlled Action (Particular Manner)	Post-Approval
<u>2D Seismic Survey in VIC/P50 and VIC/P46</u>	2004/1810	Not Controlled Action (Particular Manner)	Post-Approval
2D seismic survey VIC/P50	2005/2313	Not Controlled Action (Particular Manner)	Post-Approval
<u>3D marine seismic survey near King</u> <u>Island</u>	2004/1461	Not Controlled Action (Particular Manner)	Post-Approval
<u>3D Marine Seismic Survey within</u> Torquay Sub-basin off sthn Victoria	2012/6256	Not Controlled Action (Particular Manner)	Post-Approval
<u>3D seismic program VIC/P38(v),</u> <u>VIC/P43 and VIC/RL8</u>	2003/1137	Not Controlled Action (Particular Manner)	Post-Approval
Aroo Chappell 3D seismic survey	2010/5701	Not Controlled Action (Particular Manner)	Post-Approval
Astrolabe 3D Marine Seismic Survey	2011/6048	Not Controlled Action (Particular Manner)	Post-Approval
Bass Basin 2D and 3D seismic surveys (T/38P & T/37P)	2007/3650	Not Controlled Action (Particular Manner)	Post-Approval
BHPBilliton Otway 3D Seismic Survey	2007/3443	Not Controlled Action (Particular Manner)	Post-Approval
Construct private dwelling	2008/4234	Not Controlled Action (Particular Manner)	Post-Approval
Construct single dwelling	2008/4504	Not Controlled Action (Particular	Post-Approval

Title of referral	Reference	Referral Outcome	Assessment Status
Not controlled action (particular manne	er)	Manner)	
<u>Controlled Burn, Understorey</u> <u>Clearance and Removal of UXO</u>	2003/1030	Not Controlled Action (Particular Manner)	Post-Approval
Deepwater Sorell Basin 2001 Non- Exclusive 2D Seismic Survey	2001/156	Not Controlled Action (Particular Manner)	Post-Approval
Drill and Profile Exploration Well Somerset 1, License Area T34P	2009/5037	Not Controlled Action (Particular Manner)	Post-Approval
Enterprise Three-dimensional Transition Zone Seismic Survey, Victoria	2016/7800	Not Controlled Action (Particular Manner)	Post-Approval
Exploration drilling of the Craigow-1 and Tolpuddle-1 wells	2010/5725	Not Controlled Action (Particular Manner)	Post-Approval
Fuelbreak construction	2009/4915	Not Controlled Action (Particular Manner)	Post-Approval
Geelong Bypass Section 3	2005/2099	Not Controlled Action (Particular Manner)	Post-Approval
Geographe-A gas exploration well	2000/82	Not Controlled Action (Particular Manner)	Post-Approval
Hydrocarbon exploration wells	2003/1062	Not Controlled Action (Particular Manner)	Post-Approval
INDIGO Marine Cable Route Survey (INDIGO)	2017/7996	Not Controlled Action (Particular Manner)	Post-Approval
<u>Labatt 3D Seismic Survey T/47P</u> <u>Bass Strait</u>	2007/3759	Not Controlled Action (Particular Manner)	Post-Approval

Title of referral	Reference	Referral Outcome	Assessment Status
Not controlled action (particular manne La Bella 3D Marine Seismic Survey, Otway Basin, VIC	2012/6683	Not Controlled Action (Particular Manner)	Post-Approval
<u>Maintenance Dredging Program</u> 2012-21 in Port of Melbourne	2012/6332	Not Controlled Action (Particular Manner)	Post-Approval
Origin Energy Silvereye-1 Exploration Drilling Programme	2010/5702	Not Controlled Action (Particular Manner)	Post-Approval
<u>OTE10 2D Marine Seismic Survey</u>	2009/5223	Not Controlled Action (Particular Manner)	Post-Approval
<u>Otway Astrolabe 3D Marine Seismic</u> <u>Survey, Otway Basin</u>	2012/6421	Not Controlled Action (Particular Manner)	Post-Approval
<u>Otway Basin Exploration Drilling</u> <u>Campaign, Vic</u>	2011/6125	Not Controlled Action (Particular Manner)	Post-Approval
Rockhopper-1 and Trefoil-2 Exploration Drilling in Permit Area T/18P	2009/4776	Not Controlled Action (Particular Manner)	Post-Approval
Santos Otway 3d Seismic VIC/P44	2007/3367	Not Controlled Action (Particular Manner)	Post-Approval
<u>Schomberg 3D Marine Seismic</u> <u>survey</u>	2007/3868	Not Controlled Action (Particular Manner)	Post-Approval
<u>SEA Gas Project transmission</u> pipeline	2001/513	Not Controlled Action (Particular Manner)	Post-Approval
Shearwater 2D and 3D marine seismic survey	2005/2180	Not Controlled Action (Particular Manner)	Post-Approval
Silvereye 3D Seismic Survey	2007/3551	Not Controlled Action (Particular	Post-Approval

Title of referral	Reference	Referral Outcome	Assessment Status
Not controlled action (particular manne	er)	Manner)	
Southern Gas Pipeline Project	2002/619	Not Controlled Action (Particular Manner)	Post-Approval
Southern Margins T/35P and T/36P 3D Seismic Surveys	2007/3817	Not Controlled Action (Particular Manner)	Post-Approval
<u>Speculant 3D Transition Zone</u> <u>Seismic Survey</u>	2010/5558	Not Controlled Action (Particular Manner)	Post-Approval
Strike Oil NL Seismic Surveys	2000/107	Not Controlled Action (Particular Manner)	Post-Approval
Surface Geochemical Exploration Program, TAS	2010/5780	Not Controlled Action (Particular Manner)	Post-Approval
<u>Tap Oil Ltd Molson 2D Seismic</u> <u>Survey T47P</u>	2008/3967	Not Controlled Action (Particular Manner)	Post-Approval
<u>The Enterprise 3D Seismic</u> <u>Acquisition Survey, Otway Basin, Vic</u>	2012/6565	Not Controlled Action (Particular Manner)	Post-Approval
Thylacine-A Exploration Well	2000/81	Not Controlled Action (Particular Manner)	Post-Approval
<u>Torquay Sub-basin (VIC/P62)</u> OTE12-3D Seismic Survey	2012/6655	Not Controlled Action (Particular Manner)	Post-Approval
<u>Undertake a three dimensional</u> marine seismic survey	2010/5700	Not Controlled Action (Particular Manner)	Post-Approval
<u>Vic/P37(v) and Vic/P44 3D marine</u> seismic survey	2003/1102	Not Controlled Action (Particular Manner)	Post-Approval

Title of referral Not controlled action (particular manne	Reference	Referral Outcome	Assessment Status
VIC P44 Gas Exploration Wells	2002/662	Not Controlled Action (Particular Manner)	Post-Approval
<u>Vic-P51 and Vic-P52 2D seismic</u> <u>survey</u>	2002/811	Not Controlled Action (Particular Manner)	Post-Approval
<u>Vic-P51 and Vic-P52 3D seismic</u> <u>survey</u>	2002/799	Not Controlled Action (Particular Manner)	Post-Approval
<u>Wolseley 3D seismic acquisition</u> <u>survey</u>	2010/5703	Not Controlled Action (Particular Manner)	Post-Approval
-			
Referral decision 2D & 3D Seismic Surveys - Permit Area - VIC/P50	2008/4517	Referral Decision	Completed
3D Marine Seismic Survey	2011/6156	Referral Decision	Completed
3D Seismic Survey	2008/4014	Referral Decision	Completed
All actions taken in response to the current severe bushfires in Victoria.	2009/4787	Referral Decision	Completed
Alteration Reconstruction Restoration and Repairs to Buildings	2008/4179	Referral Decision	Completed
<u>Offshore Tidal Energy Facility and</u> <u>Submarine Cable</u>	2008/4480	Referral Decision	Referral Publication
<u>Residential Development Elizabeth</u> <u>Avenue, Rosebud West, VIC</u>	2015/7603	Referral Decision	Completed
<u>The Enterprise 3D Seismic</u> <u>Acquisition Survey, Otway Basin, VIC</u>	2012/6545	Referral Decision	Completed
<u>Upgrade of Services Infrastructure</u> Point Nepean Quarantine Station	2008/4591	Referral Decision	Completed
VICP61 2D Marine Seismic Survey	2008/3975	Referral Decision	Completed
Wolseley 3D Seismic Acquisition Survey in Permit T/32P	2010/5291	Referral Decision	Completed

Title of referral	Reference	Referral Outcome	Assessment Status
Referral decision			
Works to the buildings and surrounds	2008/4156	Referral Decision	Completed
at the former Point Nepean			
Quarantine Stati			

on]

Key Ecological Features		[Resource Information
		-

Key Ecological Features are the parts of the marine ecosystem that are considered to be important for the biodiversity or ecosystem functioning and integrity of the Commonwealth Marine Area.

Name	Region
West Tasmania Canyons	South-east

Biologically Important Areas		
Scientific Name	Behaviour	Presence
Seabirds		
<u>Ardenna pacifica</u> Wedge-tailed Shearwater [84292]	Breeding	Known to occur
	-	
Ardenna pacifica		
Wedge-tailed Shearwater [84292]	Foraging	Likely to occur
Ardenna tenuirostris		
Short-tailed Shearwater [82652]	Breeding	Known to occur
<u>Ardenna tenuirostris</u> Short-tailed Shearwater [82652]	Foraging	Known to occur
	5 5	
<u>Diomedea exulans (sensu lato)</u>		
Wandering Albatross [1073]	Foraging	Known to occur
<u>Diomedea exulans antipodensis</u> Antipodean Albatross [82269]	Foraging	Known to occur
	0 0	
Eudyptula minor		
Little Penguin [1085]	Breeding	Known to occur
<u>Eudyptula minor</u> Little Penguin [1085]	Foraging	Known to occur
	ronaginig	
Morus serrator		
Australasian Gannet [1020]	Aggregation	Known to occur
<u>Morus serrator</u> Australasian Gannet [1020]	Foraging	Known to occur
	loraging	

Scientific Name	Behaviour	Presence
Pelagodroma marina White-faced Storm-petrel [1016]	Foraging	Known to occur
<u>Pelecanoides urinatrix</u> Common Diving-petrel [1018]	Breeding	Known to occur
Pelecanoides urinatrix Common Diving-petrel [1018]	Foraging	Known to occur
Phalacrocorax fuscescens Black-faced Cormorant [59660]	Breeding	Known to occur
Phalacrocorax fuscescens Black-faced Cormorant [59660]	Foraging	Known to occur
<u>Thalassarche bulleri</u> Bullers Albatross [64460]	Foraging	Known to occur
<u>Thalassarche cauta cauta</u> Shy Albatross [82345]	Foraging likely	Likely to occur
<u>Thalassarche chlororhynchos bassi</u> Indian Yellow-nosed Albatross [85249]	Foraging	Known to occur
<u>Thalassarche melanophris</u> Black-browed Albatross [66472]	Foraging	Known to occur
<u>Thalassarche melanophris impavida</u> Campbell Albatross [82449]	Foraging	Known to occur
Sharks		
<u>Carcharodon carcharias</u> White Shark [64470]	Distribution	Likely to occur
<u>Carcharodon carcharias</u> White Shark [64470]	Distribution	Known to occur
<u>Carcharodon carcharias</u> White Shark [64470]	Distribution (low density)	Likely to occur
<u>Carcharodon carcharias</u> White Shark [64470]	Foraging	Known to occur

Scientific Name	Behaviour	Presence
<u>Carcharodon carcharias</u> White Shark [64470]	Known distribution	Known to occur
Whales		
<u>Balaenoptera musculus brevicauda</u> Pygmy Blue Whale [81317]	Distribution	Known to occur
<u>Balaenoptera musculus brevicauda</u> Pygmy Blue Whale [81317]	Foraging	Likely to be present
Balaenoptera musculus brevicauda Pygmy Blue Whale [81317]	Foraging (annual high use area)	Known to occur
<u>Balaenoptera musculus brevicauda</u> Pygmy Blue Whale [81317]	Known Foraging Area	Known to occur
<u>Eubalaena australis</u> Southern Right Whale [40]	Aggregation	Known to occur
<u>Eubalaena australis</u> Southern Right Whale [40]	Connecting habitat	Known to occur
<u>Eubalaena australis</u> Southern Right Whale [40]	Known core range	Known to occur
<u>Eubalaena australis</u> Southern Right Whale [40]	Migration and resting on migration	Known to occur

Bioregional Assessments		
SubRegion	BioRegion	Website
Gippsland	Gippsland Basin	BA website

Caveat

I PURPOSE

This report is designed to assist in identifying the location of matters of national environmental significance (MNES) and other matters protected by the Environment Protection and Biodiversity Conservation Act 1999 (Cth) (EPBC Act) which may be relevant in determining obligations and requirements under the EPBC Act.

The report contains the mapped locations of:

- World and National Heritage properties;
- Wetlands of International and National Importance;
- Commonwealth and State/Territory reserves;
- distribution of listed threatened, migratory and marine species;
- listed threatened ecological communities; and
- other information that may be useful as an indicator of potential habitat value.

2 DISCLAIMER

This report is not intended to be exhaustive and should only be relied upon as a general guide as mapped data is not available for all species or ecological communities listed under the EPBC Act (see below). Persons seeking to use the information contained in this report to inform the referral of a proposed action under the EPBC Act should consider the limitations noted below and whether additional information is required to determine the existence and location of MNES and other protected matters.

Where data are available to inform the mapping of protected species, the presence type (e.g. known, likely or may occur) that can be determined from the data is indicated in general terms. It is the responsibility of any person using or relying on the information in this report to ensure that it is suitable for the circumstances of any proposed use. The Commonwealth cannot accept responsibility for the consequences of any use of the report or any part thereof. To the maximum extent allowed under governing law, the Commonwealth will not be liable for any loss or damage that may be occasioned directly or indirectly through the use of, or reliance

3 DATA SOURCES

Threatened ecological communities

For threatened ecological communities where the distribution is well known, maps are generated based on information contained in recovery plans, State vegetation maps and remote sensing imagery and other sources. Where threatened ecological community distributions are less well known, existing vegetation maps and point location data are used to produce indicative distribution maps.

Threatened, migratory and marine species

Threatened, migratory and marine species distributions have been discerned through a variety of methods. Where distributions are well known and if time permits, distributions are inferred from either thematic spatial data (i.e. vegetation, soils, geology, elevation, aspect, terrain, etc.) together with point locations and described habitat; or modelled (MAXENT or BIOCLIM habitat modelling) using

Where little information is available for a species or large number of maps are required in a short time-frame, maps are derived either from 0.04 or 0.02 decimal degree cells; by an automated process using polygon capture techniques (static two kilometre grid cells, alpha-hull and convex hull); or captured manually or by using topographic features (national park boundaries, islands, etc.).

In the early stages of the distribution mapping process (1999-early 2000s) distributions were defined by degree blocks, 100K or 250K map sheets to rapidly create distribution maps. More detailed distribution mapping methods are used to update these distributions

4 LIMITATIONS

The following species and ecological communities have not been mapped and do not appear in this report:

- threatened species listed as extinct or considered vagrants;
- · some recently listed species and ecological communities;
- · some listed migratory and listed marine species, which are not listed as threatened species; and
- migratory species that are very widespread, vagrant, or only occur in Australia in small numbers.

The following groups have been mapped, but may not cover the complete distribution of the species:

- listed migratory and/or listed marine seabirds, which are not listed as threatened, have only been mapped for recorded
- seals which have only been mapped for breeding sites near the Australian continent

The breeding sites may be important for the protection of the Commonwealth Marine environment.

Refer to the metadata for the feature group (using the Resource Information link) for the currency of the information.

Acknowledgements

This database has been compiled from a range of data sources. The department acknowledges the following custodians who have contributed valuable data and advice:

-Office of Environment and Heritage, New South Wales -Department of Environment and Primary Industries, Victoria -Department of Primary Industries, Parks, Water and Environment, Tasmania -Department of Environment, Water and Natural Resources, South Australia -Department of Land and Resource Management, Northern Territory -Department of Environmental and Heritage Protection, Queensland -Department of Parks and Wildlife, Western Australia -Environment and Planning Directorate, ACT -Birdlife Australia -Australian Bird and Bat Banding Scheme -Australian National Wildlife Collection -Natural history museums of Australia -Museum Victoria -Australian Museum -South Australian Museum -Queensland Museum -Online Zoological Collections of Australian Museums -Queensland Herbarium -National Herbarium of NSW -Royal Botanic Gardens and National Herbarium of Victoria -Tasmanian Herbarium -State Herbarium of South Australia -Northern Territory Herbarium -Western Australian Herbarium -Australian National Herbarium, Canberra -University of New England -Ocean Biogeographic Information System -Australian Government, Department of Defence Forestry Corporation, NSW -Geoscience Australia -CSIRO -Australian Tropical Herbarium, Cairns -eBird Australia -Australian Government – Australian Antarctic Data Centre -Museum and Art Gallery of the Northern Territory -Australian Government National Environmental Science Program -Australian Institute of Marine Science -Reef Life Survey Australia -American Museum of Natural History -Queen Victoria Museum and Art Gallery, Inveresk, Tasmania -Tasmanian Museum and Art Gallery, Hobart, Tasmania -Other groups and individuals

The Department is extremely grateful to the many organisations and individuals who provided expert advice and information on numerous draft distributions.

© Commonwealth of Australia

Department of Agriculture Water and the Environment GPO Box 858 Canberra City ACT 2601 Australia +61 2 6274 1111

Appendix C Acoustic Modelling Report

Tel: +61 7 3823 2620 www.jasco.com

Technical Memo

DATE: 25 August 2022

DOCUMENT: 02798 Version 1.0

FROM: Sam Welch, Matthew Koessler, Craig McPherson (JASCO Applied Sciences (Australia) Pty Ltd)

To: Phil Wemyss (Beach Energy), Chris Ryan (Aventus Consulting)

Subject: Beach Otway Project, Consideration of Alternative Vessels

JASCO Applied Sciences (JASCO) performed additional modelling of underwater sound levels associated with the Beach Energy Otway Project, Development and Operations, to supplement drilling and construction results previously presented in Koessler and McPherson (2021), Koessler et al. (2020), Matthews et al. (2020) and Matthews et al. (2021).

The results have been revised due to better definition of the vessels and operations involved in the project. The method considered here closely follows the method outlined by Koessler and McPherson (2021) which was based on the finding in McPherson et al. (2021). A significant finding of the McPherson et al. (2021) study was lack of a thin layer of sand overlying the carbonate seabed structure near Artisan-1, which has a significant influence on propagation loss leading to higher decay rates than those initially predicted in Koessler et al. (2020) and Matthews et al. (2020)

Estimated underwater acoustic levels are presented as sound pressure levels (SPL, L_p), and as accumulated sound exposure levels (SEL, L_E) as appropriate for non-impulsive (continuous) noise sources. For the non-time dependent scenarios, marine mammal behavioural threshold based on the current interim NOAA (2019) criterion for marine mammals of 120 dB re 1 µPa (SPL; L_p) for nonimpulsive sound sources are summarised in Section 2.

For the time-dependent scenarios, the modelled maximum distances to permanent threshold shift (PTS) and temporary threshold shift (TTS) criteria for low-frequency cetaceans Southall et al. (2019)., which are based on SEL accumulated over a period of time are summarised in Section 2.

Summary tables of results are provided in Table 1 and 2 below.

Table 1. Maximum (Rmax) horizontal distances (in km) to sound pressure level (SPL) for the NOAA (2019) behavioural response threshold from the most appropriate location for considered sources per scenario. OSV: Offshore Supply Vessel, PLV: Pipelay Vessel, WHP: Well Head Platform

Scenario number	Well Area	Description	R _{max} (km)
1 & 2		WHP + OSV under DP (Resupply Ops)	2.31
3 & 4	Thylacine North-1	WHP + OSV under Transit	0.89
5 & 6		THY - Pipelay Vessel under DP	3.65

Table 2. Summary: Maximum (R_{max}) horizontal distances (in km) for the frequency-weighted LF-cetacean SEL_{24h} TTS thresholds based on Southall et al. (2019) from the most appropriate location for considered sources per scenario. OSV: Offshore Supply Vessel, PLV: Pipelay Vessel, WHP: Well Head Platform

Scenario number	Well Area	Description	R _{max} (km)
1		WHP + OSV under DP (Resupply Ops) (OSV DP 2 hrs)	0.26
2		WHP + OSV under DP (Resupply Ops) (OSV DP 8 hrs)	0.42
3	Thylacine	WHP + OSV under Transit (Standby 8 hrs)	0.04
4	North-1	WHP + OSV under Transit (Standby 24 hrs)	0.04
5		THY - Pipelay Vessel Stationary under DP	0.86
6		THY - Pipelay Vessel Laying Pipe	1.66

1. Acoustic Modelling Scenario Details

The scenarios considered within this additional modelling are detailed below and in Table 3, with the associated modelled sites provided in Table 4. An overview of the considered scenarios is as follows:

- 1. OSV vessel resupply at Thylacine platform for periods of 2, and 8 hrs.
- 2. OSV vessel on standby at Thylacine platform for periods of 8 and 24 hrs
- 3. Pipelay vessel (PLV) both stationary and laying pipe at Thylacine North-1 operating at 20% of its Maximum Continuous Rating (MCR).

Table 3.Description of modelled scenarios, OSV: Offshore Supply Vessel, PLV: Pipelay Vessel, WHP: Well Head Platform, THY: Thylacine North-1 operations

Scenario	Site	Location	Operation Description	
1	100		WHP + OSV under DP (Resupply Ops) (OSV DP 2 hrs)	
2	1, 2, 3		WHP + OSV under DP (Resupply Ops)	
3	1, 3	Thylacine North-1	WHP + OSV under Transit (Standby 8 hrs)	
4			WHP + OSV under Transit (Standby 24 hrs)	
5	- 4		THY - Pipelay Vessel Stationary under DP	
6	4		THY - Pipelay Vessel Laying Pipe	

Table 4 Location details for the modelled sites. OSV: Offshore Supply Vessel, PLV: Pipelay Vessel, WHP: Well Head Platform

Well	Well Site Source Latitude (S) Longitude (E)	MGA (GDA94), Zone 54		Water depth			
			X (m)	Y (m)	(m)		
	1	WHP	39° 14.40200'	142° 54.60100'	664838	5654848	102.4
Thylacine A	2	OSV (resupply)	39° 14.40059'	142° 54.64574'	664902	5654849	102.3
	3	OSV (standby)	39° 12.50986'	142° 52.54039'	661946	5658410	99.2
Thylacine North-1	4	PLV	39° 12.51001'	142° 52.49601'	661882	5658411	99.1

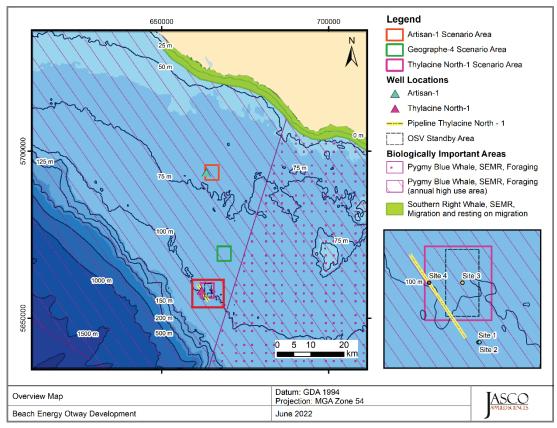


Figure 1 Overview map of the Beach Otway development

2. Noise Effect Criteria

To assess the potential effects of a sound-producing activity, it is necessary to establish exposure criteria (thresholds) for which sound levels may be expected to have a negative effect on animals. Whether acoustic exposure levels might injure or disturb marine fauna is an active research topic. Since 2007, several expert groups have developed SEL-based assessment approaches for evaluating auditory injury, with key works including Southall et al. (2007), Finneran and Jenkins (2012), Popper et al. (2014), United States National Marine Fisheries Service (NMFS 2018) and Southall et al. (2019). The number of studies that investigate the level of behavioural disturbance to marine fauna by anthropogenic sound has also increased substantially.

Two sound level metrics, SPL, and SEL, are commonly used to evaluate non-impulsive noise and its effects on marine life. In this report, the duration of the SEL accumulation is defined as integrated over a 24 h time period. Appropriate subscripts indicate any applied frequency weighting applied. The acoustic metrics in this report reflect the updated ANSI and ISO standards for acoustic terminology, ANSI S1.1 (2013) and ISO 18405:2017 (2017).

The following thresholds and guidelines for this study were chosen because they represent the best available science, and sound levels presented in literature for fauna with no defined thresholds:

- 1. Frequency-weighted accumulated sound exposure levels (SEL; *L*_{E,24h}) from Southall et al. (2019) for the onset of permanent threshold shift (PTS) and temporary threshold shift (TTS) in marine mammals for non-impulsive sources.
- Marine mammal behavioural threshold based on the current interim U.S. National Oceanic and Atmospheric Administration (NOAA) (2019) criterion for marine mammals of 120 dB re 1 μPa (SPL; L_p) for non-impulsive sound sources.

- 3. Sound exposure guidelines for fish, fish eggs, and larvae (Popper et al. 2014).
- 4. Frequency-weighted accumulated sound exposure levels (SEL; *L*_{E,24h}) from Finneran et al. (2017) for the onset of PTS and TTS in turtles for non-impulsive sources.

Additional detail on thresholds, guidelines and weighting functions can be found in Koessler et al. (2020), Matthews et al. (2020) and Matthews et al. (2021).

3. Methods

3.1. Vessel and Platform Noise Sources

Figure 2 presents a summary plot of considered source spectra; additional detail is provided in Sections 3.1.1–3.1.3.

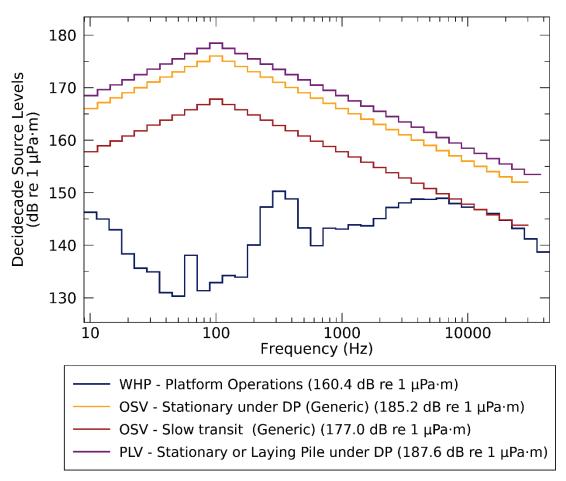


Figure 2. Energy source level (ESL) spectra (in decidecade frequency-band) for all sound sources.

3.1.1. Generic Offshore Vessel Source Spectrum

OSV and PLV vessels, other than those previously measured Seim AHTS measured in McPherson et al. (2021) and modelled in Koessler and McPherson (2021), may be used during various stages of the Otway development project. As the specific vessels have not been finalised, a generic source level has been considered for the OSV performing the activities described above (Section 1).

The generic vessel was based on the following specifications: an 89 m overall length, 20 m breadth, 7.6 m maximum draft and the percent of Maximum Continuous Rating (MCR) for the vessel operating at during typical DP operations, as nominally indicated by some potential vessel operators.

A main propulsion system is this generic vessel comprised of the following specifications.

Two stern propellers with:

- 3.2 m propeller diameter,
- 165 rpm nominal propeller speed,
- 2200 kW maximum continuous power input,
- Typical DP operation at 26% MRC, and
- Typical low speed transit operations 10% MCR.

Additional thruster modules active during DP operations may include bow tunnel thrusters and a bow azimuth thruster. The two bow tunnel thrusters for the generic vessel were comprised of:

- 2.0 m propeller diameter,
- 318 rpm nominal propeller speed,
- 1000 kW maximum continuous power input, and
- Typical DP operation at 17% MRC.

The bow azimuth thruster generic vessel was comprised of:

- 1.65 m propeller diameter,
- 373 rpm nominal propeller speed,
- 830 kW maximum continuous power input, and
- Typical DP operation at 21% MRC

Estimates of the acoustic source levels were based on the parameters of the propulsion system together with the method descripted in Appendix A.1.1.

These were estimated by scaling the spectrum based on the maximum utilised thruster power. The modelled source levels were adjusted using Equation (1).

$$SL = SL_{ref} + 10 \log_{10} \left(\frac{P}{P_{ref}}\right)$$
(1)

Here the modelled broadband source level (SL) is estimated from the broadband source level of the generic source (SL_{ref}) and the utilised thruster powers of the modelled and generic sources (P and P_{ref} , respectively).

3.1.2. Offshore Support and Pipelay Vessels

The source spectrum for the generic OSV considered here for modelling did not contain any scaling based on power ratios (Equation (1)) because vessel details were not known. However, it is notable that the source levels of the large offshore vessels can vary significantly and can be louder than those considered here. Parameters that correlate with a vessel's source level, particularly while under DP, are installed power, number of thrusters and thruster types (Quijano et al. 2018, McPherson et al. 2021). The specific details of these parameters are all unknown and a more generic approach has been taken herein.

For modelling purposes, the Skandi Acergy was nominated as a construction and pile lay vessel (Figure 3). The estimates of the source levels for the PLV were based on a total installed thruster power rating of 16840 kW, and overall length, beam and draft of 156.9 m, 27.0 m and 8.5 m respectively. The propulsion system of the Skandi Acergy contains the following:

• 2x 1,920 kW tunnel thrusters,

- 2x 1,500 kW retractable azimuths,
- 2x 3,000 kW contra-rotating azimuths,

1 x 4,000 kW shaft propeller + rudder, However, while under DP the single rear main is not likely to be in use; therefore its contribution for power scaling was omitted. The total maximum thruster power while the PLV was on DP of 12840 kW was used with Equation (1) for scaling. Resulting in the PLV vessel having the largest source level for the considered scenarios.

Figure 3. Photo of the Skandi Acergy considered for an Pipelay Vessel (PLV).

3.1.3. Platform Operations

Fixed structures such as the WHP have lower radiated sound levels than floating platforms (Spence et al. 2007). Equipment operating onboard floating platforms can contribute to marine environment sound however, airborne and structure-borne (vibration) pathways are considered more significant on these facilities, where equipment can be located below the water line. Underwater noise produced from platforms standing on metal jack-up legs is relatively low given the small surface areas available for sound transmission and given the location of machinery above the waterline. It is therefore expected that the dominant pathway for sound generation is structure-borne (i.e., vibration from machinery passing through the legs) (Spence et al. 2007).

Koessler and McPherson (2021) provided some detail and supporting information citing a study involving the Endeavour Jack-up Rig, operating in Cook Inlet (Illingworth and Rodkin Inc. 2014) during drilling activities. Considering the similarities between a Jack-up Rig and a static WHP the decidecade band spectrum from Illingworth and Rodkin Inc. (2014) was used for the WHP at the Thylacine A location.

4. Results

Results below are presented in two forms, tables of distances to isopleth contours (Section 4.1) and sound footprint maps (Section 4.2).

4.1. Tabulated Results

Table 5. *All Scenarios:* Maximum (R_{max}) and 95% ($R_{95\%}$) horizontal distances (in km) to sound pressure level (SPL) from the most appropriate location for considered sources per scenario. A dash indicates the level was not reached within the limits of the modelling resolution (20 m). OSV: Offshore Supply Vessel, DP: Dynamic Positioning.

SPL (L _p ; dB re 1 μPa)	Scenario 1 & 2 Platform with OSV Under DP (Resupply)				Scenario 5 & 6 Pipelay Vessel Stationary/Laying Pipe	
(Δρ, αύτε τ μι α).	R _{max} (km)	<i>R</i> 95% (km)	R _{max} (km)	<i>R</i> 95% (km)	R _{max} (km)	<i>R</i> 95% (km)
180	_	_	-	_	_	-
170 ^A	_	_	_	_	_	_
160	0.08	0.08	_	-	0.04	0.04
158 ^в	0.08	0.08	_	-	0.05	0.05
150	0.09	0.09	_	-	0.19	0.19
140	0.32	0.31	0.17	0.16	0.45	0.44
130	0.94	0.84	0.33	0.31	1.33	1.13
120 ^c	2.31	2.03	0.89	0.85	3.65	3.13
110	6.05	4.91	2.27	2.02	9.76	8.31

^A 48 h threshold for recoverable injury for fish with a swim bladder involved in hearing (Popper et al. 2014).

 $^{\scriptscriptstyle B}$ 12 h threshold for TTS for fish with a swim bladder involved in hearing (Popper et al. 2014).

^c Threshold for marine mammal behavioural response to continuous noise from NOAA (2019).

Table 6. *Platform Operations:* Maximum (R_{max}) horizontal distances (in km) to frequency-weighted SEL_{24h} PTS and TTS thresholds based on Southall et al. (2019) and Finneran et al. (2017) from the most appropriate location for considered sources per scenario, and ensonified area (km²). A dash indicates the level was not reached within the limits of the modelling resolution (20 m). A slash indicates that the area is less than an area associated with the modelled resolution (0.0013 km²).

Hearing group	Frequency- weighted SEL _{24h} threshold	Platfor OSV Ur	ario 1 m with nder DP oly 2 hrs)	Platfor OSV Ur	ario 2 m with nder DP Ily 8 hrs)	Platforr Under L	nario 3 n with OSV ight Transit Iby 8 hrs)	Platform Under Li	nario 4 1 with OSV ght Transit by 24 hrs)
	(L _{E,24h} ; dB re 1 µPa²⋅s)	R _{max} (km)	Area (km²)	R _{max} (km)	Area (km²)	R _{max} (km)	Area (km²)	R _{max} (km)	Area (km²)
				PTS					
Low-Frequency (LF) cetaceans	199	0.05	/	0.06	/	0.02	/	0.02	/
High-frequency (HF) cetaceans	198	0.05	/	0.05	/	0.02	/	0.02	/
Very High-frequency (VHF) cetaceans	173	0.05	0.01	0.08	0.01	0.03	/	0.03	0.12
Otariid seals	219	_	-	-	-	-	-	-	_
Turtles	220	0.03	/	0.03	/	-	-	-	-
				TTS					
Low-Frequency (LF) cetaceans	179	0.26	0.17	0.42	0.49	0.04	0.12	0.04	0.12
High-frequency (HF) cetaceans	178	0.05	/	0.06	0.01	0.03	/	0.03	0.12
Very High-frequency (VHF) cetaceans	153	0.37	0.38	0.47	0.66	0.30	0.39	0.30	0.44
Otariid seals	199	0.05	/	0.05	/	0.02	/	0.02	/
Turtles	200	0.05	/	0.06	0.01	0.02	/	0.02	/

Table 7. *Pipelay Operations:* Maximum (R_{max}) horizontal distances (in km) to frequency-weighted SEL_{24h} PTS and TTS thresholds based on Southall et al. (2019) and Finneran et al. (2017) from the source or pipelay track, and ensonified area (km²). A dash indicates the level was not reached within the limits of the modelling resolution (20 m). A slash indicates that the area is less than an area associated with the modelled resolution (0.0013 km²).

Hearing group	Frequency- weighted SEL _{24h} threshold	Scenario 5 Pipelay Vessel Stationary Under DP		Scenario 5 Pipelay Vessel Laying Pipe	
	(<i>L</i> _{E,24h} ; dB re 1 μPa²·s)	R _{max} (km)	Area (km²)	R _{max} (km)	Area (km²)
		PTS	;		
Low-Frequency (LF) cetaceans	199	0.08	0.02	0.03	0.33
High-frequency (HF) cetaceans	198	0.02	/	0.01	0.06
Very High-frequency (VHF) cetaceans	173	0.12	0.04	0.05	0.52
Otariid seals	219	-	-	-	_
Turtles	220	0.02	/	0.01	0.02
		TTS			
Low-Frequency (LF) cetaceans	179	0.86	2.18	1.66	20.48
High-frequency (HF) cetaceans	178	0.08	0.02	0.03	0.31
Very High-frequency (VHF) cetaceans	153	0.98	2.67	1.24	16.07
Otariid seals	199	0.02	/	0.02	0.18
Turtles	200	0.14	0.04	0.04	0.51

4.2. Sound Field Maps

Maps of the estimated sound fields, threshold contours, and isopleths of interest for SPL (Section 4.2.1) and SEL_{24h} (Section 4.2.2) sound fields are presented below.

4.2.1. SPL Maps

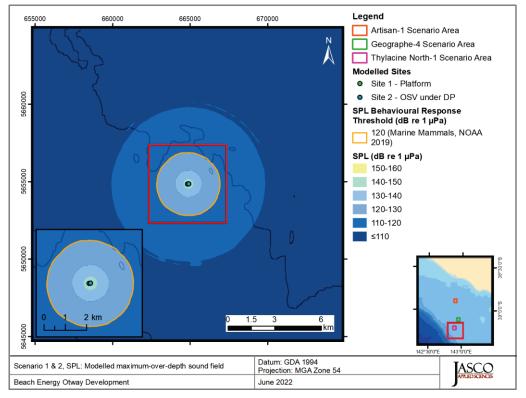


Figure 4. *Thylacine North-1, Platform Operations and OSV under DP*, SPL: Sound level contour map of unweighted maximum-over-depth sound field in 10 dB steps, and the isopleths for behavioural response thresholds for marine mammals.

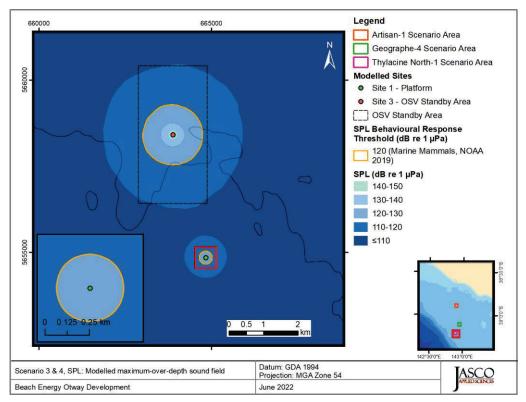


Figure 5. *Thylacine North-1, Platform Operations and OSV on Standby*, SPL: Sound level contour map of unweighted maximum-over-depth sound field in 10 dB steps, and the isopleths for behavioural response thresholds for marine mammals.

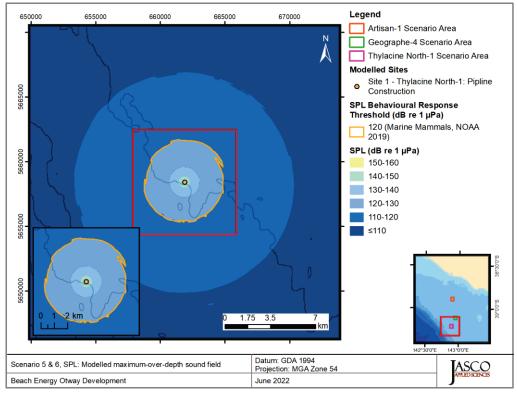


Figure 6. *Thylacine North-1, Pipelay Operations*, SPL: Sound level contour map of unweighted maximum-over-depth sound field in 10 dB steps, and the isopleths for behavioural response thresholds for marine mammals.

4.2.2. Accumulated SEL_{24h} Maps

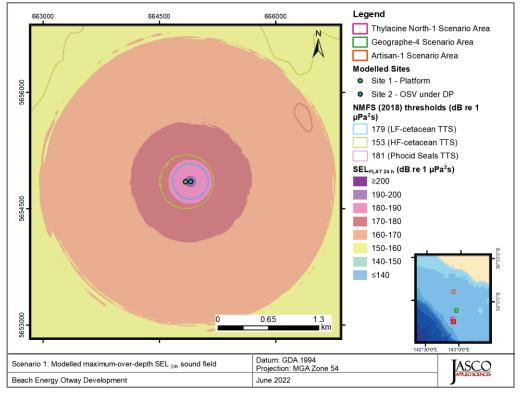


Figure 7. *Thylacine A, Scenario 1, Platform Operations and OSV under DP*, sound level contour map of unweighted maximum-over-depth SEL_{24h} results, along with isopleths for TTS thresholds. Thresholds for PTS and some thresholds for TTS were either not reached or were small enough such they could not be displayed on a map.

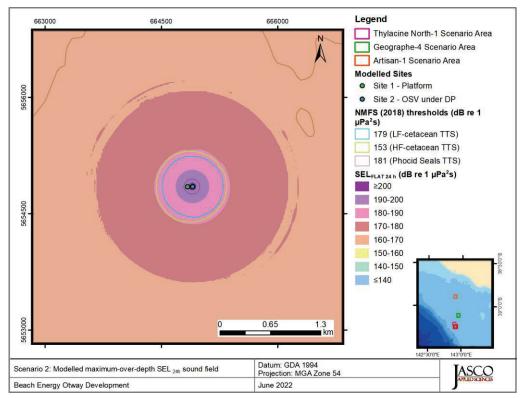


Figure 8. *Thylacine A, Scenario 2, Platform Operations and OSV under DP*, sound level contour map of unweighted maximum-over-depth SEL_{24h} results, along with isopleths for TTS thresholds. Thresholds for PTS and some thresholds for TTS were either not reached or were small enough such they could not be displayed on a map.

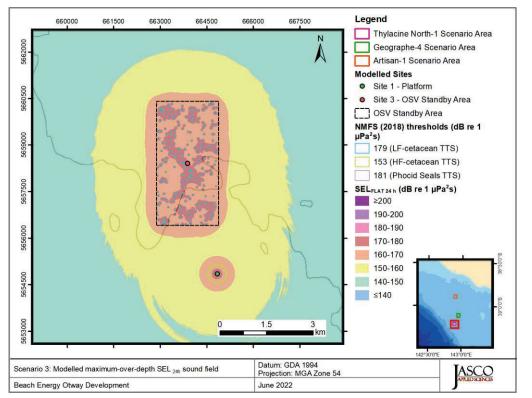


Figure 9. *Thylacine A, Scenario 3, Platform Operations and OSV on Standby*, sound level contour map of unweighted maximum-over-depth SEL_{24h} results, along with isopleths for TTS thresholds. Thresholds for PTS and some thresholds for TTS were either not reached or were small enough such they could not be displayed on a map.

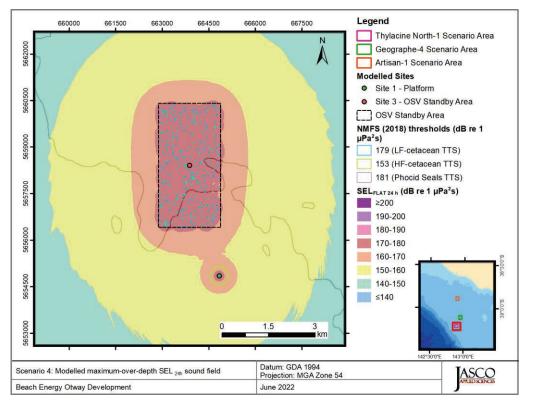


Figure 10. *Thylacine A, Scenario 4, Platform Operations and OSV on Standby*, sound level contour map of unweighted maximum-over-depth SEL_{24h} results, along with isopleths for TTS thresholds. Thresholds for PTS and some thresholds for TTS were either not reached or were small enough such they could not be displayed on a map.

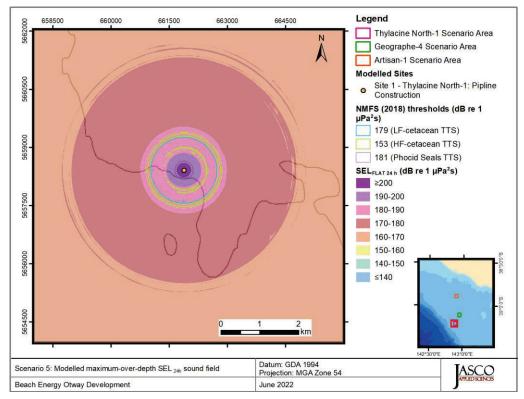


Figure 11. *Thylacine A, Scenario 5, Pipelay Operations*, sound level contour map of unweighted maximum-overdepth SEL_{24h} results, along with isopleths for TTS thresholds. Thresholds for PTS and some thresholds for TTS were either not reached or were small enough such they could not be displayed on a map.

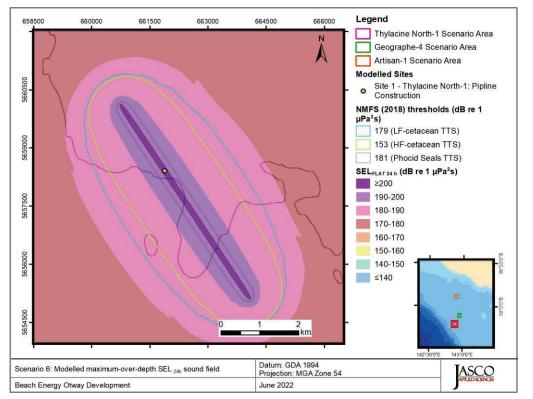


Figure 12. *Thylacine A, Scenario 6, Pipelay Operations*, sound level contour map of unweighted maximum-overdepth SEL_{24h} results, along with isopleths for TTS thresholds. Thresholds for PTS and some thresholds for TTS were either not reached or were small enough such they could not be displayed on a map

Literature Cited

- [ISO] International Organization for Standardization. 2017. *ISO 18405:2017. Underwater acoustics Terminology*. Geneva. <u>https://www.iso.org/standard/62406.html</u>.
- [NMFS] National Marine Fisheries Service (US). 2018. 2018 Revision to: Technical Guidance for Assessing the Effects of Anthropogenic Sound on Marine Mammal Hearing (Version 2.0): Underwater Thresholds for Onset of Permanent and Temporary Threshold Shifts. US Department of Commerce, NOAA. NOAA Technical Memorandum NMFS-OPR-59. 167 p. https://www.fisheries.noaa.gov/webdam/download/75962998.
- [NOAA] National Oceanic and Atmospheric Administration (US). 2019. ESA Section 7 Consultation Tools for Marine Mammals on the West Coast (webpage), 27 Sep 2019. <u>https://www.fisheries.noaa.gov/westcoast/endangered-species-conservation/esa-section-7-consultation-tools-marine-mammals-west</u>. (Accessed 10 Mar 2020).
- ANSI S1.1-2013. 2013. American National Standard Acoustical Terminology. American National Standards Institute, NY, USA.
- Brown, N.A. 1977. Cavitation noise problems and solutions. *International Symposium on Shipboard Acoustics*. 6-10 Sep 1976, Noordwijkehout. p. 17.
- Finneran, J.J. and A.K. Jenkins. 2012. Criteria and thresholds for U.S. Navy acoustic and explosive effects analysis. SPAWAR Systems Center Pacific, San Diego, CA, USA. 64 p.
- Finneran, J.J., E. Henderson, D.S. Houser, K. Jenkins, S. Kotecki, and J. Mulsow. 2017. Criteria and Thresholds for U.S. Navy Acoustic and Explosive Effects Analysis (Phase III). Technical report by Space and Naval Warfare Systems Center Pacific (SSC Pacific). 183 p.
- Illingworth and Rodkin Inc. 2014. *Cook Inlet Exploratory Drilling Program underwater sound source verification assessment, Cook Inlet, Alaska.* . Prepared for BlueCrest Energy, Inc. by Illingworth & Rodkin, Inc., Petaluma, California. <u>https://www.federalregister.gov/documents/2014/09/11/2014-21662/takes-of-marine-mammals-incidental-to-specified-activities-taking-marine-mammals-incidental-to.</u>
- Koessler, M.W., M.-N.R. Matthews, and C.R. McPherson. 2020. *Otway Offshore Project Drilling Program: Assessing Marine Fauna Sound Exposures*. Document Number 02033, Version 1.0. Technical report by JASCO Applied Sciences for Beach Energy Limited.
- Koessler, M.W. and C. McPherson. 2021. *Beach Otway Project: Additional and Revised Modelling Study*. Document Number 02502, Version 1.0. Technical Memo by JASCO Applied Sciences for Beach Energy Limited.
- Leggat, L.J., H.M. Merklinger, and J.L. Kennedy. 1981. *LNG Carrier Underwater Noise Study for Baffin Bay*. Defence Research Establishment Atlantic, Dartmouth, NS, Canada. 32 p.
- Matthews, M.-N.R., M.W. Koessler, and C.R. McPherson. 2020. *Otway Offshore Project Construction Program: Assessing Marine Fauna Sound Exposures*. Document Number 02112, Version 2.0. Technical report by JASCO Applied Sciences for Beach Energy Limited.
- Matthews, M.-N.R., S. Connell, and C.R. McPherson. 2021. *Otway Offshore Project Construction Program: Addendum – Combined Drilling and Construction Activities*. Document Number 02393, Version 1.0 DRAFT. Technical report by JASCO Applied Sciences for Beach Energy Limited. .
- McPherson, C.R., Z. Li, C.C. Wilson, K.A. Kowarski, and M. Koessler. 2021. *Beach Otway Development Acoustic Monitoring: Characterisation, Validation, and Marine Mammals*. Document Number 02424, Version 2.0. Technical report by JASCO Applied Sciences for Beach Energy Limited.
- Popper, A.N., A.D. Hawkins, R.R. Fay, D.A. Mann, S. Bartol, T.J. Carlson, S. Coombs, W.T. Ellison, R.L. Gentry, et al. 2014. Sound Exposure Guidelines for Fishes and Sea Turtles: A Technical Report prepared by ANSI-Accredited Standards Committee S3/SC1 and registered with ANSI. ASA S3/SC1.4 TR-2014. SpringerBriefs in Oceanography. ASA Press and Springer. <u>https://doi.org/10.1007/978-3-319-06659-2</u>.

- Quijano, J.E., D.E. Hannay, and M.E. Austin. 2018. Composite Underwater Noise Footprint of a Shallow Arctic Exploration Drilling Project. *IEEE Journal of Oceanic Engineering* 44(4): 1228-1239. https://doi.org/10.1109/JOE.2018.2858606.
- Ross, D. 1976. Mechanics of Underwater Noise. Pergamon Press, NY, USA.
- Southall, B.L., A.E. Bowles, W.T. Ellison, J.J. Finneran, R.L. Gentry, C.R. Greene, Jr., D. Kastak, D.R. Ketten, J.H. Miller, et al. 2007. Marine Mammal Noise Exposure Criteria: Initial Scientific Recommendations. *Aquatic Mammals* 33(4): 411-521. <u>https://doi.org/10.1080/09524622.2008.9753846</u>.
- Southall, B.L., J.J. Finneran, C.J. Reichmuth, P.E. Nachtigall, D.R. Ketten, A.E. Bowles, W.T. Ellison, D.P. Nowacek, and P.L. Tyack. 2019. Marine Mammal Noise Exposure Criteria: Updated Scientific Recommendations for Residual Hearing Effects. *Aquatic Mammals* 45(2): 125-232. <u>https://doi.org/10.1578/AM.45.2.2019.125</u>.
- Spence, J.H., R. Fischer, M.A. Bahtiarian, L. Boroditsky, N. Jones, and R. Dempsey. 2007. *Review of Existing and Future Potential Treatments for Reducing Underwater Sound from Oil and Gas Industry Activities*.
 Report Number NCE 07-001. Report by Noise Control Engineering, Inc. for the Joint Industry Programme on E&P Sound and Marine Life. 185 p.

Appendix A. Source Levels

A.1.1. Thruster Source Level Estimation

A vessel equipped with propellers/thrusters has two primary sources of sound that propagate from the unit: the machinery and the propellers. For thrusters operating in the heavily loaded conditions, the acoustic energy generated by the cavitation processes on the propeller blades dominates (Leggat et al. 1981). The sound power from the propellers is proportional to the number of blades, the propeller diameter, and the propeller tip speed.

Based on an analysis of acoustic data, Ross (1976) provided the following formula for the sound levels from a vessel's propeller, operating in calm, open ocean conditions:

$$L_{100} = 155 + 60\log(u/25) + 10\log(B/4),$$
(A-1)

where L_{100} is the spectrum level at 100 Hz, u is the propeller tip speed (m/s), and B is the number of propeller blades. Equation A-1 gives the total energy produced by the propeller cavitation at frequencies between 100 Hz and 10 kHz. This equation is valid for a propeller tip speed between 15 and 50 m/s. The spectrum is assumed to be flat below 100 Hz. Its level is assumed to fall off at a rate of -6 dB per octave above 100 Hz (Figure A-1).

Another method of predicting the source level of a propeller was suggested by Brown (1977). For propellers operating in heavily loaded conditions, the formula for the sound spectrum level is:

$$SL_B = 163 + 40\log D + 30\log N + 10\log B + 20\log f + 10\log(A_c/A_D), \quad (A-2)$$

where *D* is the propeller diameter (m), *N* is the propeller revolution rate per second, *B* is the number of blades, A_c is the area of the blades covered by cavitation, and A_D is the total propeller disc area. Similar to Ross's approach, the spectrum below 100 Hz is assumed to be flat. The tests with a naval propeller operating at off-design heavily loaded conditions showed that Equation A-2 should be used with a value of $(A_c/A_D) = 1$ (Leggat et al. 1981).

The combined source level for multiple thrusters operating together can be estimated using the formula:

$$SL_{total} = 10\log_{10} \sum_{i} 10^{\frac{SL_i}{10}},$$
 (A-3)

where SL_{1,...,N} are the source levels of individual thrusters. If the vessel is equipped with the same type of thrusters, the combined source level can be estimated using the formula:

$$SL_N = SL + 10\log N \tag{A-4}$$

where N is the total number of thrusters of the same type.

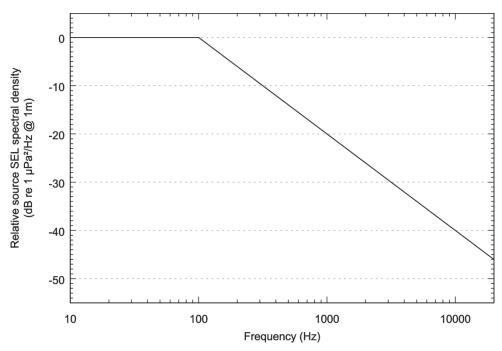


Figure A-1. Estimated sound spectrum from cavitating propeller (Leggat et al. 1981).

Appendix D RPS Oil Spill Trajectory Modelling Report

THYLACINE INSTALLATION AND COMMISSIONING – PHASE 5

Oil Spill Modelling

REPORT

Docume	Document status					
Version	Purpose of document	Authored by	Reviewed by	Approved by	Review date	
Rev A	Draft issued for internal review	Jeremie Bernard Dr. Ryan Dunn			16 June 2022	
Rev 0	Draft issued for client review		Jeremie Bernard	Dr. Sasha Zigic	20 June 2022	
Rev 1	Issued for client use		Jeremie Bernard	Dr. Sasha Zigic	19 August 2022	

Approval for issue

Dr. Sasha Zigic

S. Lugic

19 August 2022

This report was prepared by RPS within the terms of RPS' engagement with its client and in direct response to a scope of services. This report is supplied for the sole and specific purpose for use by RPS' client. The report does not account for any changes relating the subject matter of the report, or any legislative or regulatory changes that have occurred since the report was produced and that may affect the report. RPS does not accept any responsibility or liability for loss whatsoever to any third party caused by, related to or arising out of any use or reliance on the report.

Prepared by:

RPS

Jeremie Bernard Senior Coastal Engineer

Lakeside Corporate Space, Suite 425 Level 2, 34-38 Glenferrie Drive Robina, QLD, 4226

T +61 7 5574 1112E jeremie.bernard@rpsgroup.com

Prepared for:

Beach Energy Ltd

Phil Wemyss Principal Environment Advisor

80 Flinders Street, Adelaide, SA, 5001

- **T** +61 8 8433 2394
- E Phil.Wemyss@beachenergy.com.au

Contents

TER	MS AN	D ABBREVIATIONS	vi
EXE	CUTIV	SUMMARY	IX
	Back	pround	ix
	Meth	dology	ix
	Oil P	operties	X
	Resu	ts	
		Scenario: 603.7 m ³ loss of containment caused by vessel collision	X
1	INTR	DDUCTION	1
	1.1	Background	1
	1.2	What is Oil Spill Modelling?	3
		1.2.1 Stochastic Modelling (Multiple Spill Simulations)	3
		1.2.2 Deterministic Modelling (Single Spill Simulation)	4
2	sco	'E OF WORK	5
3			
	3.1	Tidal currents	
		3.1.1 Grid Setup3.1.2 Tidal Conditions	
		3.1.3 Surface Elevation Validation	
	3.2	Ocean Currents	-
	3.3	Surface Currents	
_			
4	WINI	DATA	18
5	WAT	ER TEMPERATURE AND SALINITY	22
6	011.9	PILL MODEL – SIMAP	24
•	6.1	Stochastic Modelling	
	6.1	Floating, Shoreline and In-Water Thresholds	
	-	6.1.1 Floating Oil Exposure Thresholds	
		6.1.2 Shoreline Accumulation Thresholds	
		6.1.3 In-water Exposure Thresholds	27
7		ROPERTIES	29
'	7.1	Oil Characteristics	-
	7.1	7.1.1 Overview	
		7.1.2 Marine Diesel Oil	
	7.2	Weathering Characteristics	
		7.2.1 Overview	
		7.2.2 MDO Mass Balance Forecasts	30
8	мор	EL SETTINGS	32
	-		-
9		ENTATION AND INTERPRETION OF MODEL RESULTS	
	9.1	Annual Analysis	
	0.0	9.1.1 Statistics.	
	9.2	Deterministic Trajectories	
10	RES	LTS – 603.7 M ³ LOSS OF CONTAINMENT CAUSED BY VESSEL COLLISION	
	10.1	Stochastic Analysis	
		10.1.1 Environment that may be affected (EMBA)	
		10.1.2 Floating Oil Exposure	
		10.1.3 Shoreline Accumulation	
		10.1.4 In-water exposure	51
11	REF	RENCES	69

Tables

Table 1-1	Location of Thylacine operations infrastructure used to define the Activity Area.	1
Table 3-1	Statistical comparison between the observed and HYDROMAP predicted surface elevations.	11
Table 3-2	Predicted monthly average and maximum surface current speeds for the selected location. The data was derived by combining the HYCOM ocean data and HYDROMAP tidel data from 2010, 2010 (inclusive)	15
Table 4-1	tidal data from 2010–2019 (inclusive) Predicted average and maximum winds representative for the selected node nearby the	15
	release location. Data derived from CFSR hindcast model from 2010–2019 (inclusive)	10
Table 5-1	Monthly average sea surface temperature and salinity in the study area.	
Table 6-1	The Bonn Agreement Oil Appearance Code.	
Table 6-2	Floating oil exposure thresholds used in this report (in alignment with NOPSEMA (2019))	
Table 6-3	Thresholds used to assess shoreline accumulation.	
Table 6-4	Dissolved and entrained hydrocarbon exposure values assessed over a 1-hour time step,	
	as per NOPSEMA (2019)	28
Table 7-1	Physical properties for MDO.	
Table 7-2	Boiling point ranges for MDO.	
Table 8-1	Summary of the oil spill model settings and thresholds used in this assessment.	32
Table 9-1	Summary of receptors used to assess floating oil, shoreline and in-water exposure to	
	hydrocarbons.	34
Table 9-2	Summary of the receptors that the release locations reside within.	35
Table 10-1	Maximum distance and direction from the release location to the edge of floating oil	
	exposure. Results are based on a 603.7 m ³ surface release of MDO over 6 hours,	
	tracked for 30 days. The results were calculated from 100 spill simulations per season	43
Table 10-2	Summary of the potential floating oil exposure to individual receptors. Results are based	
	on a 603.7 m ³ surface release of MDO over 6 hours, tracked for 30 days. The results	
	were calculated from 100 spill simulations per season	44
Table 10-3	Summary of oil accumulation across all shorelines. Results are based on a 603.7 m ³	
	surface release of MDO over 6 hours, tracked for 30 days. The results were calculated	
Table 40.4	from 100 spill simulations per season.	47
Table 10-4	Summary of oil accumulation on individual shoreline receptors. Results are based on a 603.7 m ³ surface release of MDO over 6 hours, tracked for 30 days. The results were	40
Table 10 F	calculated from 100 spill simulations per season	48
Table 10-5	Probability of dissolved hydrocarbons exposure to marine based receptors in the 0–10 m	
	dept. Results are based on a 603.7 m ³ surface release of MDO over 6 hours, tracked for	52
Table 10.6	30 days. The results were calculated from 100 spill simulations per season Probability of entrained hydrocarbons exposure to marine based receptors in the 0–10 m	52
	depth layer. Results are based on a 603.7 m^3 surface release of MDO over 6 hours,	
	tracked for 30 days. The results were calculated from 100 spill simulations per season	56
Table 10-7	Summary of the worst-case deterministic analysis based on the scenario presented in the	
	Stochastic Analysis Section.	62
Table 10.8	Summary of the mass balance for the trajectory that resulted in the largest volume of oil	02
	ashore. Results are based on a 603.7 m ³ surface release of MDO over 6 hours, tracked	
	for 30 days.	63
Table 10.9	Summary of the mass balance that resulted in the longest length of shoreline	00
	accumulation above 100 g/m ² . Results are based on a 603.7 m ³ surface release of MDO	
	over 6 hours, tracked for 30 days.	65
Table 10.10	Summary of the mass balance for the trajectory that resulted in the minimum time before	
	shoreline accumulation above the low threshold (10 g/m^2). Results are based on a 603.7	
	m ³ surface release of MDO over 6 hours, tracked for 30 days	67
	-	

Figures	
---------	--

Figure 1-1 Figure 1-2	Map of the Thylacine Activity Area release location Examples of four individual spill trajectories (four replicate simulations) predicted by	2
U	SIMAP for a spill scenario. The frequency of contact with given locations is used to	
	calculate the probability of impacts during a spill. Essentially, all model runs are overlain	
	(shown as the stacked runs on the right) and the number of times that trajectories contact	
	a given location at a concentration is used to calculate the probability	3
Figure 1-3	Example of an individual spill trajectory predicted by SIMAP for a spill scenario. Note, this	
	image represents surface oil as spillets and do not take any thresholds into consideration	4
Figure 3-1	HYCOM averaged seasonal surface drift currents during summer (upper image) and	
	winter (lower image)	7
Figure 3-2	Sample of the model grid used to generate the tidal currents for the study region. Higher	
	resolution areas are shown by the denser mesh.	
Figure 3-3	Bathymetry defined throughout the tidal model domain.	
	ocation of the tide stations used in the surface elevation validation	11
Figure 3-5 C	Comparison between HYDROMAP predicted (blue line) and observed (red line) surface	
	elevation at tidal stations Gabo Island (upper image), Port MacDonnell (middle image)	
	and Port Welshpool (lower image).	12
Figure 3-6	Comparison between HYDROMAP predicted (blue line) and observed (red line) surface	
	elevation at tidal stations Portland (upper image) and Stack Island (lower image)	
Figure 3-7	Map illustrating the spatial resolution of HYCOM currents.	14
Figure 3-8	Monthly surface current rose plots nearby the release location (derived by combining the	
	HYDROMAP tidal currents and HYCOM ocean currents for 2010–2019 (inclusive)	16
Figure 3-9	Total surface current rose plot nearby the release location (derived by combining the	
	HYDROMAP tidal currents and HYCOM ocean currents for 2010–2019 (inclusive)	
Figure 4-1	Spatial resolution of the CFSR modelled wind data used as input into the oil spill model	18
Figure 4-2	Modelled monthly wind rose distributions from 2010–2019 (inclusive) for the node nearby	
	the release location	20
Figure 4-3	Modelled total wind rose distributions from 2010–2019 (inclusive) for the node nearby the	
E: E 4	release location.	
Figure 5-1	Temperature and salinity profiles nearby the selected location within the study area	23
Figure 6-1	Photographs showing the difference between oil colour and thickness on the sea surface	~~
E : Z 4	(source: adapted from Oil Spill Solutions, 2015).	26
Figure 7-1	Proportional mass balance plot representing the weathering of MDO spilled onto the	
	water surface over 1 hour and subject to a constant 5 knots (2.6 m/s) wind speed at 15°C	04
F : 7 0	water temperature and 20°C air temperature.	31
Figure 7-2	Proportional mass balance plot representing the weathering of MDO spilled onto the	
	water over 1 hour and subject to variable wind speeds (1-12 knots) at 15°C water	04
F illing 0 4	temperature and 20°C air temperature.	
Figure 9-1	Receptor map for Australian Marine Parks (AMP)	36
Figure 9-2	Receptor map for the Interim Biogeographic Regionalisation for Australia (IBRA)	00
F : 0.0	bioregions	
Figure 9-3	Receptor map for integrated marine and coastal regionalisation (IMCRA) areas.	
Figure 9-4	Receptor map for Marine National Parks (MNP).	
Figure 9-5	Receptor map for Nature Reserves (NR)	
Figure 9-6	Receptor map for Ramsar Sites (Ramsar)	
Figure 9-7	Receptor map for Reefs, Shoals and Banks (RSB)	
Figure 9-8	Receptor map for Key Ecological Features (KEF)	
Figure 9-9	Receptor map for Local Government Areas (LGA)	
Figure 9-10		40
Figure 10-1	Predicted low threshold risk EMBA produced by overlaying the results from all 200 simulations, resulting from a 603.7 m ³ surface release of MDO over 6 hours during	
	summer and winter conditions.	40
		42

Figure 10-2	Zones of potential floating oil exposure in the event of a 603.7 m ³ of MDO containment loss over 6 hours tracked for 30 days. The results were calculated from 100 spill	. –
E : 40.0	simulations during summer conditions.	45
Figure 10-3	Zones of potential floating oil exposure in the event of a 603.7 m ³ of MDO containment	
	loss over 6 hours tracked for 30 days. The results were calculated from 100 spill	40
E ine 40.4	simulations during winter conditions.	46
Figure 10-4	Maximum potential shoreline loading in the event of a 603.7 m ³ of MDO containment loss	
	over 6 hours tracked for 30 days. The results were calculated from 100 spill simulations	4.0
E : 40 E	5	49
Figure 10-5	Maximum potential shoreline loading in the event of a 603.7 m ³ of MDO containment loss	
	over 6 hours tracked for 30 days. The results were calculated from 100 spill simulations	
E : 40.0	during winter conditions.	50
Figure 10-6	Zones of potential dissolved hydrocarbon exposure at 0-10 m below the sea in the event	
	of a 603.7 m ³ of MDO containment loss over 6 hours tracked for 30 days. The results	
	were calculated from 100 spill simulations during summer conditions.	53
Figure 10-7	Zones of potential dissolved hydrocarbon exposure at 0-10 m below the sea in the event	
	of a 603.7 m ³ of MDO containment loss over 6 hours tracked for 30 days. The results	
	were calculated from 100 spill simulations during winter conditions.	54
Figure 10-8	Zones of potential entrained hydrocarbon exposure at 0-10 m below the sea surface in	
	the event of a 603.7 m ³ of MDO containment loss over 6 hours tracked for 30 days. The	
	results were calculated from 100 spill simulations during summer conditions.	59
Figure 10-9	Zones of potential entrained hydrocarbon exposure at 0-10 m below the sea surface in	
	the event of a 603.7 m ³ of MDO containment loss over 6 hours tracked for 30 days. The	
	results were calculated from 100 spill simulations during winter conditions	60
Figure 10.10	DZones of potential floating oil exposure and shoreline accumulation, for the trajectory with	
	the largest volume of oil ashore. Results are based on a 603.7 m ³ surface release of	
	MDO over 6 hours, tracked for 30 days	63
Figure 10.1	1 Time series of the volume of oil accumulating on shorelines at the low (10 g/m ²),	
	moderate (100 g/m ²) and high (1,000 g/m ²) thresholds for the trajectory with the largest	
	volume of oil ashore. Results are based on a 603.7 m ³ surface release of MDO over 6	
	hours, tracked for 30 days	64
Figure 10.12	2Predicted weathering and fates graph for the trajectory with the largest volume of oil	
	ashore. Results are based on a 603.7 m ³ surface release of MDO over 6 hours, tracked	
	for 30 days.	64
Figure 10.13	3Zones of potential floating oil exposure and shoreline accumulation, for the trajectory with	
-	the longest length of shoreline accumulation above 100 g/m ² . Results are based on a	
	603.7 m ³ surface release of MDO over 6 hours, tracked for 30 days	65
Figure 10.14	4Time series of the length of shoreline at the low (10 g/m²), moderate (100 g/m²) and high	
U	(1,000 g/m ²) thresholds for the trajectory with the longest length of shoreline	
	accumulation above 100 g/m ² . Results are based on a 603.7 m ³ surface release of MDO	
	over 6 hours, tracked for 30 days.	66
Figure 10.1	5Predicted weathering and fates graph for the trajectory with the longest length of	
	shoreline accumulation above 100 g/m ² . Results are based on a 603.7 m ³ surface	
	release of MDO over 6 hours, tracked for 30 days.	
Figure 10 16	6Zones of potential floating oil exposure and shoreline accumulation over the 30-day	
	simulation, for the trajectory with the minimum time before shoreline accumulation above	
	10 g/m ² . Results are based on a 603.7 m ³ surface release of MDO over 6 hours, tracked	
	for 30 days.	67
Figure 10 1	7Predicted weathering and fates graph for the trajectory with the minimum time before	
. igaio 10.11	shoreline accumulation above 10 g/m ² . Results are based on a 603.7 m ³ surface release	
	of MDO over 6 hours, tracked for 30 days.	68
	et me e etter o houro, sucheu for oo uugermanning manning ma	

TERMS AND ABBREVIATIONS

0	Degrees
6	Minutes
"	Seconds
μm	Micrometre (unit of length; 1 μm = 0.001 mm)
AMP	Australian Marine Park
AMSA	Australian Maritime Safety Authority
ANZECC	Australian and New Zealand Environment and Conservation Council
API	American Petroleum Institute gravity. A measure of how heavy or light a petroleum liquid is compared to water.
ARMCANZ	Agriculture and Resource Management Council of Australia and New Zealand
ASTM	American Society for Testing and Materials
Beach	Beach Energy Limited
BIA	Biologically Important Areas
Bonn Agreement	An agreement for cooperation in dealing with pollution of the North Sea by oil and other harmful substances, 1983, includes: Governments of the Kingdom of Belgium, the Kingdom of Denmark, the French Republic, the Federal Republic of Germany, the Republic of Ireland, the Kingdom of the Netherlands, the Kingdom of Norway, the Kingdom of Sweden, the United Kingdom of Great Britain and Northern Ireland and the European Union.
BP	Boiling point. The temperature at which the vapor pressure of the liquid is equal to the pressure exerted on it by the surrounding atmosphere
BTEX	Benzene, Toluene, Ethylbenzene, and Xylenes
°C	degree Celsius (unit of temperature)
CFSR	Climate Forecast System Reanalysis
сР	Centipoise (unit of dynamic viscosity)
CSV	construction support vessel
Decay	The process where oil components are changed either chemically or biologically (biodegradation) to another compound. It includes breakdown to simpler organic carbon compounds by bacteria and other organisms, photo-oxidation by solar energy, and other chemical reactions.
Dynamic viscosity	The dynamic viscosity of a fluid expresses its resistance to shearing flows, where adjacent layers move parallel to each other with different speeds.
Floating oil exposure	Contact by floating oil on the sea surface at concentrations equal to or exceeding defined threshold concentrations. The consequence will vary depending on the threshold and the receptors
g/m²	Grams per square meter (unit of surface area density)
GODAE	Global Ocean Data Assimilation Experiment
НҮСОМ	Hybrid Coordinate Ocean Model. A data-assimilative, three-dimensional ocean model
HYDROMAP	Advanced ocean/coastal tidal model used to predict tidal water levels, current speed and current direction.
IBRA	Interim Biogeographic Regionalisation for Australia bioregions
IMCRA	Integrated marine and coastal regionalisation areas
IOA	Index of Agreement

ITOPF	International Tanker Owners Pollution Federation Limited
KEF	Key Ecological Feature
km	Kilometre (unit of length)
km ²	Square Kilometres (unit of area)
Knots	unit of speed (1 knot = 0.514 m/s)
LGA	Local Government Areas
m	Meter (unit of length)
m/s	Meter per Second (unit of speed)
m ³	Cubic meter (unit of volume)
MAE	Mean Absolute Error
MAHs	Monoaromatic Hydrocarbons
MDO	Marine diesel oil
MEG	Mono-Ethylene Glycol
MNP	Marine National Park
MP	Marine Park
MS	Marine Sanctuary
Ν	Number of observations
NASA	National Aeronautics and Space Administration (USA)
NCEP	National Centres for Environmental Prediction (USA)
nm	Nautical mile
NOAA	National Oceanic and Atmospheric Administration (USA)
NOPSEMA	National Offshore Petroleum Safety and Environmental Management Authority
NP	National Park
NR	Nature Reserve
0	Observed variable
Oi	Observed surface elevation
OGPP	Otway Gas Production Pipeline
Р	Model-predicted variable
Pi	Model predicted surface elevation
PAH	Polynuclear Aromatic Hydrocarbons
Pour Point	The pour point of a liquid is the temperature below which the liquid loses its flow characteristics
ppb	Parts per billion (concentration)
psu	Practical salinity units
Ramsar site	A site listed under the Ramsar Convention on wetlands which is an international intergovernmental treaty that provides the framework for the conservation and wise use of wetlands and their resources.
RSB	Reefs, Shoals and Banks
Shoreline accumulation	Arrival of oil at or near shorelines at on-water concentrations equal to or exceeding defined threshold concentrations. Shoreline contact is judged for floating oil arriving within a 2 km buffer zone from any shoreline as a conservative measure

REPORT	
SIMAP	Spill Impact Model Application Package. SIMAP is designed to simulate the fate and effects of spilled hydrocarbons for surface or subsea releases
Single Oil spill modelling	Oil spill modelling involving a computer simulation of a single hypothetical oil spill event subject to a single sequence of wind, current and other sea conditions over time. Single oil spill modelling, also referred to as "deterministic modelling" provides a simulation of one possible outcome of a given spill scenario, subject to the metocean conditions that are imposed. Single oil spill modelling is commonly used to consider the fate and effects of 'worst-case' oil spill scenarios that are carefully selected in consideration of the nature and scale of the offshore petroleum activity and the local environment (NOPSEMA, 2017). Because the outcomes of a single oil spill simulation can only represent the outcome of that scenario under one sequence of metocean conditions, worst-case conditions are often identified from stochastic modelling. It is impossible to calculate the likelihood of any outcome from a single oil spill simulation. Single oil spill modelling is generally used for response planning, preparedness planning and for supporting oil spill response operations in the event of an actual spill
SRTM	Shuttle Radar Topography Mission
State Waters	Low water mark seaward for three nautical miles
Stochastic oil spill modelling	Stochastic oil spill modelling is created by overlaying and statistically analysing the outcomes of many single oil-spill simulations of a defined spill scenario, where each simulation was subject to a different sequence of metocean conditions, selected objectively (typically by random selection) from a long sequence of historic conditions for the study area. Analysis of this larger set of simulations provides a more accurate indication of the environment that maybe affected (EMBA) and indicates which locations are more likely to be affected (as well as other statistics). Stochastic oil spill modelling avoids biases that affect single oil spill modelling (due to the reliance on only one possible sequence of conditions). However, when interpreting stochastic modelling, which is based on a wide range of potential conditions that might happen to occur, it is essential to understand that calculations will encompass a much larger area than could be affected in any single spill event, where a more limited set of conditions will occur. Consequently, it is misleading to imply that the region derived from stochastic modelling indicate the outcomes expected from a single spill event (NOPSEMA, 2017) Stochastic modelling is generally used for risk assessment and preparedness planning by indicating locations that could be exposed and may require response or subsequent impact assessment
Sub-LGA	Sub-Local Government Areas
TOPEX/Poseidon	A joint satellite mission between NASA and CNES to map ocean surface topography using an array of satellites equipped with detailed altimeters
USA	United States of America
US EPA	United States Environmental Protection Agency
US CG	United States Coast Guard
World Ocean Atlas	A collection of physicochemical parameters (e.g. temperature, salinity, oxygen, phosphate, silicate, and nitrate) based on profile data from the World Ocean Database (NCEI, 2021) established by NOAA's National Centers for Environmental Information (NCEI)
WGS 1984	World Geodetic System 1984 (WGS84); reference coordinate system
WHP	wellhead platform
Xmodel	Model predicted surface elevation
Xobs	Observed surface elevation

EXECUTIVE SUMMARY

Background

Beach Energy (Operations) Limited (Beach) plans to tie-in production from four new wells in the Thylacine field (T/L2) to the existing Otway Gas Production Pipeline (OGPP) and to extend the Mono-Ethylene Glycol (MEG) and control systems from the Thylacine Wellhead Platform (WHP) to the new wells.

The construction support vessel (CSV), *Acergy Skandi*, will be used for the installation and commissioning activities in Q1 2023. The largest marine diesel oil (MDO) fuel tank on the CSV is 603.7 m³. The locations of the well head platforms (WHP) and wells are shown in Table 1-1. Installation activities will require a buffer around these infrastructure components, thus for the purposes of this modelling study, an Activity Area was established using the infrastructure locations and the position closest to shore was selected as the release location for the modelling study.

In order to inform the offshore environmental impact and risk assessments Beach commissioned a detailed oil spill modelling study assessing the following hypothetical scenario:

• **Scenario**: A 603.7 m³ surface release of marine diesel oil over 6 hours following a vessel collision.

The modelling assessment was undertaken on a seasonal basis as follows:

- Summer (November through to March); and
- Winter (April to October)

The purpose of the modelling is to provide an understanding of a conservative 'outer envelope' of the potential area that may be affected in the unlikely event of hydrocarbon spill. The modelling does not take into consideration any of the spill prevention, mitigation and response capabilities that would be implemented in response to the spill. Therefore, the modelling results represent the maximum extent that the released hydrocarbon may influence.

The spill modelling was performed using an advanced three-dimensional trajectory and fates model; Spill Impact Model Application Program (SIMAP). The SIMAP model calculates the transport, spreading, entrainment and evaporation of spilled hydrocarbons over time, based on the prevailing wind and current conditions and the physical and chemical properties.

Methodology

The modelling study was carried out in several stages. Firstly, a ten-year wind and current dataset (2010–2019) was generated and the currents included the combined influence of three-dimensional large-scale ocean currents and tidal currents. Secondly, the currents, winds and detailed hydrocarbon characteristics were used as inputs in the three-dimensional oil spill model (SIMAP) to simulate the drift, spread, weathering and fate of the spilled oil.

As spills can occur during any set of wind and current conditions, modelling was conducted using a stochastic (random or non-deterministic) approach, which involved running 100 randomly selected single trajectory simulations per season, with each simulation having the same spill information (spill volume, duration and composition of hydrocarbons) but varying start times from the selected location closest to shore based on the location of Beach's Thylacine operations activity area. This ensured that each spill simulation was subject to a unique set of wind and current conditions

The SIMAP system, the methods and analysis presented herein, use modelling algorithms which have been anonymously peer reviewed and published in international journals. Further, RPS warrants that this work meets and exceeds the ASTM Standard F2067-13 "*Standard Practice for Development and Use of Oil Spill Models*".

Oil Properties

The MDO has an API of 37.6 and a density of 829.1 kg/m³ (at 25°C) with a viscosity value (4.0 cP) classifying it as a Group II (light-persistent) oil according to the International Tankers Owners Pollution Federation (ITOPF, 2014) and US EPA/USCG classifications. Six percent of the oil mass should evaporate within the first 12 hours (BP < 180 C), a further 34.6% should evaporate within the first 24 hours (180°C < BP < 160°C) and a further 54.4% should evaporate over several days (160°C < BP < 380°C). Approximately 5.0% of the oil is shown to be persistent.

Results

Scenario: 603.7 m³ loss of containment caused by vessel collision

- The maximum distance from the release location to the low (1–10 g/m²), moderate (10–50 g/m²) and high (> 50 g/m²) exposure zones was 116.5 km (east) during winter conditions, 24.5 km (east-southeast) during summer conditions and 11.9 km (east-southeast) during winter conditions, respectively.
- A total of 14 and 15 BIAs were predicted to be exposed to floating oil at, or above, the low threshold during the summer and winter conditions, respectively. Additionally, the Apollo AMP, and Central Bass Strait and Otway IMCRAs were predicted to be exposed to floating oil at, or above, the low threshold during both summer and winter conditions. Furthermore, during winter conditions the White-faced Storm-petrel - Foraging BIA, Otway Ranges IBRA, Central Victoria IMCRA, West Tasmania Canyons, Colac Otway nearshore waters (LGA), Apollo Bay nearshore waters (Sub-LGA) and Victoria State Waters receptors were also predicted to be exposed to floating oil at the low threshold. The release locations reside within 15 of the 24 receptors predicted to be exposed to floating oil.
- The probability of accumulation to any shoreline at, or above, the low level (10 g/m2) threshold was 8% during summer conditions and 18% during winter conditions. The minimum time before oil accumulation at, or above, the low threshold was 6.67 days and 3.25 days during the summer and winter conditions, respectively. The maximum volume ashore for a single spill trajectory during the summer and winter conditions was 27.6 m³ and 24.6 m³, respectively, and the summer and winter condition based maximum length of shoreline accumulation at the low threshold was 25.2 km and 42.4 km, respectively. No shoreline accumulation was predicted for the high (1,000 g/m²) threshold.
- A total of 16 BIAs were predicted to be exposed to dissolved hydrocarbons above the low threshold during both the summer and winter conditions. Furthermore, AMPs (Apollo and Zeehan), IMCRAs (Central Bass Strait, Central Victoria and Otway), West Tasmania Canyons KEF and Victorian State Waters were also predicted to be exposed above the low threshold during both summer and winter conditions. The maximum probability of exposure for the low threshold for any receptor during either summer and winter was 66% and 71%, respectively. During the summer and winter conditions the maximum dissolved aromatic concentrations at any given receptor(s) was predicted to be 167 ppb and 180 ppb, respectively, which occurred within receptors containing the release location.
- During both summer and winter conditions entrained hydrocarbon exposures at, or above, the low threshold was predicted for AMP, BIA, IBRA, IMCRA, KEF, MNP, RSB, nearshore waters (LGA and sub-LGA) and State Water receptors. The maximum probability of exposure for the low threshold for any receptor during summer and winter was 95% during both seasons. The maximum entrained hydrocarbon concentration predicted during the summer and winter conditions was 19,830 ppb and 17,931 ppb, respectively, which occurred within receptors containing the release location.

1 INTRODUCTION

1.1 Background

Beach Energy (Operations) Limited (Beach) plans to tie-in production from four new wells in the Thylacine field (T/L2) to the existing Otway Gas Production Pipeline (OGPP) and to extend the Mono-Ethylene Glycol (MEG) and control systems from the Thylacine Wellhead Platform (WHP) to the new wells.

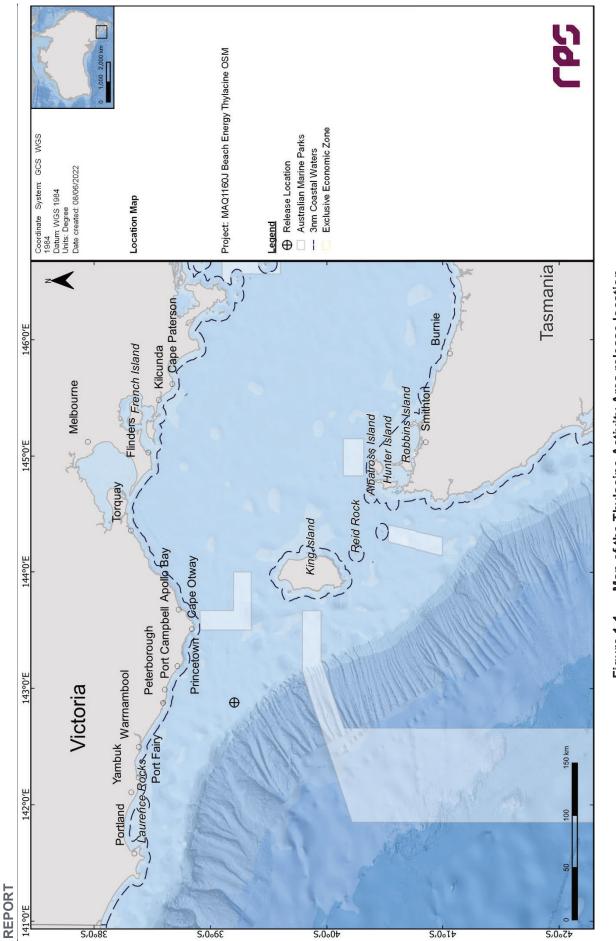
The construction support vessel (CSV), *Acergy Skandi*, will be used for the installation and commissioning activities in Q1 2023. The largest marine diesel oil (MDO) fuel tank on the CSV is 603.7 m³. The locations of the well head platforms (WHP) and wells are shown in Table 1-1. Installation activities will require a buffer around these infrastructure components, thus for the purposes of this modelling study, an Activity Area was established using the infrastructure locations and the position closest to shore was selected as the release location for the modelling study (Figure 1-1).

In order to inform the offshore environmental impact and risk assessments Beach commissioned a detailed oil spill modelling study assessing the following hypothetical scenario:

• **Scenario**: A 603.7 m³ surface release of marine diesel oil (MDO) over 6 hours following a vessel collision.

The modelling assessment was undertaken on a seasonal basis as follows:

- Summer (November through to March); and
- Winter (April to October)


The purpose of the modelling is to provide an understanding of a conservative 'outer envelope' of the potential area that may be affected in the unlikely event of hydrocarbon spill. The modelling does not take into consideration any of the spill prevention, mitigation and response capabilities that would be implemented in response to the spill. Therefore, the modelling results represent the maximum extent that the released hydrocarbon may influence.

The spill modelling was performed using an advanced three-dimensional trajectory and fates model; Spill Impact Model Application Program (SIMAP). The SIMAP model calculates the transport, spreading, entrainment and evaporation of spilled hydrocarbons over time, based on the prevailing wind and current conditions and the physical and chemical properties.

Note that the oil spill model, the method and analysis presented herein uses modelling algorithms which have been anonymously peer reviewed and published in international journals. Furthermore, RPS warrants that this work meets and exceeds the American Society for Testing and Materials (ASTM) Standard F2067-13 "*Standard Practice for Development and Use of Oil Spill Models*".

Table 1-1 Location of Thylacine operations infrastructure used to define the Activity Area.

Infrastructure	Latitude	Longitude
Thylacine-A WHP	39º 14.241' S	142º 54.126' E
Thylacine North-1 (TN-1) well	39° 12.510' S	142° 52.496' E
Thylacine North-2 (TN-2) well	39° 12.284' S	142° 51.557' E
Thylacine West-1 (TW-1) well	39° 13.338' S	142° 50.318' E
Thylacine West-2 (TW-2) well	39° 13.332' S	142° 50.310' E

Page 2

MAQ1160J | Thylacine Installation and Commissioning – Phase 5 | Rev1 | 19 August 2022 www.rpsgroup.com/mst

1.2 What is Oil Spill Modelling?

Oil spill modelling is a valuable tool widely used for risk assessment, emergency response and contingency planning where it can be particularly helpful to proponents and decision makers. By modelling a series of the most likely oil spill scenarios, decisions concerning suitable response measures and strategic locations for deploying equipment and materials can be made, and the locations at most risk can be identified. The two types of oil spill modelling often used are stochastic (Section 1.2.1) and deterministic (Section 1.2.2) modelling.

1.2.1 Stochastic Modelling (Multiple Spill Simulations)

Stochastic oil spill modelling is created by overlaying a great number (often hundreds) of individual, computer-simulated hypothetical spills (NOPSEMA, 2018; Figure 1.2).

Stochastic modelling is a common means of assessing the potential risks from oil spills related to new projects and facilities. Stochastic modelling typically utilises hydrodynamic data for the location in combination with historic wind data. Typically, 100 iterations of the model will be run utilising the data that is most relevant to the season or timing of the project.

The outcomes are often presented as a probability of exposure and is primarily used for risk assessment purposes in view to understand the range of environments that may be affected or impacted by a spill. Elements of the stochastic modelling can also be used in oil spill preparedness and planning.

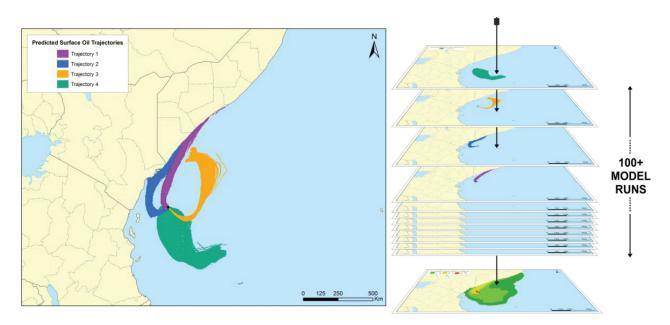


Figure 1-2 Examples of four individual spill trajectories (four replicate simulations) predicted by SIMAP for a spill scenario. The frequency of contact with given locations is used to calculate the probability of impacts during a spill. Essentially, all model runs are overlain (shown as the stacked runs on the right) and the number of times that trajectories contact a given location at a concentration is used to calculate the probability.

1.2.2 Deterministic Modelling (Single Spill Simulation)

Deterministic modelling is the predictive modelling of a single incident subject to a single sample of wind and weather conditions over time (NOPSEMA, 2018; Figure 1-3).

Deterministic modelling is often paired with stochastic modelling to place the large stochastic footprint into perspective. This deterministic analysis is generally a single run selected from the stochastic analysis and serves as the basis for developing the plans and equipment needs for a realistic spill response. Deterministic spills can be selected on several basis such as minimum time to shoreline, largest swept area, maximum volume ashore, longest length of shoreline contacted by oil or largest area of entrained or dissolved hydrocarbons.

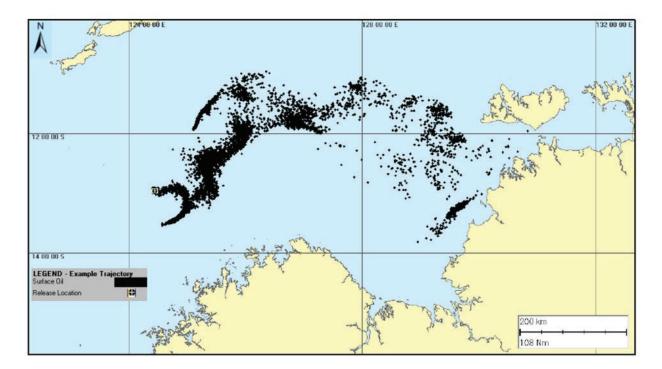


Figure 1-3 Example of an individual spill trajectory predicted by SIMAP for a spill scenario. Note, this image represents surface oil as spillets and do not take any thresholds into consideration.

2 SCOPE OF WORK

The scope of work included the following components:

- Generate 10 years of winds and three-dimensional currents from 2010 to 2019 (inclusive). The currents included the combined influence of tidal and ocean currents;
- Include the wind and current data and characteristics of the MDO as input into the three-dimensional oil spill model (SIMAP), to model the movement, spreading, weathering and shoreline contact by hydrocarbons over time;
- Use SIMAP's stochastic model (also known as a probability model) to calculate exposure to surround waters and shorelines. This involved running 100 randomly selected single trajectory simulations per season, with each simulation having the same spill information (spill volume, duration and composition of hydrocarbons) but varying start times from the selected location closest to shore based on the location of Beach's Thylacine operations Activity Area (see Figure 1-1 and Table 1-1). This ensured that each spill simulation was subject to a unique set of wind and current conditions;
- Results were assessed to determine the exposure to waters and contact to shorelines based upon the NOPSEMA thresholds; and
- The stochastic modelling results were reviewed, and the "worst case" deterministic runs were identified and presented based on the following criteria (if applicable):
 - a. Largest volume of oil ashore;
 - b. Longest length of oil accumulation on shorelines above 100 g/m²;
 - c. minimum time before shoreline contact above 10 g/m².

3 **REGIONAL CURRENTS**

Bass Strait is a body of water separating Tasmania from the southern Australian mainland, specifically the state of Victoria. The strait is a relatively shallow area of the continental shelf, connecting the southeast Indian Ocean with the Tasman Sea. Currents within the straight are primarily driven by tides, winds, incident continental shelf waves and density driven flows; high winds and strong tidal currents are frequent within the area (Jones, 1980).

The varied geography and bathymetry of the region, in addition to the forcing of the south-eastern Indian Ocean and local meteorology lead to complex shelf and slope circulation patterns (Middleton & Bye, 2007). Figure 3-1 displays seasonal current trends within the Bass Strait. During winter there is a strong eastward water flow due to the strengthening of the South Australian Current (fed by the Leeuwin Current in the Northwest Shelf), which bifurcates with one extension moving though the Bass Strait, and another forming the Zeehan Current off western Tasmania (Sandery & Kämpf, 2007). During summer, water flow reverses off Tasmania, King Island and the Otway Basin travelling eastward, as the coastal current develops due to south-easterly winds.

To accurately describe the variability in currents between the inshore and offshore region, a hybrid regional dataset was developed by combining deep ocean predictions obtained from HYCOM (Hybrid Coordinate Ocean Model) with surface tidal currents developed by RPS. The following sections provide a summary of the hybrid regional dataset.

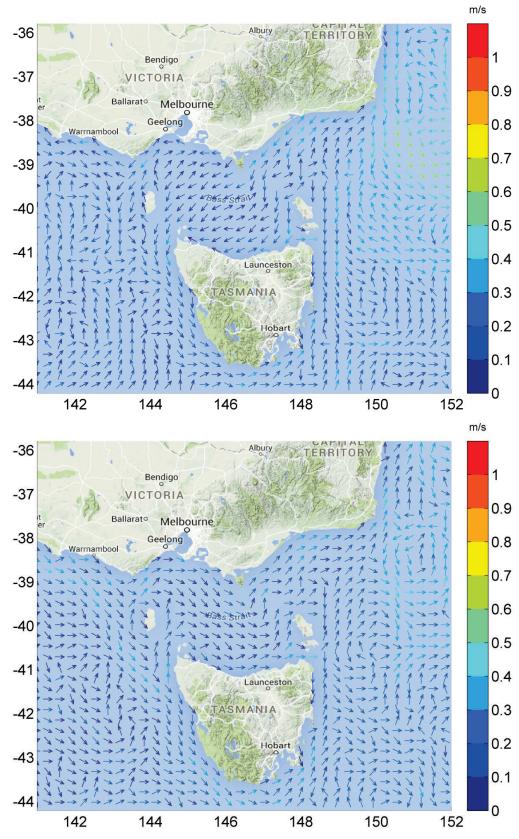


Figure 3-1 HYCOM averaged seasonal surface drift currents during summer (upper image) and winter (lower image).

3.1 Tidal currents

Tidal current data was generated using RPS's advanced ocean/coastal model, HYDROMAP. The HYDROMAP model has been thoroughly tested and verified through field measurements throughout the world for more than 30 years (Isaji & Spaulding, 1984; Isaji, et al., 2001; Zigic, et al., 2003). HYDROMAP tidal current data has been used as input to forecast (in the future) and hindcast (in the past) pollutant spills in Australian waters and forms part of the Australian National Oil Spill Emergency Response System operated by AMSA (Australian Maritime Safety Authority).

HYDROMAP employs a sophisticated sub-gridding strategy, which supports up to six levels of spatial resolution, halving the grid cell size as each level of resolution is employed. The sub-gridding allows for higher resolution of currents within areas of greater bathymetric and coastline complexity, and/or of interest to a study.

The numerical solution methodology follows that of Davies (1977a and 1977b) with further developments for model efficiency by Owen (1980) and Gordon (1982). A more detailed presentation of the model can be found in Isaji and Spaulding (1984) and Isaji et al. (2001).

3.1.1 Grid Setup

The tidal model domain is sub-gridded to a resolution of 500 m for shallow and coastal regions, starting from an offshore (or deep water) resolution of 8 km. The finer grids are progressively allocated in a step-wise fashion to more accurately resolve flows along the coastline, around islands and over regions with more complex bathymetry. Figure 3-2 shows the tidal model grid covering the study domain.

A combination of datasets was used and merged to describe the shape of the seabed within the grid domain (Figure 3-3). These included spot depths and contours which were digitised from nautical charts released by the hydrographic offices as well as Geoscience Australia database and depths extracted from the Shuttle Radar Topography Mission (SRTM30_PLUS) Plus dataset (see Becker et al., 2009).

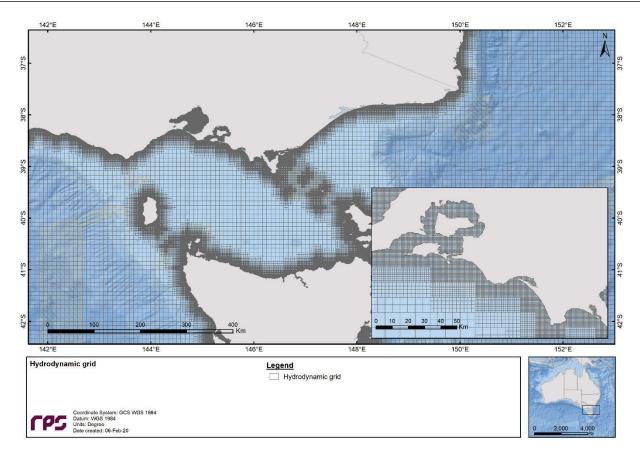


Figure 3-2 Sample of the model grid used to generate the tidal currents for the study region. Higher resolution areas are shown by the denser mesh.

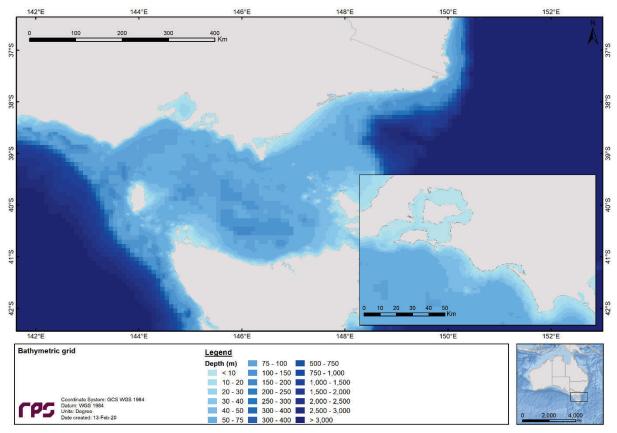


Figure 3-3 Bathymetry defined throughout the tidal model domain.

3.1.2 Tidal Conditions

The ocean boundary data for the regional model was obtained from satellite measured altimetry data (TOPEX/Poseidon 8.0) which provided estimates of the eight dominant tidal constituents at a horizontal scale of approximately 0.25 degrees. The eight major tidal constituents used were K_2 , S_2 , M_2 , N_2 , K_1 , P_1 , O_1 and Q_1 . Using the tidal data, time series surface heights were calculated along the open boundaries for the simulation period.

The Topex/Poseidon satellite data has a resolution of 0.25 degrees globally, with higher resolution in coastal regions, and is produced and quality controlled by NASA (National Aeronautics and Space Administration). The data capturing satellites, equipped with two altimeters capable of taking sea level measurements accurate to less than ± 5 cm, measured oceanic surface elevations (and the resultant tides) for the period 1992–2005. In total these satellites carried out 62,000 orbits of the planet. The Topex/Poseidon tidal data has been widely used amongst the oceanographic community, being refereced in more than 2,100 research publications (e.g. Andersen, 1995; Ludicone et al., 1998; Matsumoto et al., 2000; Kostianoy et al., 2003; Yaremchuk & Tangdong, 2004; Qiu & Chen 2010). The Topex/Poseidon tidal data is considered suitably accurate for this study.

3.1.3 Surface Elevation Validation

To ensure that tidal predictions were accurate, predicted surface elevations were compared to data observed at a location situated within the study area (Figure 3-4).

To provide a statistical measure of the model performance, the Index of Agreement (IOA – Willmott, 1981) and the Mean Absolute Error (MAE – Willmott, 1982; Willmott & Matsuura, 2005) were used.

The MAE (Eq.1) is simply the average of the absolute values of the difference between the model-predicted (P) and observed (O) variables. It is a more natural measure of the average error (Willmott and Matsuura, 2005) and more readily understood. The MAE is determined by:

$$MAE = N^{-1} \sum_{i=1}^{N} |P_i - O_i|$$
 Eq.1

Where: *N* = Number of observations

 P_i = Model predicted surface elevation

O_i = Observed surface elevation

The Index of Agreement (IOA; Eq. 2) in contrast, gives a non-dimensional measure of model accuracy or performance. A perfect agreement between the model predicted and observed surface elevations exists if the index gives an agreement value of 1, and complete disagreement between model and observed surface elevations will produce an index measure of 0 (Wilmott, 1981). Willmott et al. (1985) also suggests that values larger than 0.5 may represent good model performance. The IOA is determined by:

$$IOA = 1 - \frac{\sum |X_{model} - X_{obs}|^2}{\sum (|X_{model} - \overline{X_{obs}}| + |X_{obs} - \overline{X_{obs}}|)^2}$$
Eq.2

Where:

 X_{model} = Model predicted surface elevation

 X_{obs} = Observed surface elevation

Clearly, a greater IOA and lower MAE represent a better model performance.

Figure 3-5 and Figure 3-6 illustrate a comparison of the predicted and observed surface elevations in February 2017. As shown on the graph, the model accurately reproduced the phase and amplitudes throughout the spring and neap tidal cycles.

Table 3-1 shows the IOA and MAE values for the selected tide station locations indicating that the model is performing well.

Tide Station	AOI	MAE (m)
Gabo Island	0.98	0.08
Port MacDonnell	0.98	0.05
Port Welshpool	0.92	0.30
Portland	0.97	0.07
Stack Island	0.96	0.22

Table 3-1 Statistical comparison between the observed and HYDROMAP predicted surface elevations.

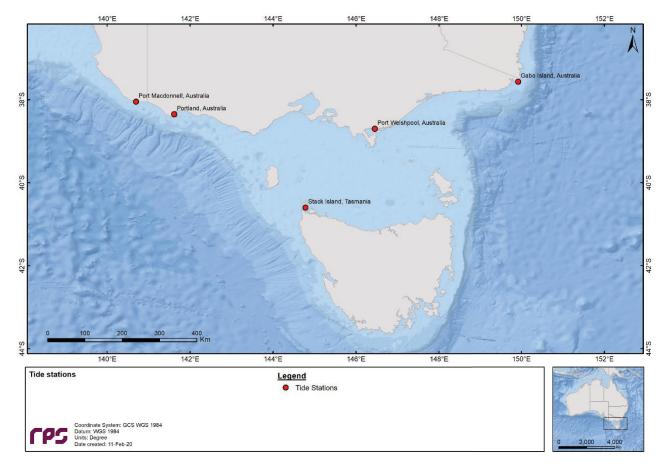


Figure 3-4 Location of the tide stations used in the surface elevation validation.

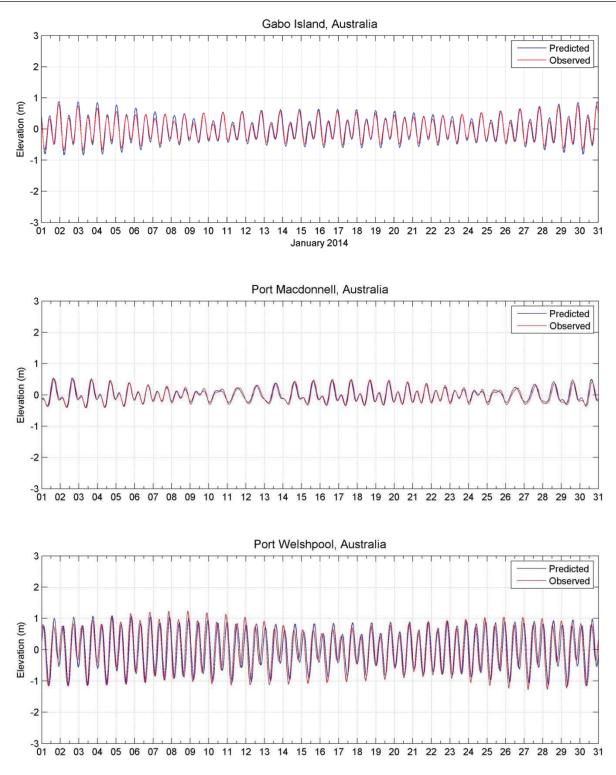


Figure 3-5 Comparison between HYDROMAP predicted (blue line) and observed (red line) surface elevation at tidal stations Gabo Island (upper image), Port MacDonnell (middle image) and Port Welshpool (lower image).

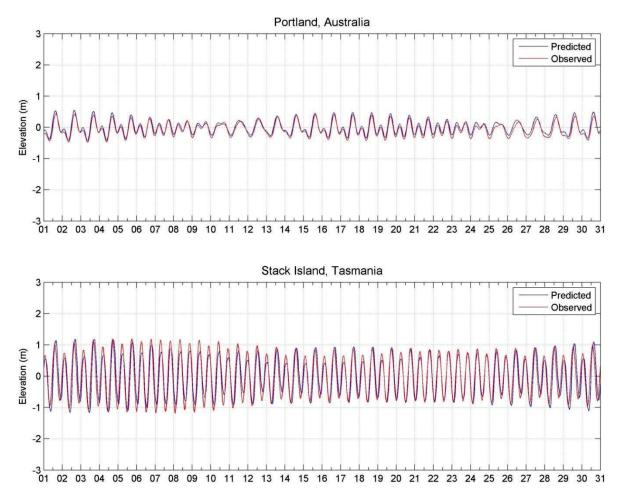
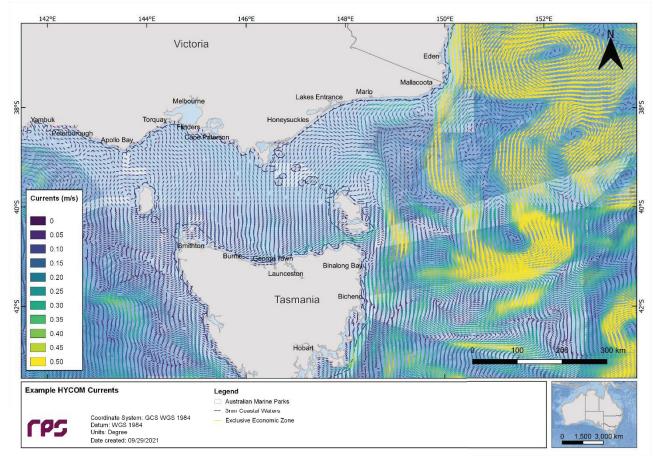



Figure 3-6 Comparison between HYDROMAP predicted (blue line) and observed (red line) surface elevation at tidal stations Portland (upper image) and Stack Island (lower image).

3.2 Ocean Currents

Data describing the flow of ocean currents for the years 2010 to 2019 (inclusive) was obtained from HYCOM (Hybrid Coordinate Ocean Model, (Chassignet et al., 2007), which is operated by the HYCOM Consortium, sponsored by the Global Ocean Data Assimilation Experiment (GODAE). HYCOM is a data-assimilative, three-dimensional ocean model that is run as a hindcast (for a past period), assimilating time-varying observations of sea surface height, sea surface temperature and in-situ temperature and salinity measurements (Chassignet et al., 2009). The HYCOM predictions for drift currents are produced at a horizontal spatial resolution of approximately 8.25 km (1/12th of a degree) over the region, at a frequency of once per day. HYCOM uses isopycnal layers in the open, stratified ocean, but uses the layered continuity equation to make a dynamically smooth transition to a terrain-following coordinate in shallow coastal regions, and to z-level coordinates in the mixed layer and/or unstratified seas. Figure 3-7 illustrates the spatial resolution of HYCOM currents.

For this study, the HYCOM hindcast currents were obtained.

Figure 3-7 Map illustrating the spatial resolution of HYCOM currents.

3.3 Surface Currents

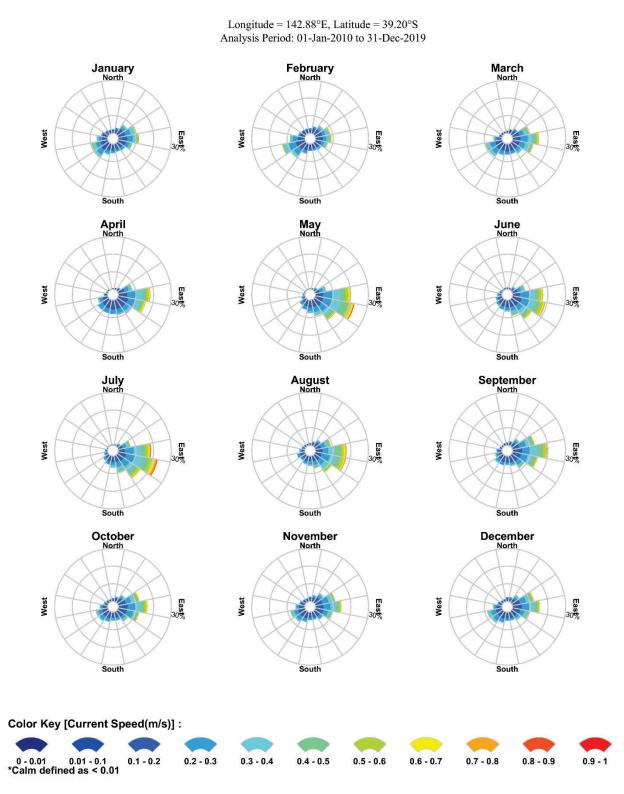

Table 3-2 presents the average and maximum net surface current speeds nearby the release location by combining the ocean and tidal currents. Current speeds varied throughout the year with peak current speeds ranging between approximately 0.81 m/s (October) and 1.15 m/s (August). The dominant surface current directions throughout the year were identified as (towards) east-southeast and west-northwest.

Figure 3-8 and Figure 3-9 show the monthly and total surface current rose distributions for the selected location.

Note the convention for defining current direction is the direction the current flows towards, which is used to reference current direction throughout this report. Each branch of the rose represents the currents flowing to that direction, with north to the top of the diagram. Sixteen directions are used. The branches are divided into segments of different colour, which represent the current speed ranges for each direction. Speed intervals of 0.1 m/s are predominantly used in these current roses. The length of each coloured segment is relative to the proportion of currents flowing within the corresponding speed and direction.

Table 3-2 Predicted monthly average and maximum surface current speeds for the selected location. The data was derived by combining the HYCOM ocean data and HYDROMAP tidal data from 2010–2019 (inclusive).

Month	Average current speed (m/s)	Maximum current speed (m/s)	General direction(s) (Towards)
January	0.20	0.90	East-southeast and West- southwest
February	0.21	1.00	East-southeast and West- southwest
March	0.22	1.14	East-southeast and West- southwest
April	0.22	0.90	East
Мау	0.27	1.03	East
June	0.25	0.99	East
July	0.29	0.29 0.94	
August	0.26	1.15	East
September	0.23	0.98	East
October	0.22	0.81 East	
November	0.21 0.83		East
December	0.22	0.22 0.82 East-southe souther	
Minimum	0.20	0.81	
Maximum	0.29	1.15	

RPS Data Set Analysis Current Speed (m/s) and Direction Rose (All Records)

Figure 3-8 Monthly surface current rose plots nearby the release location (derived by combining the HYDROMAP tidal currents and HYCOM ocean currents for 2010–2019 (inclusive).

RPS Data Set Analysis

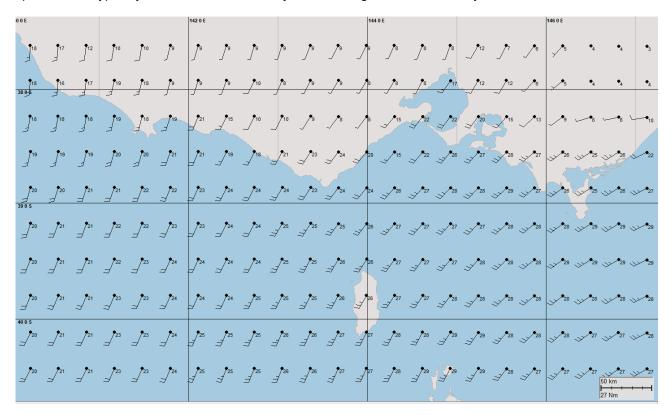
Current Speed (m/s) and Direction Rose (All Records)

Figure 3-9 Total surface current rose plot nearby the release location (derived by combining the HYDROMAP tidal currents and HYCOM ocean currents for 2010–2019 (inclusive).

4 WIND DATA

High resolution wind data for the years 2010 to 2019 (inclusive) was sourced from the National Centre for Environmental Prediction (NCEP) Climate Forecast System Reanalysis dataset (CFSR; see Saha et al., 2010). The CFSR wind model is a fully coupled, data-assimilative hindcast model representing the interaction between the earth's oceans, land and atmosphere. The gridded wind data output is available at ¹/₄ of a degree resolution (~33 km) and 1-hourly time intervals. Figure 4-1 shows the spatial resolution of the wind field used as input into the oil spill model.

Table 4-1 presents the monthly average and maximum winds derived from a CFSR wind node nearby the release location. The wind data demonstrated average monthly wind speeds ranging from 14.2 knots (January) to 20.1 knots (July) with maximums ranging between 58.9 knots (February) and 65.8 knots (December. The dominant wind direction throughout the year was from the west, whilst maximum wind speeds were typically associated with westerly winds during all months of the year.



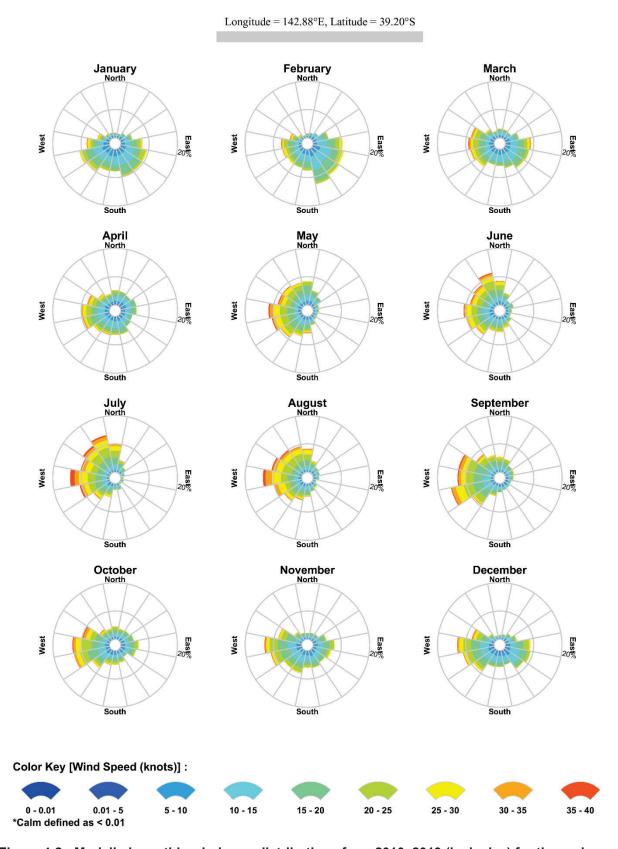
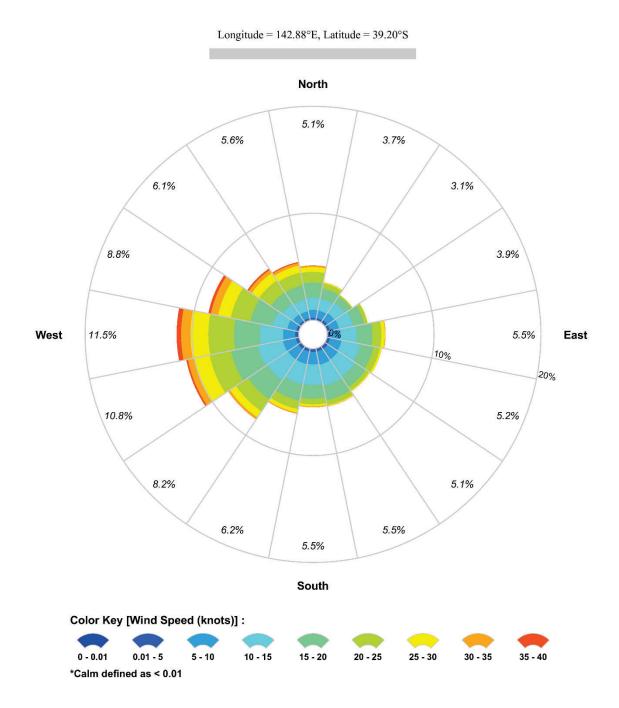

Figure 4-1 Spatial resolution of the CFSR modelled wind data used as input into the oil spill model.

Figure 4-2 and Figure 4-3 show the monthly and total wind rose distributions derived from the CFSR data for the selected node nearby the release location.

Note that the atmospheric convention for defining wind direction, that is, the direction the wind blows <u>from</u>, is used to reference wind direction throughout this report. Each branch of the rose represents wind coming from that direction, with north to the top of the diagram. Sixteen directions are used. The branches are divided into segments of different colour, which represent wind speed ranges from that direction. Speed ranges of 3 knots are predominantly used in these wind roses. The length of each segment within a branch is proportional to the frequency of winds blowing within the corresponding range of speeds from that direction.

Table 4-1Predicted average and maximum winds representative for the selected node nearby the
release location. Data derived from CFSR hindcast model from 2010–2019 (inclusive).

Month	Average wind speed (knots)	Maximum wind speed (knots)	General direction(s) (From)	
January	14.2	62.8	East-southeast and West- southwest	
February	14.8	58.9	Southeast	
March	14.8	64.7	East and West	
April	14.6	61.2	West	
Мау	17.3	62.2	West	
June	17.5	60.5	West to North	
July	20.1	60.5	West to North	
August	19.5	65.1	West to North	
September	17.4	60.8	West	
October	16.4	61.8 Wes		
November	15.3	60.8	West	
December	14.9	14.9 65.8 We		
Minimum	14.2	14.2 58.9		
Maximum	20.1	65.8		



RPS Data Set Analysis Wind Speed (knots) and Direction Rose (All Records)

Figure 4-2 Modelled monthly wind rose distributions from 2010–2019 (inclusive) for the node nearby the release location.

RPS Data Set Analysis

Wind Speed (knots) and Direction Rose (All Records)

Figure 4-3 Modelled total wind rose distributions from 2010–2019 (inclusive) for the node nearby the release location.

5 WATER TEMPERATURE AND SALINITY

The monthly sea temperature and salinity profiles of the water column within the study was obtained from the World Ocean Atlas 2013 database produced by the National Oceanographic Data Centre (National Oceanic and Atmospheric Administration) and its co-located World Data Center for Oceanography (see Levitus et al., 2013). These parameters were used as factors to inform the weathering, movement and evaporative loss of hydrocarbon spills in the surface and sub-surface layers.

Figure 5-1 illustrates the vertical profile of sea temperature and salinity nearby the release location.

Table 5-1 presents the sea temperature and salinity of the surface layer nearby the selected location. The monthly average sea surface temperatures ranged between 13.2°C (September) and 17.8°C (March). The monthly average salinity values remain relatively consistent ranging between 35.1 psu (February) and 35.6 psu (July).

	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Temperature (°C)	17.7	17.2	17.8	16.3	16.0	16.0	14.8	13.5	13.2	14.3	14.3	15.9
Salinity (psu)	35.3	35.1	35.4	35.3	35.3	35.4	35.6	35.3	35.3	35.4	35.4	35.4

Table 5-1 Monthly average sea surface temperature and salinity in the study area.

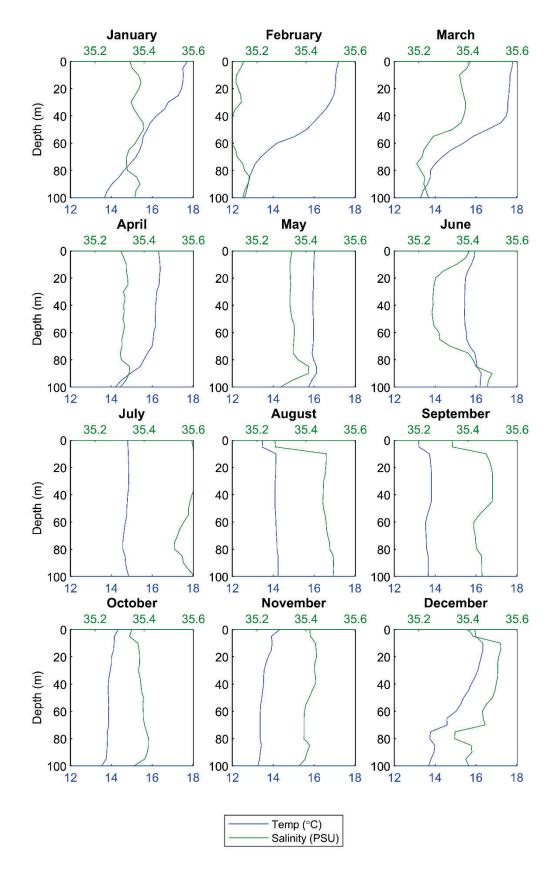


Figure 5-1 Temperature and salinity profiles nearby the selected location within the study area.

6 OIL SPILL MODEL – SIMAP

Modelling of the fate of oil was performed using the Spill Impact Mapping Analysis Program (SIMAP). SIMAP is designed to simulate the fate and effects of spilled hydrocarbons for both the surface and subsurface releases (Spaulding et al., 1994; French et al., 1999; French-McCay, 2003, 2004; French-McCay et al., 2004).

SIMAP has been used to predict the weathering and fate of oil spills during and after major incidents including: Montara (Australia) well blowout August 2009 in the Timor Sea (Asia-Pacific ASA, 2010); Macondo (USA) well blowout April 2010 in the Gulf of Mexico; Bohai Bay (China) oil spill August 2011; and the pipeline oil spill July 2013 in the Gulf of Thailand.

The SIMAP model calculates the transport, spreading, entrainment, evaporation and decay of surface hydrocarbon slicks as well as the entrained and dissolved oil components in the water column, either from surface slicks or from oil discharged subsea. The movement and weathering of the spilled oil is calculated for specific oil types. Input specifications for oil mixtures include the density, viscosity, pour point, distillation curve (volume lost versus temperature) and the aromatic/aliphatic component ratios within given boiling point (BP) ranges.

SIMAP is a three-dimensional model that allows for various response actions to be modelled including oil removal from skimming, burning, or collection booms, and surface and subsurface dispersant application.

The SIMAP oil spill model includes advanced weathering algorithms, specifically focussed on unique oils that tend to form emulsions and/or tar balls. The weathering algorithms are based on 5 years of extensive research conducted in response to the Deepwater Horizon oil spill in the Gulf of Mexico (French-McCay et al., 2015).

Biodegradation is included in the oil spill model. In the model, SIMAP, degradation is calculated for the surface slick, deposited oil on the shore, the entrained oil and dissolved constituents in the water column, and oil in the sediments. For surface oil, water column oil and sedimented oil a first order degradation rate is specified. Biodegradation rates are relatively high for hydrocarbons in dissolved state or in dispersed small droplets.

6.1 Stochastic Modelling

For the stochastic modelling presented herein, **200 oil spills** (100 per season) were modelled for the scenario using the same spill information (release location, spill volume, duration and oil type) but with varied start dates. During each simulation, the model records whether any grid cells are exposed to any oil concentrations, the concentrations involved and the elapsed time before exposure. The results of all 100 oil spill simulations per season were analysed to determine the following statistics for every grid cell:

- Exposure load (concentrations and volumes);
- Minimum time before exposure;
- Probability of contact above defined concentrations;
- Volume of oil that may accumulate on shorelines from any single simulation;
- Concentration that might occur on sections of individual shorelines;
- Exposure (instantaneous and/or over a specified duration) to dissolved hydrocarbons in the water column; and
- Exposure (instantaneous and/or over a specified duration) to entrained hydrocarbons in the water column.

6.1 Floating, Shoreline and In-Water Thresholds

The thresholds and their relationship to exposure for the sea surface, shoreline and water column (entrained and dissolved hydrocarbons) are presented in Sections 6.1.1 to 6.1.3. Supporting justifications of the adopted thresholds applied during the study and additional context relating to the area of influence are also provided. It is important to note that the thresholds herein are based on NOPSEMA (2019).

6.1.1 Floating Oil Exposure Thresholds

The modelling results can be presented to any levels; therefore, thresholds have been specified (based on scientific literature) to record floating oil exposure to the sea-surface at meaningful levels only, described in the following paragraphs.

The low threshold to assess the potential for floating oil exposure, was 1 g/m², which equates approximately to an average thickness of 1 µm, referred to as visible oil. Oil of this thickness is described as rainbow sheen in appearance, according to the Bonn Agreement Oil Appearance Code (Bonn Agreement, 2009; AMSA, 2014) (see Table 6-1). Figure 6-1 shows photographs highlighting the difference in appearance between a silvery sheen, rainbow sheen and metallic sheen. This threshold is considered below levels which would cause environmental harm and it is more indicative of the areas perceived to be affected due to its visibility on the sea surface and potential to trigger temporary closures of areas (i.e. fishing grounds) as a precautionary measure. Table 6-1 provides a description of the appearance in relation to exposure zone thresholds used to classify the zones of floating oil exposure.

Ecological impact has been estimated to occur at 10 g/m^2 (a film thickness of approximately $10 \mu \text{m}$ or 0.01 mm) according to French et al. (1996) and French-McCay (2009) as this level of fresh oiling has been observed to mortally impact some birds through adhesion of oil to their feathers, exposing them to secondary effects such as hypothermia. The appearance of oil at this average thickness has been described as a metallic sheen (Bonn Agreement, 2009).

Scholten et al. (1996) and Koops et al. (2004) indicated that at oil concentrations on the sea surface of 25 g/m² (or greater), would be harmful for all birds that have landed in an oil film due to potential contamination of their feathers, with secondary effects such as loss of temperature regulation and ingestion of oil through preening. The appearance of oil at this thickness is also described as metallic sheen (Bonn Agreement, 2009). For this study the high exposure threshold was set to 50 g/m² and above based on NOPSEMA (2019). This threshold can also be used to inform response planning.

Table 6-2 defines the thresholds used to classify the zones of floating oil exposure reported herein.

Table 6-1The Bonn Agreement Oil Appearance Code.

Code	Description Appearance	Layer Thickness Interval (g/m² or μm)	Litres per km ²
1	Sheen (silvery/grey)	0.04 - 0.30	40 - 300
2	Rainbow	0.30 – 5.0	300 - 5,000
3	Metallic	5.0 - 50	5,000 - 50,000
4	Discontinuous True Oil Colour	50 – 200	50,000 - 200,000
5	Continuous True Oil Colour	≥ 200	≥ 200,000

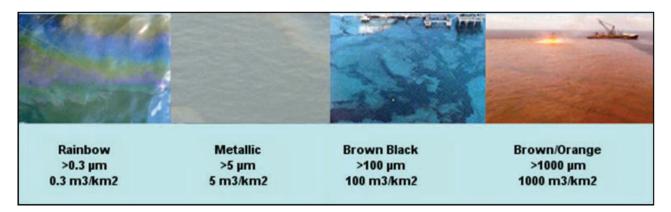


Figure 6-1 Photographs showing the difference between oil colour and thickness on the sea surface (source: adapted from Oil Spill Solutions, 2015).

Table 6-2 Floating oil exposure thresholds used in this report (in alignment with NOPSEMA (2	2019)).
--	---------

Threshold level	Floating oil (g/m ²)	Description
Low	1	Approximates range of socioeconomic effects and establishes planning area for scientific monitoring
Moderate	10	Approximates lower limit for harmful exposures to birds and marine mammals
High	50	Approximates surface oil slick and informs response planning

6.1.2 Shoreline Accumulation Thresholds

There are many different types of shorelines, ranging from cliffs, rocky beaches, sandy beaches, mud flats and mangroves, and each of these influences the volume of oil that can remain stranded ashore and its thickness before the shoreline saturation point occurs. For instance, a sandy beach may allow oil to percolate through the sand, thus increasing its ability to hold more oil ashore over tidal cycles and various wave actions than an equivalent area of water; hence oil can increase in thickness onshore over time. A sandy beach shoreline was assumed as the default shoreline type for the modelling herein, as it allows for the highest carrying capacity of oil (of the available open/exposed shoreline types). Hence the results contained herein would be indicative of a worst-case scenario, where the highest volume of oil may be stranded on the shoreline (when compared to other shoreline types, such as exposed rocky shores).

In previous risk assessment studies, French-McCay et al. (2005a; 2005b) used a threshold of 10 g/m² to assess the potential for shoreline accumulation. This is a conservative threshold used to define regions of socio-economic impact, such as triggering temporary closures of adjoining fisheries or the need for shore clean-up on beaches or man-made features/amenities (breakwaters, jetties, marinas, etc.). It would equate to approximately 2 teaspoons of hydrocarbon per square meter of shoreline accumulation. The appearance is described as a stain/film. On that basis, the 10 g/m² shoreline accumulation threshold has been selected to define the zone of potential "low shoreline accumulation".

French et al. (1996) and French-McCay (2009) define a shoreline oil accumulation threshold of 100 g/m², or above, would potentially harm shorebirds and wildlife (furbearing aquatic mammals and marine reptiles on or along the shore) based on studies for sub-lethal and lethal impacts. This threshold has been used in previous environmental risk assessment studies (see French-McCay, 2003; French-McCay et al., 2004, French-McCay et al., 2011; 2012; NOAA, 2013). Additionally, a shoreline concentration of 100 g/m², or above, is the minimum limit that the oil can be effectively cleaned according to the AMSA (2015) guideline. This threshold equates to approximately ½ a cup of oil per square meter of shoreline accumulation. The appearance is described as a thin oil coat. Therefore, 100 g/m² has been selected to define the zone of potential "moderate shoreline accumulation".

Observations by Lin & Mendelssohn (1996), demonstrated that loadings of more than 1,000 g/m² of hydrocarbon during the growing season would be required to impact marsh plants significantly. Similar thresholds have been found in studies assessing hydrocarbon impacts on mangroves (Grant et al., 1993; Suprayogi & Murray, 1999). Hence, 1,000 g/m² has been selected to define the zone of potential "high shoreline accumulation". It equates to approximately 1 litre of hydrocarbon per square meter of shoreline accumulation. The appearance is described as a hydrocarbon cover.

It is worth noting that the shoreline accumulation thresholds derived from extensive literature review (outlined in Table 6-3) agree with the commonly used threshold values for oil spill modelling specified in NOPSEMA (2019).

Threshold level Shoreline loading (g/m ²)		Description
Low (socioeconomic/sublethal)	10	Predicts potential for some socio-economic impact
Moderate	100	Loading predicts area likely to require clean-up effort
High	> 1,000	Loading predicts area likely to require intensive clean-up effort

Table 6-3 Thresholds used to assess shoreline accumulation.

6.1.3 In-water Exposure Thresholds

Oil is a mixture of thousands of hydrocarbons of varying physical, chemical, and toxicological characteristics, and therefore, demonstrate varying fates and impacts on organisms. As such, for in-water exposure, the SIMAP model provides separate outputs for dissolved and entrained hydrocarbons from oil droplets. The consequences of exposure to dissolved and entrained components will differ because they have different modes and magnitudes of effect.

Entrained hydrocarbon concentrations were calculated based on oil droplets that are suspended in the water column, though not dissolved. The composition of this oil would vary with the state of weathering (oil age) and may contain soluble hydrocarbons when the oil is fresh. Calculations for dissolved hydrocarbons specifically calculates oil components which are dissolved in water, which are known to be the primary source of toxicity exerted by oil.

6.1.3.1 Dissolved Hydrocarbons

Laboratory studies have shown that dissolved hydrocarbons exert most of the toxic effects of oil on aquatic biota (Carls et al., 2008; Nordtug et al., 2011; Redman, 2015). The mode of action is a narcotic effect, which is positively related to the concentration of soluble hydrocarbons in the body tissues of organisms (French-McCay, 2002). Dissolved hydrocarbons are taken up by organisms directly from the water column by absorption through external surfaces and gills, as well as through the digestive tract. Thus, soluble hydrocarbons are termed "bioavailable".

Hydrocarbon compounds vary in water-solubility and the toxicity exerted by individual compounds is inversely related to solubility, however bioavailability will be modified by the volatility of individual compounds (Nirmalakhandan & Speece, 1988; Blum & Speece, 1990; McCarty, 1986; McCarty et al., 1992a, 1992b; Mackay et al., 1992; McCarty & Mackay, 1993; Verhaar et al., 1992, 1999; Swartz et al., 1995; French-McCay, 2002; McGrath and Di Toro, 2009). Of the soluble compounds, the greatest contributor to toxicity for water-column and benthic organisms are the lower-molecular-weight aromatic compounds, which are both volatile and soluble in water. Although they are not the most water-soluble hydrocarbons within most oil types, the polynuclear aromatic hydrocarbons (PAHs) containing 2-3 aromatic ring structures typically exert the largest narcotic effects because they are semi-soluble and not highly volatile, so they persist in the environment long enough for significant accumulation to occur (Anderson et al., 1974, 1987; Neff & Anderson, 1981; Malins & Hodgins, 1981; McAuliffe, 1987; NRC, 2003). The monoaromatic hydrocarbons (MAHs), including the BTEX compounds (benzene, toluene, ethylbenzene, and xylenes), and the soluble

alkanes (straight chain hydrocarbons) also contribute to toxicity, but these compounds are highly volatile, so that their contribution will be low when oil is exposed to evaporation and higher when oil is discharged at depth where volatilisation does not occur (French-McCay, 2002).

French-McCay (2002) reviewed available toxicity data, where marine biota was exposed to dissolved hydrocarbons prepared from oil mixtures, finding that 95% of species and life stages exhibited 50% population mortality (LC₅₀) between 6 and 400 ppb total PAH concentration after 96 hrs exposure, with an average of 50 ppb. Hence, concentrations lower than 6 ppb total PAH value should be protective of 97.5% of species and life stages even with exposure periods of days (at least 96 hours). Early life-history stages of fish appear to be more sensitive than older fish stages and invertebrates.

Exceedances of 10, 50 or 400 ppb over a 1 hour timestep (see Table 6-4) was applied to indicate increasing potential for sub-lethal to lethal toxic effects (or low to high), based on NOPSEMA (2019).

6.1.3.2 Entrained Hydrocarbons

Entrained hydrocarbons consist of oil droplets that are suspended in the water column and insoluble. As such, insoluble compounds in oil cannot be absorbed from the water column by aquatic organisms, hence are not bioavailable through absorption of compounds from the water. Exposure to these compounds would require routes of uptake other than absorption of soluble compounds. The route of exposure of organisms to whole oil alone include direct contact with tissues of organisms and uptake of oil by direct consumption, with potential for biomagnification through the food chain (NRC, 2005).

The 10 ppb threshold represents the very lowest concentration and corresponds generally with the lowest trigger levels for chronic exposure for entrained hydrocarbons in the ANZECC & ARMCANZ (2000) water quality guidelines. Due to the requirement for relatively long exposure times (> 24 hours) for these concentrations to be significant, they are likely to be more meaningful for juvenile fish, larvae and planktonic organisms that might be entrained (or otherwise moving) within the entrained plumes, or when entrained hydrocarbons adhere to organisms or trapped against a shoreline for periods of several days or more.

This exposure zone is not considered to be of significant biological impact and is therefore outside the adverse exposure zone. This exposure zone represents the area contacted by the spill. This area does not define the area of influence as it is considered that the environment will not be affected by the entrained hydrocarbon at this level.

Thresholds of 10 ppb and 100 ppb were applied over a 1 hour time exposure (Table 6-4), to cover the range of thresholds outlined in ANZECC & ARMCANZ (2000) water quality guidelines, the incremental change for greater potential effect and is per NOPSEMA (2019).

A complicating factor that should be considered when assessing the consequence of dissolved and entrained oil distributions is that there will be some areas where both physically entrained oil droplets and dissolved hydrocarbons co-exist. Higher concentrations of each will tend to occur close to the source where sea conditions can force mixing of relatively unweathered oil into the water column, resulting in more rapid dissolution of soluble compounds.

Table 6-4Dissolved and entrained hydrocarbon exposure values assessed over a 1-hour time step,
as per NOPSEMA (2019).

Threshold level	Dissolved hydrocarbon concentration (ppb)	Entrained hydrocarbon concentrations (ppb)
Low	10	10
Moderate	50	-
High	400	100

7 OIL PROPERTIES

7.1 Oil Characteristics

7.1.1 Overview

Table 7-1 and Table 7-2 present the physical properties and boiling point ranges of the MDO used in this study.

Table 7-1Physical properties for MDO.

Characteristic	Marine Diesel Oil (MDO)
Density (kg/m³)	829.1 (at 25 °C)
API	37.6
Dynamic viscosity (cP)	4.0 (at 25 °C)
Pour point (°C)	-14
Hydrocarbon property category	Group II
Hydrocarbon property classification	Light - Persistent

Table 7-2Boiling point ranges for MDO.

	Component	Volatile (%)	Semi-volatile (%)	Low-volatility (%)	Residual (%)
Oil Type	Boiling point (°C)	<180 C4 to C ₁₀	180-265 C ₁₁ to C ₁₅	265-380 C ₁₆ to C ₂₀	>380 >C ₂₀
MDO	% of total	6.0	34.6	54.4	5.0

The BP are dictated by the length of the carbon chains, with the longer and more complex compounds having a higher boiling point, and therefore lower volatility and evaporation rate.

Typical evaporation times once the hydrocarbons reach the surface and are exposed to the atmosphere are:

- Up to 12 hours for the C₄ to C₁₀ compounds (or less than 180°C BP).
- Up to 24 hours for the C_{11} to C_{15} compounds (180-265°C BP).
- Several days for the C₁₆ to C₂₀ compounds (265-380°C BP).
- Not applicable for the residual compounds (BP > 380°C), which will resist evaporation, persist in the marine environment for longer periods, and be subject to relatively slow degradation.

The actual fate of oil will depend greatly on the amount that reaches the surface.

7.1.2 Marine Diesel Oil

The MDO has an API of 37.6 and a density of 829.1 kg/m³ (at 25°C) with a viscosity value (4.0 cP) classifying it as a Group II (light-persistent) oil according to the International Tankers Owners Pollution Federation (ITOPF, 2014) and US EPA/USCG classifications.

The MDO is a mixture of volatile and persistent hydrocarbons with high proportions of volatile and semi- to low-volatile components. In favourable evaporation conditions, about 6.0% of the oil mass should evaporate within the first 12 hours (BP < 180°C), a further 34.6% should evaporate within the first 24 hours (180°C < BP < 265°C) and a further 54.4% should evaporate over several days (265°C < BP < 380°C). Approximately 5.0% of the oil is shown to be persistent.

7.2 Weathering Characteristics

7.2.1 Overview

A series of model weather tests were conducted to illustrate the potential behaviour of the MDO when exposed to idealised and representative environmental conditions:

- A 50 m³ surface release over 1-hour under calm wind conditions (constant 5 knots), assuming low seasonal water temperature (15°C) and ambient tidal and drift currents.
- A 50 m³ surface release over 1-hour under variable wind conditions (1-12 knots, drawn from representative data files), assuming low seasonal water temperature (15°C) and ambient tidal and drift currents.

The first case is indicative conditions that would not generate entrainment, while the second case may represent conditions that could cause a minor degree of entrainment. Both scenarios provide examples of potential behaviour during a spill once the oil reaches the surface.

7.2.2 MDO Mass Balance Forecasts

The mass balance for the MDO under the constant 5 knot (~2.5 m/s) wind case (Figure 7-1) shows that 40.3% of the oil is predicted to evaporate within 24 hours. Under calm conditions, the majority of the remaining oil on the water surface will weather at a slower rate due to being comprised of the longer-chain compounds with higher boiling points. Evaporation shall cease when the residual compounds remain, and they will be subject to more gradual decay through biological and photochemical processes.

Under the variable-wind case (Figure 7-2), where the winds are of greater strength on average, entrainment of MDO into the water column is predicted to increase. Approximately 24 hours after the spill, 60.1% of the oil mass is forecast to have entrained and a further 38.4% is forecast to have evaporated, leaving only a small proportion of the oil floating on the water surface (<0.1%).

The increased level of entrainment in the variable-wind case result in a higher percentage decaying at an approximate rate of 1.5% per day with or ~10.5% after 7 days, compared to <0.1% per day and a total of 0.9% after 7 days for the constant-wind case. Given the proportion of entrained oil and the tendency for it to remain mixed in the water column, the remaining hydrocarbons will decay over time scales of several weeks.

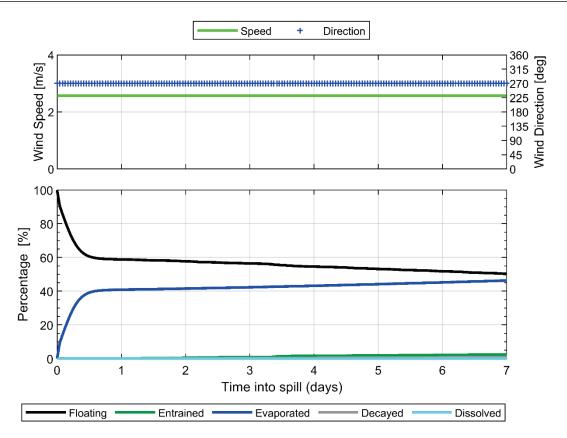


Figure 7-1 Proportional mass balance plot representing the weathering of MDO spilled onto the water surface over 1 hour and subject to a constant 5 knots (2.6 m/s) wind speed at 15°C water temperature and 20°C air temperature.

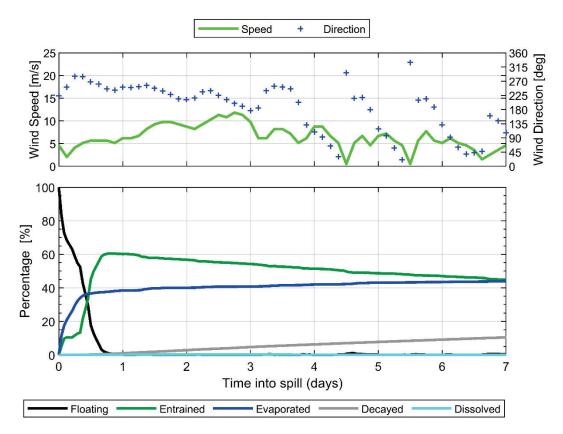


Figure 7-2 Proportional mass balance plot representing the weathering of MDO spilled onto the water over 1 hour and subject to variable wind speeds (1-12 knots) at 15°C water temperature and 20°C air temperature.

8 MODEL SETTINGS

Table 8-1 provides a summary of the oil spill model settings.

Table 8-1 Summary of the oil spill model settings and thresholds used in this assessment.

Parameter	Scenario
Description	Vessel collision
Number of randomly selected spill start times	200 (100 per season)
Model period	Summer (November through to March) Winter (April to October)
Oil type	MDO
Spill volume (m ³)	603.7
Release type	Surface
Release duration	6 hours
Simulation length (days)	30
Surface oil concentration thresholds and exposure risk (g/m ²) $^{\circ}$	1 (low); 10 (moderate); 50 (high)
Shoreline oil accumulation thresholds and exposure risk (g/m ²) ^	10 (low); 100 (moderate); 1,000 (high)
Dissolved hydrocarbon concentrations and exposure risk (ppb) ^	10 (low); 50 (moderate); 400 (high)
Entrained hydrocarbon concentrations and exposure risk (ppb) ^	10 (low); 100 (high)

9 PRESENTATION AND INTERPRETION OF MODEL RESULTS

The results from the modelling study are presented in a number of tables and figures, which aim to provide an understanding of the predicted sea-surface and water column (subsurface) exposure and shoreline accumulation (if predicted).

9.1 Annual Analysis

9.1.1 Statistics

The statistics are based on the following principles:

- The <u>greatest distance travelled by a spill trajectory</u> is determined by a) recording the maximum and b) second greatest distance travelled (or 99th percentile) by a single trajectory, within a scenario, from the release location to the identified exposure thresholds.
- The *probability of oil exposure to a receptor* is determined by recording the number of spill trajectories to reach a specified sea surface or subsea threshold within a receptor polygon, divided by the total number of spill trajectories within that scenario.
- The *minimum time before oil exposure to a receptor* is determined by ranking the elapsed time before sea surface exposure, at a specified threshold, to grid cells within a receptor polygon and recording the minimum value.
- The <u>probability of oil accumulation at a receptor</u> is determined by recording the number of spill trajectories to reach a specified shoreline accumulation threshold within a receptor polygon, divided by the total number of spill trajectories within that scenario.
- The *maximum potential oil loading within a receptor* is determined by identifying the maximum loading to any grid cell within a receptor polygon, for a scenario.
- The <u>dissolved and entrained hydrocarbon exposure</u> is determined by recording the maximum instantaneous concentrations at each grid cell.

9.2 Deterministic Trajectories

The stochastic modelling results were assessed for each scenario, and the deterministic runs were identified and are presented in the result section based on the following criteria;

- a. Largest volume of oil ashore;
- b. Longest length of oil accumulation above 100 g/m²;
- c. Minimum time before shoreline accumulation above 10 g/m²;

9.2.1 Receptors Assessed

A range of environmental receptors and shorelines were assessed for floating oil exposure, shoreline accumulation and water column exposure as part of the study (see Figure 9-1 to Figure 9-10). Receptor categories (see Table 9-1) include sections of shorelines which are defined by local government areas (LGAs), sub-LGAs and offshore islands. All other sensitive receptors other than submerged reefs, shoals and banks (RSB) were sourced from Australian Government Department of Agriculture, Water and the Environment (<u>http://www.environment.gov.au/</u>). Risks of exposure were separately calculated for each sensitive receptor area and have been tabulated. Note, due to the volume and geographical extent of Biologically Important Areas (BIAs) predicted to receive potential impacts from spilled hydrocarbon, it is recommended to use the following website to obtain detailed maps on all BIAs assessed: http://www.environment.gov.au//webgis-framework/apps/ncva/ncva.jsf.

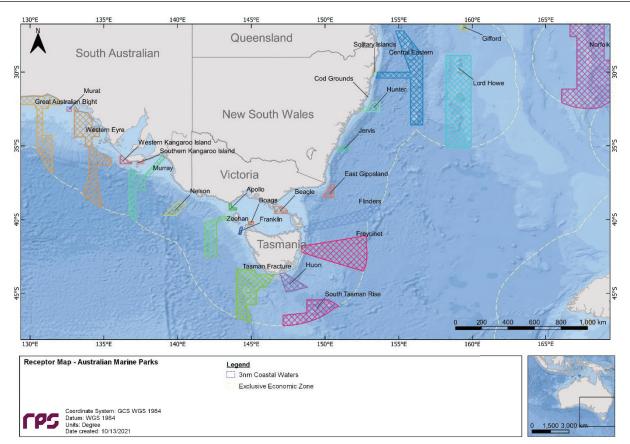
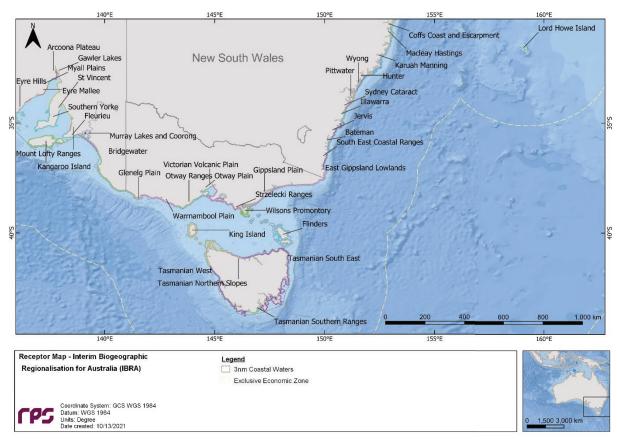
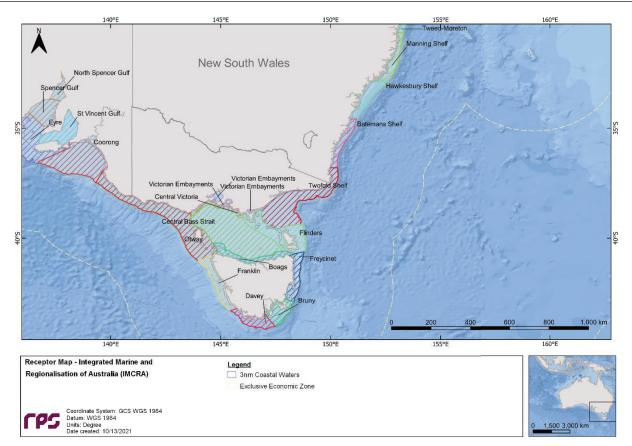
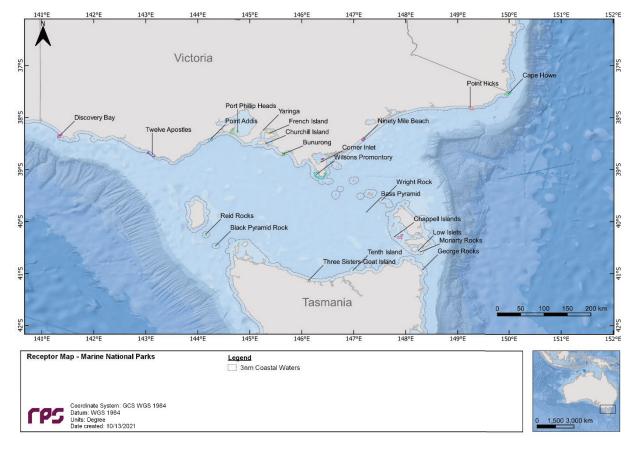

Table 9-2 summarises the receptors that the release locations reside within.

Table 9-1Summary of receptors used to assess floating oil, shoreline and in-water exposure to
hydrocarbons.


Receptor Category	Acronym	Hydrocart	oon Exposure Assess	ment
		Water Column	Floating oil	Shoreline
Australian Marine Park	AMP	\checkmark	\checkmark	×
Biologically Important Areas	BIA	✓	✓	×
Interim Biogeographic Regionalisation for Australia bioregions	IBRA	~	~	×
Integrated marine and coastal regionalisation areas	IMCRA	\checkmark	\checkmark	×
Marine National Park	MNP	✓	✓	×
Marine Park	MP	\checkmark	\checkmark	×
Marine Sanctuary	MS	\checkmark	\checkmark	×
Nature Reserve	NR	\checkmark	\checkmark	×
Ramsar Sites	Ramsar	\checkmark	\checkmark	×
Reefs, Shoals and Banks	RSB	\checkmark	\checkmark	×
Key Ecological Feature	KEF	\checkmark	\checkmark	×
State Waters	State Waters	\checkmark	\checkmark	×
Local and Sub-Local Government Area	LGA and Sub-LGA	✓ (Reported as: Nearshore Waters)	✓ (Reported as: Nearshore Waters)	✓ (Reported as: Shore)

Acronym	Receptor
	Antipodean Albatross - Foraging
	Black-browed Albatross - Foraging
	Bullers Albatross - Foraging
	Campbell Albatross - Foraging
	Common Diving-petrel - Foraging
	Indian Yellow-nosed Albatross - Foraging
DIA	Pygmy Blue Whale – Distribution
BIA	Pygmy Blue Whale - Foraging
	Short-tailed Shearwater - Foraging
	Shy Albatross - Foraging
	Southern Right Whale - Migration
	Wandering Albatross - Foraging
	Wedge-tailed Shearwater - Foraging
	White Shark - Distribution
IMCRA	Otway


Table 9-2 Summary of the receptors that the release locations reside within.



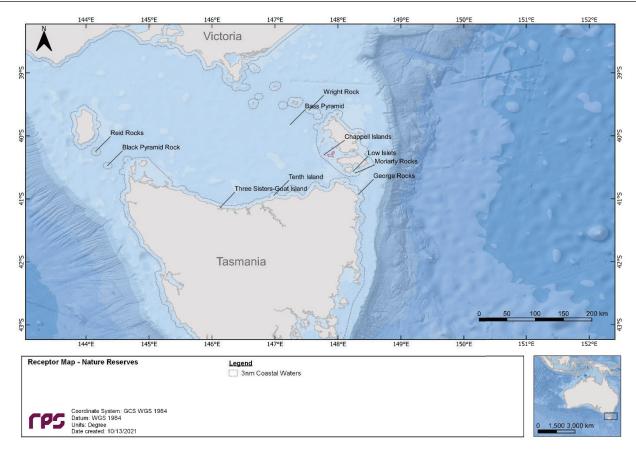
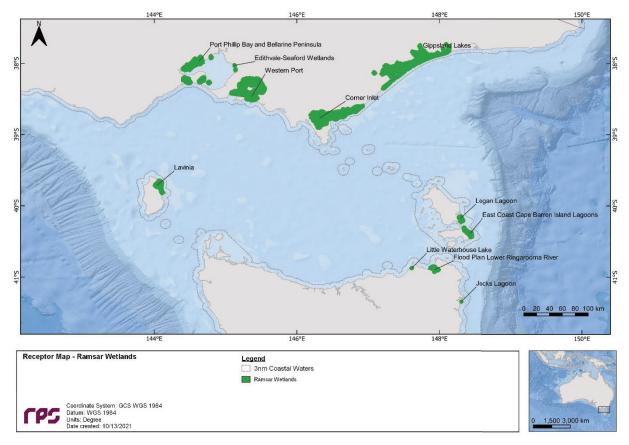
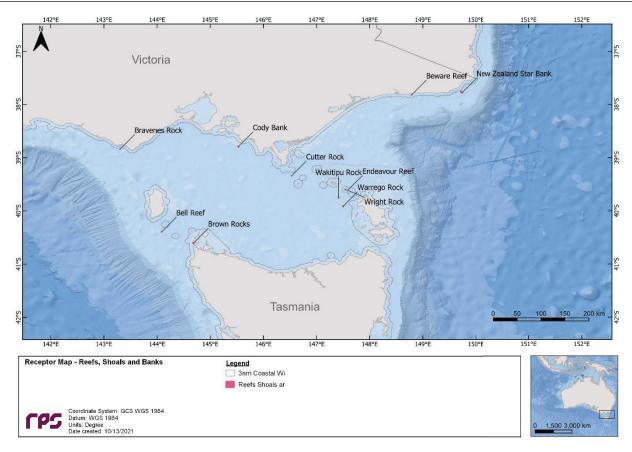
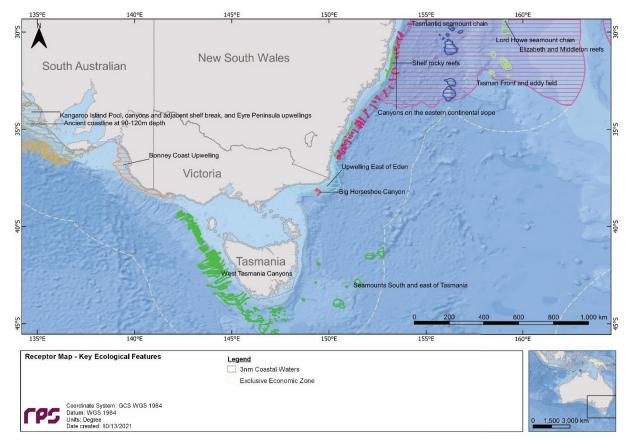
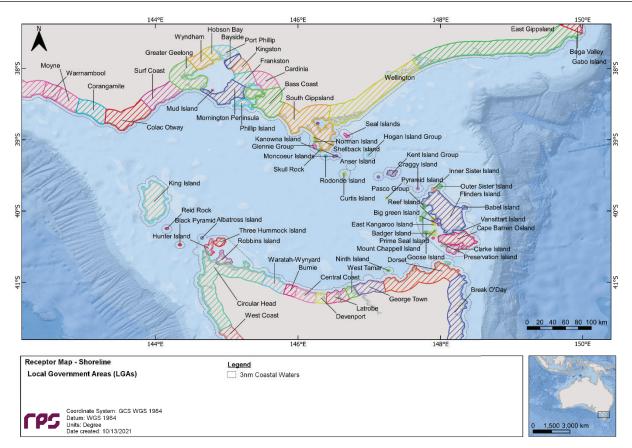

Figure 9-2 Receptor map for the Interim Biogeographic Regionalisation for Australia (IBRA) bioregions.

Figure 9-3 Receptor map for integrated marine and coastal regionalisation (IMCRA) areas.


Figure 9-6 Receptor map for Ramsar Sites (Ramsar).

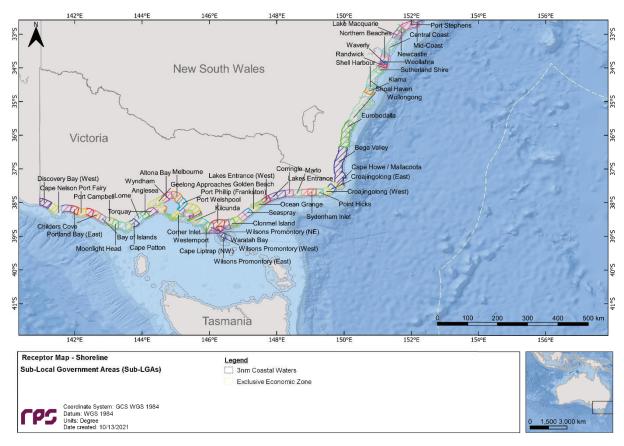
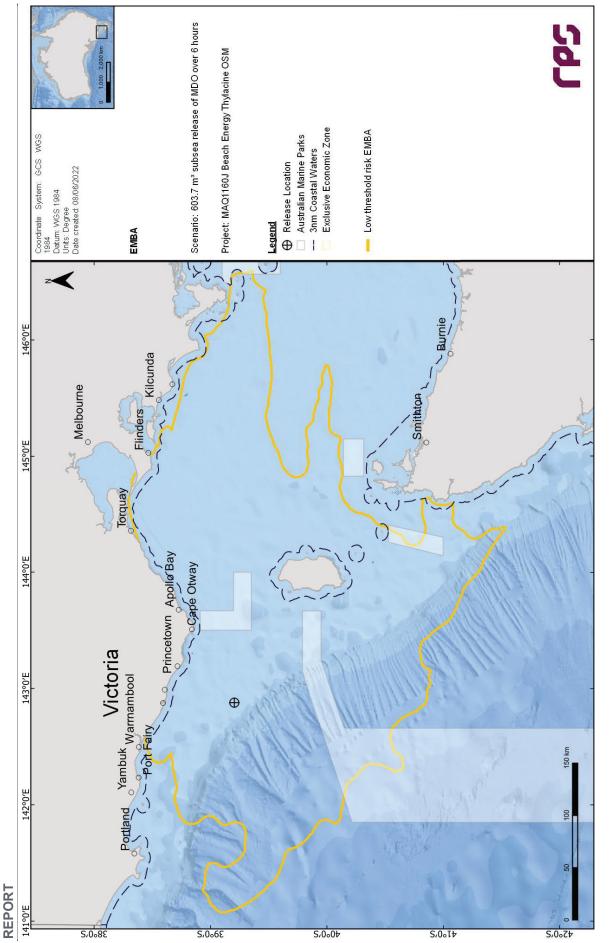


Figure 9-10 Receptor map for Sub Local Government Areas (Sub-LGA).

10 RESULTS – 603.7 m³ LOSS OF CONTAINMENT CAUSED BY VESSEL COLLISION


This scenario examined a 603.7 m³ surface release of MDO over 6 hours to represent a loss of containment caused by vessel collision. A total of 200 spill simulations were run (i.e. 100 spills per season) and tracked for 30 days. The results for all 100 simulations per season were combined and are presented on a seasonal basis (i.e. summer and winter).

Sections 10.1 and 10.2 present the annual stochastic analysis and deterministic analysis results, respectively.

10.1 Stochastic Analysis

10.1.1 Environment that may be affected (EMBA)

Figure 10-1 presents the low threshold environment that maybe affected (EMBA) produced by overlaying the results from all 200 simulations (i.e. 100 per season) during summer and winter conditions.

10.1.2 Floating Oil Exposure

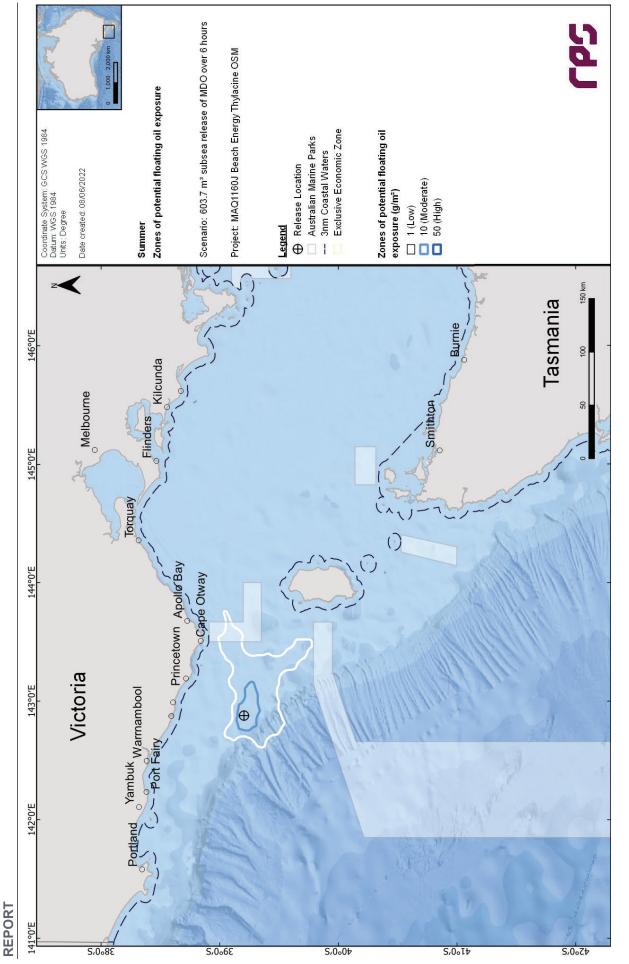
Table 10-1 summarises the maximum distance travelled by floating oil on the sea surface at each threshold. The maximum distance from the release location to the low $(1-10 \text{ g/m}^2)$, moderate $(10-50 \text{ g/m}^2)$ and high (> 50 g/m²) exposure zones was 116.5 km (east) during winter conditions, 24.5 km (east-southeast) during summer conditions and 11.9 km (east-southeast) during winter conditions, respectively.

Table 10-2 summarises the potential floating oil exposure to individual receptors during the summer and winter conditions.

A total of 14 and 15 BIAs were predicted to be exposed to floating oil at, or above, the low threshold during the summer and winter conditions, respectively. Additionally, the Apollo AMP, and Central Bass Strait and Otway IMCRAs were predicted to be exposed to floating oil at, or above, the low threshold during both summer and winter conditions (see Table 10-2). Furthermore, during winter conditions the White-faced Storm-petrel - Foraging BIA, Otway Ranges IBRA, Central Victoria IMCRA, West Tasmania Canyons, Colac Otway nearshore waters (LGA), Apollo Bay nearshore waters (Sub-LGA) and Victoria State Waters receptors were also predicted to be exposed to floating oil at the low threshold. The release locations reside within 15 of the 24 receptors predicted to be exposed to floating oil.

Figure 10-2 and Figure 10-3 present the zones of potential floating oil exposure for all thresholds under summer and winter conditions, respectively.

Table 10-1Maximum distance and direction from the release location to the edge of floating oil
exposure. Results are based on a 603.7 m³ surface release of MDO over 6 hours, tracked
for 30 days. The results were calculated from 100 spill simulations per season.


Season	Distance and direction travelled	Zones of p	ootential floating oi	il exposure
Season		Low	Moderate	High
	Maximum distance (km) from release location	81.7	24.5	9.8
Summer	Maximum distance (km) from release location (99 th percentile)	77.7	23.1	9.6
	Direction	Southeast	East-Southeast	West
	Maximum distance (km) from release location	116.5	19.5	11.9
Winter	Maximum distance (km) from release location (99 th percentile)	112.9	18.9	11.7
	Direction	East	South-Southeast	East-Southeast

F	-
0	Ę
č	2
붋	h
٥	2

100 spill	
ated from	
ere calcula	
esults we	
ays. The I	
d for 30 d	
ırs, tracke	
over 6 hou	
of MDO	
ce release	
7 m³ surfa	
on a 603.	
are based	
s. Results	
l receptors	
individual	
posure to	
loating oil ex	
tential floa	Ison.
/ of the pot	ns per sea
a	ation
Summa	simula
Table 10-2 Sum	simula

			Summer	Summer (November through to March)	nrough to M	arch)				Winter (Ap	Winter (April to October)		
Receptor		Probability	Probability of floating oil ex	posure (%)	Minimum e	Minimum time before floating oil exposure (days)	ting oil	Probability	Probability of floating oil exposure (%)	cposure (%)	Minimum tin	Minimum time before floating oil exposure (days)	j oil exposure
		Low	Moderate	High	Low	Moderate	High	Low	Moderate	High	Low	Moderate	High
AMP	Apollo	4			2.38			5			2.63		
	Antipodean Albatross - Foraging*	100	100	52	0.04	0.04	0.04	100	100	34	0.04	0.04	0.04
	Black-browed Albatross - Foraging*	100	100	52	0.04	0.04	0.04	100	100	34	0.04	0.04	0.04
	Bullers Albatross - Foraging*	100	100	52	0.04	0.04	0.04	100	100	34	0.04	0.04	0.04
	Campbell Albatross - Foraging*	100	100	52	0.04	0.04	0.04	100	100	34	0.04	0.04	0.04
	Common Diving-petrel - Foraging*	100	100	52	0.04	0.04	0.04	100	100	34	0.04	0.04	0.04
	Indian Yellow-nosed Albatross - Foraging*	100	100	52	0.04	0.04	0.04	100	100	34	0.04	0.04	0.04
	Pygmy Blue Whale - Distribution*	100	100	52	0.04	0.04	0.04	100	100	34	0.04	0.04	0.04
BIA	Pygmy Blue Whale - Foraging*	100	100	52	0.04	0.04	0.04	100	100	34	0.04	0.04	0.04
	Short-tailed Shearwater - Foraging*	100	100	52	0.04	0.04	0.04	100	100	34	0.04	0.04	0.04
	Shy Albatross - Foraging*	100	100	52	0.04	0.04	0.04	100	100	34	0.04	0.04	0.04
	Southern Right Whale - Migration*	100	100	52	0.04	0.04	0.04	100	100	34	0.04	0.04	0.04
	Wandering Albatross - Foraging*	100	100	52	0.04	0.04	0.04	100	100	34	0.04	0.04	0.04
	Wedge-tailed Shearwater - Foraging*	100	100	52	0.04	0.04	0.04	100	100	34	0.04	0.04	0.04
	White Shark - Distribution*	100	100	52	0.04	0.04	0.04	100	100	34	0.04	0.04	0.04
	White-faced Storm-petrel - Foraging							с			4.25		
IBRA	Otway Ranges		ı					£	ı	·	4.42		ı
	Central Bass Strait	2			2.79			4			2.63		
IMCRA	Central Victoria							2			4.54		
	Otway*	100	100	52	0.04	0.04	0.04	100	100	34	0.04	0.04	0.04
KEF	West Tasmania Canyons	4			1.79			2			2.58		
Nearshore waters (LGA)	Colac Otway			ı		·		£	,	·	4.42	ı	ı
Nearshore waters (Sub-LGA)	Apollo Bay		,	ı					ı		4.42	,	ı
State Waters	Victoria							÷			4.42		

*The release locations resides within the receptor boundaries.

Page 45

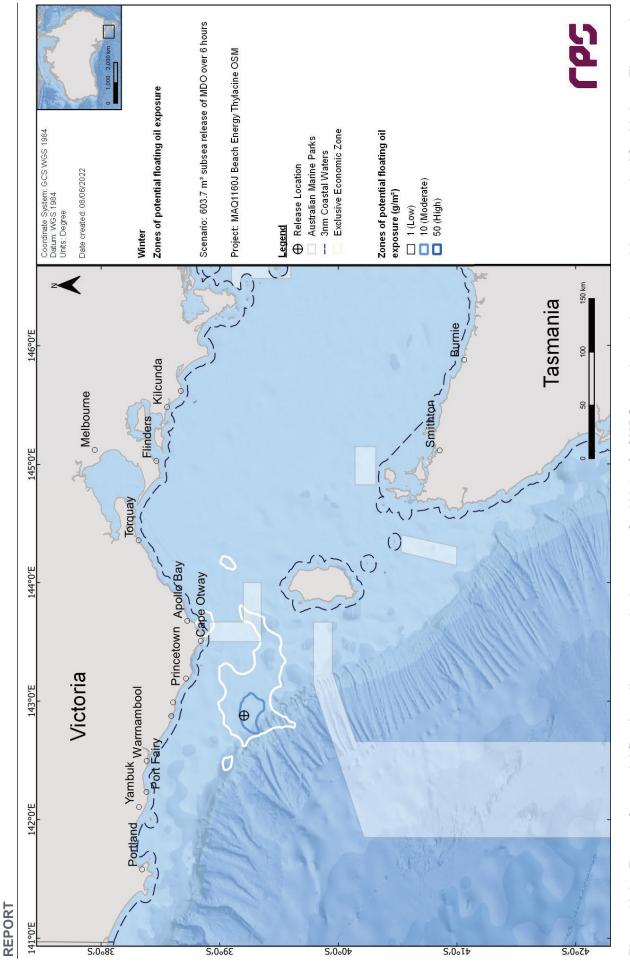


Figure 10-3 Zones of potential floating oil exposure in the event of a 603.7 m³ of MDO containment loss over 6 hours tracked for 30 days. The results were calculated from 100 spill simulations during winter conditions.

10.1.3 Shoreline Accumulation

Table 10-3 presents a summary of the predicted potential shoreline accumulation during the summer and winter conditions. The probability of accumulation to any shoreline at, or above, the low level (10 g/m^2) threshold was 8% during summer conditions and 18% during winter conditions. The minimum time before oil accumulation at, or above, the low threshold was 6.67 days and 3.25 days during the summer and winter conditions, respectively. The maximum volume ashore for a single spill trajectory during the summer and winter conditions was 27.6 m³ and 24.6 m³, respectively, and the summer and winter condition based maximum length of shoreline accumulation at the low threshold was 25.2 km and 42.4 km, respectively. No shoreline accumulation was predicted for the high $(1,000 \text{ g/m}^2)$ threshold.

Table 10-4 summarises the shoreline accumulation on individual receptors during the summer and winter conditions. During the summer conditions, King Island was the only shoreline receptor that was predicted to have shoreline accumulation above the low threshold (10 g/m^2) with a probability of low accumulation of 8%. The minimum time before shoreline accumulation at King Island during summer conditions was 6.67 days, whilst the maximum shoreline accumulation volume was 27.6 m³ during summer conditions.

In comparison, during winter conditions 5 LGAs and 5 sub-LGA shorelines were predicted to have shoreline accumulation above the low threshold with probabilities ranging between 1-11% and 1-3% for the LGAs and sub-LGAs, respectively. During winter conditions the minimum time for low threshold shoreline accumulation was 3.25 predicted for the Colac Otway LGA, whilst the maximum shoreline accumulation volume was predicted to occur at King Island (24.6 m³).

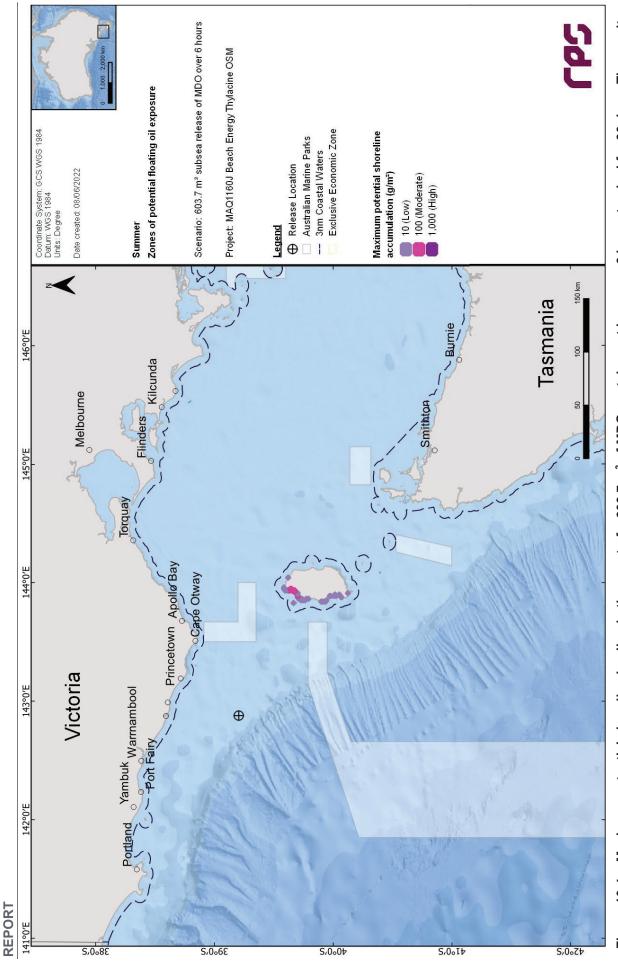

The summer and winter conditions maximum potential shoreline loading above the low, moderate and high shoreline thresholds are presented in Figure 10-4 and Figure 10-5, respectively.

Table 10-3Summary of oil accumulation across all shorelines. Results are based on a
603.7 m³ surface release of MDO over 6 hours, tracked for 30 days. The results
were calculated from 100 spill simulations per season.

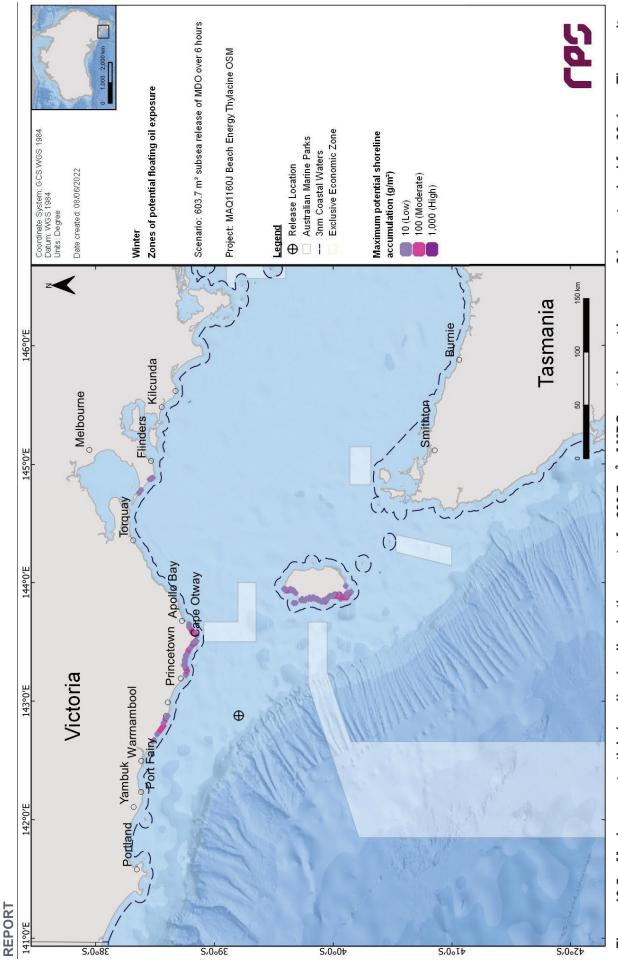

Shoreline Statistics	Summer	Winter
Probability of accumulation on any shoreline (%)	8	18
Absolute minimum time for visible oil to shore (days)	6.67	3.25
Maximum volume of hydrocarbons ashore (m ³)	27.6	24.6
Average volume of hydrocarbons ashore (m ³)	3.7	5.3
Maximum length of the shoreline at 10 g/m ² (km)	25.2	42.4
Average shoreline length (km) at 10 g/m² (km)	7.7	14.5
Maximum length of the shoreline at 100 g/m ² (km)	10.1	11.0
Average shoreline length (km) at 100 g/m² (km)	10.1	4.6
Maximum length of the shoreline at 1,000 g/m² (km)	-	-
Average shoreline length (km) at 1,000 g/m² (km)	-	-

Table 10-4 Summary of oil accumulation on individual shoreline receptors. Results are based on a 603.7 m³ surface release of MDO over 6 hours, tracked for 30 days. The results were calculated from 100 spill simulations per season.

	length line ation	High											,
	Maximum length of shoreline accumulation (km)	Mod	6.1	2	11.1		5	5	5	e	•	2	1
	Max of ac	Low	27.3	6.1	42.4	6.1	14.1	11.1	12.1	16.2	2	5	6.1
	th of Te tion	High	•	•	•	•	•	•	•	•	•	•	'
	Mean length of shoreline accumulation (km)	Mod	4.5	2	4.4		5	5	5	7	•	2	,
	Mea s acc	Low	9.6	6.1	17.9	6.1	8.6	6.6	7.6	8.4	7	5	6.1
	ie on eline ³)	Peak	17.1	2.1	24.6	0.5	8.6	13	8.5	4.1	< 0.1	2	0.5
er	Volume on shoreline (m ³)	Peak Mean Peak Low Mod High Low Mod	0.2	< 0.1	0.6	< 0.1	< 0.1	0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Winter	l on eline n²)	Peak	391	134	608	34	141	391	141	200	23	134	34
	Load on shoreline (g/m ²)	Mea	10	14	œ	ę	20	19	23	10	6	14	5
	efore lays)	High											,
	Minimum time before shoreline accumulation (days)	Mod	4.25	4.46	7.58		10.54	4.25	10.54	8.92	•	4.46	
	Minimum time before shoreline accumulation (days)	Low	3.25	4.00	5.54	16.38	7.63	3.96	7.83	3.25	7.63	4.00	16.38
	n of iding	High											
	Maximum probability of shoreline loading (%)	Mod	2	-	9		-	-	-	7		-	,
	Ma prot shore	High Low Mod	4	-	5	-	5	7	5	e	-	-	-
	ength ine tion	High	•	•	•		•	•	•		•	•	,
	Maximum length of shoreline accumulation (km)	Mod	•	•	10.1		•	•	•		•	•	
	Maxi of acc	Mod High Low Mod	•	•	25.2		•	•	•		•	•	
	th of ie tion	High	•	•	•		•	•	•		•	•	,
	Mean length of shoreline accumulation (km)	Mod	•	•	10.1	•	•	•	•	•	•	•	'
	Mea s acc	Low	•	•	7.7	•	•	•	•	•	•	•	,
	ne on eline ³)	Peak	•	•	27.6	•	•	•	•	•	•	•	,
ner	Volume on shoreline (m ³)	Mean			0.3	•						•	
Summer	l on eline 1²)	Peak Mean Peak Low	e	e	444		-	2	-	с	-	-	
	Load on shoreline (g/m²)	Low Mod High Low Mod High Mean	2	.	5		-	2	-	7	-	.	,
	ime eline ion	High											,
	Minimum time before shoreline accumulation (days)	Mod			7.21								,
	Mini befor acct	Low			6.67								,
	n of ding	High											,
	Maximum probability of shoreline loading (%)	Mod			-								,
	M proi shore	Low			œ								,
	Shoreline Receptor		Colac Otway	Corangamite	King Island	Mornington Peninsula	Moyne	Apollo Bay	Bay of Islands	Cape Otway West	Childers Cove	Moonlight Head	Mornington Peninsula (SW)
	Shorelin				AD ا	Š				Sub-	LGA		

Page 50

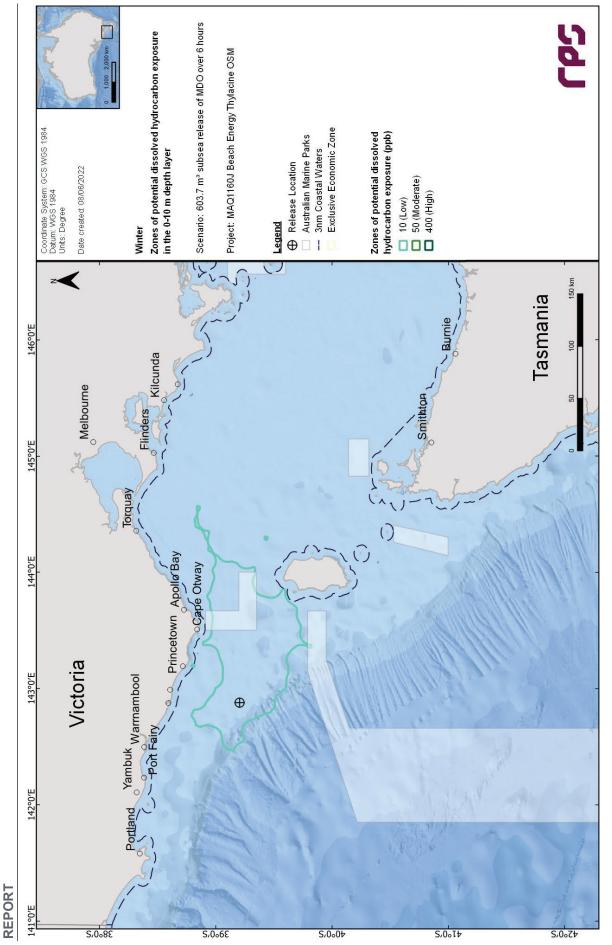
10.1.4 In-water exposure

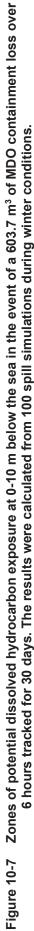
10.1.4.1 Dissolved Hydrocarbons

Table 10-5 summarises the probability of exposure to individual receptors from dissolved hydrocarbons in the 0-10 m layer during the summer and winter conditions.

A total of 16 BIAs were predicted to be exposed to dissolved hydrocarbons above the low threshold during both the summer and winter conditions. Furthermore, AMPs (Apollo and Zeehan), IMCRAs (Central Bass Strait, Central Victoria and Otway), West Tasmania Canyons KEF and Victorian State Waters were also predicted to be exposed above the low threshold during both summer and winter conditions. The maximum probability of exposure for the low threshold for any receptor during either summer and winter was 66% and 71%, respectively. During the summer and winter conditions the maximum dissolved aromatic concentrations at any given receptor(s) was predicted to be 167 ppb and 180 ppb, respectively, which occurred within receptors containing the release location.


Figure 10-6 and Figure 10-7 presents the zones of potential dissolved hydrocarbon exposure for the 0-10 m depth layer, for each threshold assessed under summer and winter conditions, respectively, which occurred within receptors containing the release location.


REPORT


Burnare (November through to Match) Minter (Normber through to Match) Receptor Burnare (Normber through to Match) Minter (April to October) Minter (April to October) Receptor Low Mortications Feraining Reaning Reaning APP Applic Applic Second 10 10 1 2 APP Applic Applic 2 2 2 1 4 4 4 2 1 Applic Applic Applic 167 66 23 1 4 1 2 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 1 1 2 1 1 2 1 2 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 1 2 1 1 1 1										
Maximum transmission Maximum transmission Maximum transmission Maximum transmission Maximum transmission Probability of instantances Application Application			Summer (N	lovember thro	ugh to March)		Wint	ter (April to C	October)	
Indication protection Low Moderate Low Nudreation Low Moderate Low Low <thlow< th=""> Low <thlow< th=""> <</thlow<></thlow<>	Receptor		Maximum instantaneous dissolved	Probabilit dissolved hy	y of instantan drocarbon ex	eous posure	Maximum instantaneous dissolved	Probabilit dissolv	ty of instantan /ed hydrocarb exposure	eous on
			hydrocarbon exposure	Low	Moderate	Low	hydrocarbon exposure	Low	Moderate	Low
		Apollo	32	2			44	4		
Antipodean Abatross - Foraging* 167 66 23 - 180 71 28 Black-fored Abatross - Foraging* 167 66 23 - 144 1 - - Black-fored Comorant - Foraging 167 66 23 - 144 1 - - Ample Albatross - Foraging 167 66 23 - 180 71 28 - Ample Albatross - Foraging* 167 66 23 - 180 71 28 - Ample Whate - Distribution* 167 66 23 - 180 71 28 - 28 - 180 71 28 - - 28 - 28 - 28 - 180 71 28 - 28 - 28 - 28 - 180 71 28 - 28 - 180 71 28 - 28 - 28 <t< td=""><td>AIME</td><td>Zeehan</td><td>28</td><td>-</td><td></td><td></td><td>10</td><td>-</td><td></td><td></td></t<>	AIME	Zeehan	28	-			10	-		
		Antipodean Albatross - Foraging*	167	66	23		180	71	28	
Black-faced Cormorant - Foraging 9 - 14 1 - Bullers Albatross - Foraging* 167 66 23 - 180 71 28 Bullers Albatross - Foraging* 167 66 23 - 180 71 28 Common Diving-pettel - Foraging* 167 66 23 - 180 71 28 - Pigmy Blue Whale - Foraging* 167 66 23 - 180 71 28 - Pigmy Blue Whale - Foraging* 167 66 23 - 180 71 28 - Short-tailed Sharwater - Foraging* 167 66 23 - 180 71 28 - Wordering Albatross - Foraging* 167 66 23 - 180 71 28 - - 28 - - 28 - - 28 - - 28 - - 28 - - 28		Black-browed Albatross - Foraging*	167	99	23		180	71	28	
		Black-faced Cormorant - Foraging	6				14	-	ı	
		Bullers Albatross – Foraging	167	66	23		180	71	28	
		Campbell Albatross - Foraging*	167	66	23		180	71	28	
		Common Diving-petrel - Foraging*	167	66	23		180	71	28	
Pygmy Blue Whale - Distribution* 167 66 23 - 180 71 28 Pygmy Blue Whale - Foraging* 167 66 23 - 180 71 28 Pymy Blue Whale - Foraging* 167 66 23 - 180 71 28 Shy Albatoss - Foraging* 167 66 23 - 180 71 28 Shy Albatoss - Foraging* 167 66 23 - 180 71 28 Wadering Albatoss - Foraging* 167 66 23 - 180 71 28 White Shark - Distribution* 167 66 23 - 180 71 28 White Shark - Distribution* 167 66 23 - 180 71 28 White Shark - Distribution* 167 66 23 - 180 71 28 White Shark - Distribution* 167 26 2 - 29 2 - <		Indian Yellow-nosed Albatross - Foraging*	167	66	23	·	180	71	28	
Pygmy Blue Whale - Foraging* 167 66 23 - 180 71 28 Short-tailed Sheawater - Foraging* 167 66 23 - 180 71 28 Shy Albatross - Foraging* 167 66 23 - 180 71 28 Shy Albatross - Foraging* 167 66 23 - 180 71 28 Wandering Albatross - Foraging* 167 66 23 - 180 71 28 Wedge-tailed Shearwater - Foraging* 167 66 23 - 180 71 28 White Shark - Distribution* 167 66 23 - 180 71 28 White Shark - Distribution* 167 66 23 - 180 71 28 White Shark - Distribution* 167 66 23 - 180 71 28 White Shark - Distribution* 167 26 2 - 29 2 <t< td=""><td></td><td>Pygmy Blue Whale - Distribution*</td><td>167</td><td>66</td><td>23</td><td>ı</td><td>180</td><td>71</td><td>28</td><td>ı</td></t<>		Pygmy Blue Whale - Distribution*	167	66	23	ı	180	71	28	ı
	K IQ	Pygmy Blue Whale - Foraging*	167	66	23		180	71	28	
		Short-tailed Shearwater - Foraging*	167	66	23	·	180	71	28	
		Shy Albatross - Foraging*	167	66	23	ı	180	71	28	
		Southern Right Whale - Migration*	167	66	23		180	71	28	
Wedge-tailed Shearwater - Foraging* 167 66 23 - 180 71 28 White Shark - Distribution* 167 66 23 - 180 71 28 White Shark - Distribution* 167 66 23 - 180 71 28 White-faced Storm-petrel - Foraging 26 2 - 29 2 - A Central Bass Strait 31 2 - 29 2 - - A Central Victoria 4 - - 14 1 - - A Otway* 167 66 23 - 180 71 28 Waters West Tasmaia Canyons 46 2 - - - 23 1 1 - <		Wandering Albatross - Foraging*	167	66	23		180	71	28	
		Wedge-tailed Shearwater - Foraging*	167	66	23		180	71	28	
White-faced Stom-petrel - Foraging 26 2 - 29 2 - R Central Bass Strait 31 2 - 29 2 - - R Central Bass Strait 31 2 - 29 2 -		White Shark - Distribution*	167	66	23	·	180	71	28	
Central Bass Strait 31 2 - 29 2 - RA Central Victoria 4 - - 14 1 - - A Central Victoria 4 - - 14 1 - - Otway* 0tway* 167 66 23 - 180 71 28 West Tasmania Canyons 46 2 - - 23 1 - 28 Waters Victoria 1 - 23 - 23 1 28		White-faced Storm-petrel - Foraging	26	2	I		29	2	I	
A Central Victoria 4 - - 14 1 - Otway* 0tway* 167 66 23 - 180 71 28 West Tasmania Canyons 46 2 - 23 1 23 1 28 Waters Victoria 1 - - 23 1 28		Central Bass Strait	31	2	ı	ı	29	2	I	
Otway* 167 66 23 - 180 71 28 West Tasmania Canyons 46 2 - 23 1 - - Waters Victoria 1 - - 10 1 -	IMCRA	Central Victoria	4				14	-	ı	
West Tasmania Canyons 46 2 - 23 1 · Waters Victoria 1 - - 10 1		Otway*	167	66	23	ı	180	71	28	
Victoria 1 10 1	KEF	West Tasmania Canyons	46	2	ı	ı	23	4	I	
	State Waters	Victoria	4	I	I		10	4	I	

*The release locations resides within the receptor boundaries.

10.1.4.2 Entrained Hydrocarbons

Table 10-6 presents the probability of exposure to individual receptors from entrained hydrocarbons in the 0-10 m depth layer for the summer and winter conditions.

During both summer and winter conditions entrained hydrocarbon exposures at, or above, the low threshold was predicted for AMP, BIA, IBRA, IMCRA, KEF, MNP, RSB, nearshore waters (LGA and sub-LGA) and State Water receptors. The maximum probability of exposure for the low threshold for any receptor during summer and winter was 95% during both seasons. The maximum entrained hydrocarbon concentration predicted during the summer and winter conditions was 19,830 ppb and 17,931 ppb, respectively, which occurred within receptors containing the release location.

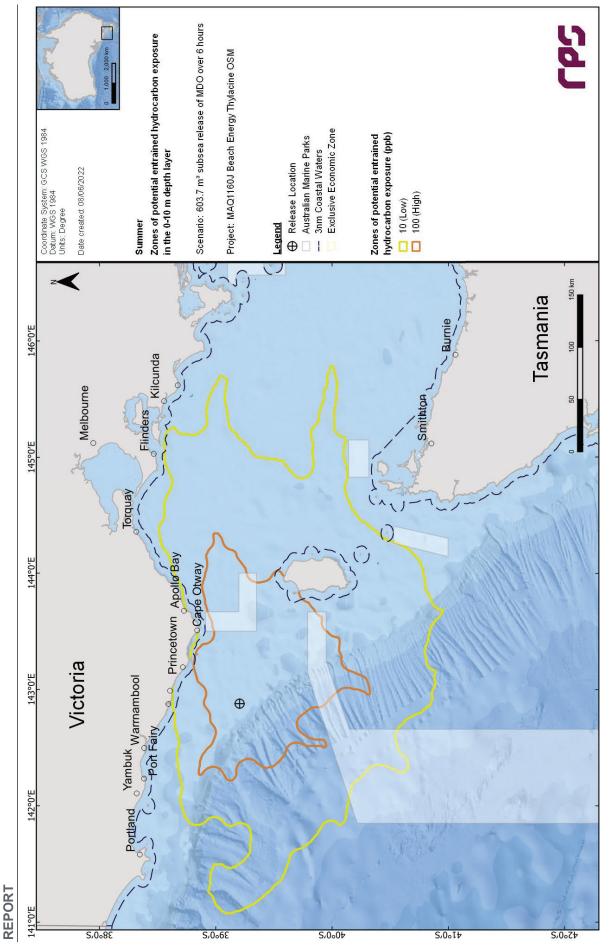
Figure 10-8 and Figure 10-9 presents the zones of potential entrained hydrocarbon exposure for the 0-10 m depth layer, for each threshold assessed under summer and winter conditions, respectively

REPORT
Table 10-6 Probability of entrained hydrocarbons exposure to marine based receptors in the 0–10 m depth layer. Results are based on a 603.7 m ³ surface release of MDO over 6 hours, tracked for 30 days. The results were calculated from 100 spill simulations per season.

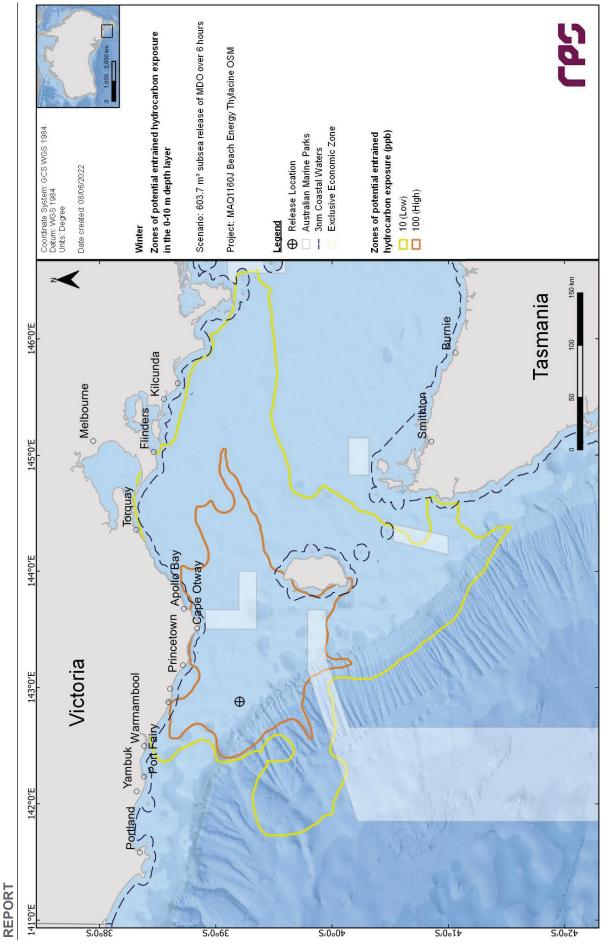
		Summer (November through to March)	er through to I	March)	Winter (Apr	Winter (April to October)	
Receptor		Maximum instantaneous entrained hydrocarbon	Probability of instantaneous entrained hydrocarbon exposure	ility of is entrained n exposure	Maximum instantaneous entrained hydrocarbon	Probat instantaneo hydrocarbo	Probability of instantaneous entrained hydrocarbon exposure
		exposure	Low	High	exposure	Low	High
	Apollo	1,079	29	14	1,128	44	21
	Beagle	Ţ	ı		10	-	1
AIVIP	Franklin	10	÷		26	-	
	Zeehan	251	23	5	286	23	8
	Antipodean Albatross - Foraging*	19,830	95	06	17,931	95	91
	Australasian Gannet – Foraging	27	9		45	5	ı
	Black-browed Albatross - Foragin-g	19,830	95	06	17,931	95	91
	Black-faced Cormorant - Foraging	197	17	e	273	23	4
	Bullers Albatross - Foraging*	19,830	95	06	17,931	95	91
	Campbell Albatross - Foraging*	19,830	95	06	17,931	95	91
	Common Diving-petrel - Foraging*	19,830	95	06	17,931	95	91
	Indian Yellow-nosed Albatross - Foraging*	19,830	95	06	17,931	95	91
	Little Penguin - Foraging	184	16	1	253	20	4
	Pygmy Blue Whale - Distribution*	19,830	95	06	17,931	95	91
BIA	Pygmy Blue Whale - Foraging*	19,830	95	06	17,931	95	91
	Short-tailed Shearwater - Foraging*	19,830	95	06	17,931	95	91
	Shy Albatross - Foraging*	19,830	95	06	17,931	95	91
	Southern Right Whale - Aggregation	20	2		167	2	2
	Southern Right Whale - Connecting Habitat	197	12	1	157	17	2
	Southern Right Whale - Migration*	19,830	95	06	17,931	95	91
	Wandering Albatross - Foraging*	19,830	95	06	17,931	95	91
	Wedge-tailed Shearwater - Foraging*	19,830	95	06	17,931	95	91
	White Shark - Distribution*	19,830	95	06	17,931	95	91
	White Shark - Foraging	30	6		146	10	1
	White-faced Storm-petrel - Foraging	443	20	5	547	33	8

MAQ1160J | Thylacine Installation and Commissioning – Phase 5 | Rev1 | 19 August 2022 www.rpsgroup.com/mst

Page 56


Receptor Numer (Applic Octobe) Numer (Applic Octobe) Receptor Numer (Applic Octobe) Numer (Applic Octobe) Numer (Applic Octobe) Receptor Totability of maintaining Instantanous Instantanous Probability of maintaining Receptor Construction 197 2 2 1 2 Receptor Onvolution 197 1 1 1 2 2 Receptor Onvolution 197 1 1 2 1 2 Onvolution 197 1 1 2 1 2 Marrentocio Plain 117 1 2 1 2 2 Onvolution 17 1 2 2 1 2 2 Marrentocio Plain 116 1 1 2	REPORT							
Application Instantantion Instantinstantinstantinstantantion Instantantantion <th></th> <th></th> <th>Summer (Novemb</th> <th>er through to N</th> <th>March)</th> <th>Winter (Apri</th> <th>il to October)</th> <th>•</th>			Summer (Novemb	er through to N	March)	Winter (Apri	il to October)	•
Gippatind Plain 7 - - 26 1 King Island 187 12 1 157 17 King Island Okoy Ranges 17 1 - 158 7 Okoy Ranges 17 1 - 158 7 Okoy Ranges 16 2 - 168 2 86 4 Warmambool Plain 16 2 - 18 8 4 Wilsons Promoticy 2 - - 16 2 8 4 Wilsons Promoticy 2 - - - 2 4 4 Wilsons Promoticy 2 17 17 4 2 4 4 Wilsons Promoticy 2 17 17 4 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Receptor		Maximum instantaneous entrained hydrocarbon exposure	Probab instantaneou hydrocarbor Low	ility of is entrained ı exposure High	Maximum instantaneous entrained hydrocarbon exposure	Probab instantaneou hydrocarboı Low	llity of is entrained n exposure High
King Island 197 12 1 157 17 Oway Plain 16 1 - 168 7 Oway Plain 16 1 - 168 7 Oway Plain 16 2 - 183 6 Ware Ranges Ware Ranges 17 1 - 168 7 Ware Remontory 2 - - 2 860 24 8 6 1 Ware Remontory 2 24 17 4 38 25 2		Gippsland Plain	7			26	-	
Owear Plain 16 1 - 158 7 Owear Plaines 17 1 - 163 6 Owear Planges 17 1 - 163 6 Witsons Pornoutop 2 - - 28 1 Witsons Pornoutop 2 - - 28 1 Witsons Pornoutop 2 - - 28 1 Witsons Pornoutop 214 17 4 388 25 Endret Bass Strait 50 24 8 861 40 Endret Victoria 214 17 4 388 25 Endret Mode 1 1 1 1 1 Vest Tasmaia Canyons 1 1 1 1 1 Witsons Promotory 2 2 2 2 2 1 1 West Tasmaia Canyons 1 1 1 1 1 1 1 1 <td></td> <td>King Island</td> <td>197</td> <td>12</td> <td>÷</td> <td>157</td> <td>17</td> <td>7</td>		King Island	197	12	÷	157	17	7
Oweav Famoles 17 1 1 183 6 Warmambool Plain 16 2 - 89 4 Warmambool Plain 16 2 - 89 4 Warmambool Plain 560 24 8 85 4 Warmambool Plain 560 24 17 4 85 5 Marmambool Plain 560 24 17 4 88 5 4 Central Victoria 214 17 4 388 5 5 5 1 4 5		Otway Plain	16	-		158	7	7
Warmambool Plain I6 2 - 89 4 Wissens Promontory 2 - - 26 1 1 Wissens Promontory 2 - - 2 6 24 86 1 Wissens Promontory 2 - - - 26 2 4 40 Wissens Promontory 2 - - - - 40 25 2 - - 40 25 25 2 - - 1		Otway Ranges	17	-		183	9	7
Witsone Promontory 2 - 26 1 Central Bases Strati 560 24 8 40 40 Central Victoria 214 17 4 38 25 Central Victoria 7 - - - 40 25 A Finders 3 - - - 40 25 Mover 18,830 95 90 17,031 95 1 Victorian Embayments 4 - - - 40 25 Victorian Embayments 1435 34 16 949 13 Victorian Embayments 1 - - - 14 Victorian Embayments 1 - - - 15 1 Victorian Embayments 1 - - - 16 1 1 Victorian Embayments 1 - - - - 1 1 1 Victor		Warrnambool Plain	16	7		89	4	
Central Base Strati 560 24 8 61 40 Central Victoria 214 17 4 25 25 25 25 25 25 25 25 25 25 26 26 26 27 26 27		Wilsons Promontory	2			26	-	
And Entral Victoria Z14 17 4 384 25 Finders 3 - - - 40 2 Frankin 7 - - - 40 2 Frankin 7 - - - 32 1 Otway Victoria 19,830 95 90 17,931 95 Otway Victoria 1,435 3 - - - 1 1 Net of Adds 5 3 1 16 99 13 Point Adds 5 - - - 16 16 1 Tote Philip Heads - - - - 2 1 1 Tote Adottes 25 2 - - 16 1 1 Wistons Promontory 2 - - 1 1 1 1 Biel Reef Cody Bank 1 - -		Central Bass Strait	560	24	ω	851	40	16
At Etinders 3 - - 40 2 Frankin 7 - - - 32 1 Otway* Oway* 19,830 95 90 17,931 95 Otway* Oway* 19,830 95 90 17,931 95 Victorian Embayments 1 - - - - 16 13 West Taamaia Canyons 1 1 - - - 16 13 West Taamaia Canyons 5 - - - 16 13 Port Philip Heads - - - - 16 1 Twelve Apostles 25 2 - - 13 1 Wisons Promotory 2 - - 1 1 1 Bark Pyarmid 7 - 1 1 1 1 1 Bark Pyarmid 7 - 1 1 1		Central Victoria	214	17	4	388	25	ω
Franklin 7 - - - 32 1 Otway* Otway* 19,830 95 90 17,931 95 Otway* Otway* 19,830 95 90 17,931 95 Victorian Embayments 1,435 34 16 949 13 West Tasmania Canyons 1,435 34 16 949 13 Point Addis 5 - - 29 13 Point Addis 5 - - 14 1 Twee Apostes 25 2 - 14 1 Wilsons Promotory 25 2 - 14 1 Wilsons Promotory 2 2 - 13 3 Bal Reaf 2 2 - 14 1 1 Cody Bank 7 2 - 1 1 1 1 Stock 1 7 - 1 1 <		Flinders	с			40	7	
Otway* Otway* 19,830 95 90 17,931 95 Victorian Embayments 4 - - - 16 19 91 13 Victorian Embayments 1,435 34 16 949 13 14 West Tasmaia Canyons 1,435 34 16 949 13 14 Point Addis 5 - - - 22 23 23 24 14	INICKA	Franklin	7			32	-	
Victorian 4 - - 15 15 1 West Tasmanic Canyons 1,435 34 16 949 13 West Tasmanic Canyons 5 - - 22 2 2 Point Addis - - - - 29 2 Point Addis - - - - 29 2 2 Point Addis - - - - - 29 2 2 Point Philip Heads - - - - - 11 1 1 Wisens Promontory 2 2 2 - - 13 1 Wisens Promontory 2 - - 14 1 1 Wisens Promontory 2 - - 14 1 1 Wisens Promontory 2 - 2 - 13 1 1 Wisens Promontory 2 2 <td></td> <td>Otway*</td> <td>19,830</td> <td>95</td> <td>06</td> <td>17,931</td> <td>95</td> <td>91</td>		Otway*	19,830	95	06	17,931	95	91
West Tasmaic Canyons 1,435 34 16 949 13 Point Addis 5 - - 29 2 Point Addis - - - 29 2 Point Addis 2 - - 11 1 Point Addis 25 2 - 49 2 Twelve Apostes 25 2 - 49 1 1 Wilsons Promontory 2 - - 49 3 3 Wilsons Promontory 20 4 - 13 1 1 Bell Ref 200 4 - - 13 3 3 Bell Ref 200 4 - 1 16 1 1 1 1 Bell Ref 2 - 1 1 1 1 1 1 1 Bell Ref 2 2 2 2 2 2 2 1<		Victorian Embayments	4	ı		15	-	1
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	KEF	West Tasmania Canyons	1,435	34	16	949	13	6
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		Point Addis	£			29	2	
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		Port Phillip Heads				11	-	
		Twelve Apostles	25	7		49	с	
${\rm Bell Reef} \ \ \ \ \ \ \ \ \ \ \ \ \ $		Wilsons Promontory	2	ı		13	-	1
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$		Bell Reef	20	4		13	3	
Cody Bank 4 - - 16 1 Back Pyramid 7 - - 14 1 Back Pyramid 17 1 - 14 1 Colac Otway 17 1 - 183 7 Colac Otway 16 2 - 183 7 Colac Otway 16 2 - 16 17 17 King Island 197 12 1 157 17 17 Monoeur Islands 1 - - 16 1 17 17 Monoeur Islands 2 - - 157 17 17 Monington Peninsula 2 - - 26 1 1 Moyne 6 - - - 26 1 1	RSB	Bravenes Rock	103	1	-	185	6	2
Black Pyramid 7 - - 14 1 Colac Otway 17 1 - 183 7 Colac Otway 16 2 2 85 4 Corangamite 16 2 1 157 17 King Island 19 12 1 17 17 Moncoeur Islands 1 - - 16 17 17 Momington Peninsula 2 - - 17 17 17 Moyne 6 - - - 26 1 1		Cody Bank	4	ı		16	-	ı
Colac Otway 17 1 - 183 7 Corangante 16 2 - 85 4 Corangante 16 2 1 157 1 King Island 17 12 1 17 17 Moncour Islands 1 - - 17 17 Monington Peninsula 2 - - 26 1 Moyne 6 - - - 26 1		Black Pyramid	7	I		14	1	I
Corangamite 16 2 - 85 4 King Island 197 12 1 17 17 17 Moncoeur Islands 1 - - 17 17 17 Moncoeur Islands 1 - - 17 17 1 Monington Peninsula 2 - - - 26 1 Moyne 6 - - - 87 2		Colac Otway	17	1		183	7	2
King Island 197 12 157 17 Moncoeur Islands 1 - - 17 1 Momington Peninsula 2 - - 26 1 Moyne 6 - - 87 2		Corangamite	16	2		85	4	0
Moncoeur Islands 1 - - 17 1 Mornington Peninsula 2 - - 26 1 Moyne 6 - - 87 2	Nearshore waters (I GA)		197	12	-	157	17	2
Jton Peninsula 2 - 26 1 6 - - 87 2			1	I		17	1	I
6 - 87 2		Mornington Peninsula	2	ı	ı	26	-	I
		Moyne	9			87	2	

MAQ1160J | Thylacine Installation and Commissioning – Phase 5 | Rev1 | 19 August 2022 www.rpsgroup.com/mst


Page 57

REPORT							
		Summer (November through to March)	er through to I	March)	Winter (Apri	Winter (April to October)	
Receptor		Maximum instantaneous entrained hydrocarbon exposure	Probability of instantaneous entrained hydrocarbon exposure Low High	ility of is entrained n exposure High	Maximum instantaneous entrained hydrocarbon exposure	Probability of instantaneous entrained hydrocarbon exposure Low High	llity of s entrained n exposure High
	Reid Rock	20	4		29	4	
	Rodondo Island	-			26	-	1
	Surf Coast	4			56	2	1
	Warrnambool	-			11	-	1
	Anglesea	4			42	2	1
	Apollo Bay	17	-		183	7	2
	Bay of Islands	9			87	2	1
	Cape Otway West	11	-		133	9	-
	Cape Patton	ω			54	9	1
Nearshore	Childers Cove	Ţ			51	-	1
waters (Sub-LGA)	Lorne	ę			56	-	1
~	Moonlight Head	16	2		85	4	1
	Mornington Peninsula (S)	ę			21	-	1
	Mornington Peninsula (SW)	2			26	÷	1
	Port Campbell	13	2		61	2	1
	Port Phillip (Sorrento Shore)	Ţ	·		16	-	1
Ctoto Motoro	Tasmania	197	16	÷	242	24	4
olale walers	Victoria	74	4		301	12	2

*The release locations resides within the receptor boundaries.

MAQ1160J | Thylacine Installation and Commissioning – Phase 5 | Rev1 | 19 August 2022 www.rpsgroup.com/mst

10.2 Deterministic Analysis

The stochastic modelling results were assessed, and the "worst case" deterministic runs were identified and are presented below. The deterministic analysis assessed the largest volume of oil ashore (Section 10.2.1), the longest length of shoreline accumulation above 100 g/m² (see Section 10.2.2), and the minimum time before shoreline accumulation above 10 g/m² (see Section 10.2.3).

Table 10-7 presents a summary of shoreline accumulation at the assessed thresholds for the identified deterministic simulations.

RT
Ο
Δ
Ш
R

			Deterministic Analysis Criteria	
Variable	Threshold	Largest volume of oil ashore	Longest length of shoreline accumulation above 100 g/m ²	Minimum time before shoreline accumulation above 10 g/m ²
Season		Summer	Winter	Winter
Run Number		68	06	92
	1 g/m ²	16.3	45.9	35.7
Total area of floating Oil exposure (km^2)	10 g/m ²	4.1	15.3	1.0
	50 g/m ²	I	1.0	1
	10 g/m ²	24.9	33.3	33.3
Total length of shoreline accumulation (km)	100 g/m ²	10.1	11.0	8.1
	1,000 g/m ²	NC	NC	NC
	10 g/m²	6.67	6.42	3.25
Minimum time before accumulation on any	100 g/m ²	7.21	7.58	4.25
	1,000 g/m ²	NC	NC	NC
Maximum volume of oil ashore (m³)		27.6	24.6	19.2
Total area of	10 ppb	5,270	3,178	2,981
entrained hydrocarbon exposure (km²)	100 ppb	1,502	1,462	1,165
	10 ppb	112.1	83.6	78.5
Total area of dissolved hydrocarbon exnosure (km²)	50 ppb	1.0		
	400 ppb	•		ı
Start Date		30 th December 2017	7 th June 2019	11 th May 2015

Table 10-7 Summary of the worst-case deterministic analysis based on the scenario presented in the Stochastic Analysis Section.

NC = No contact at, or above the specified shoreline accumulation threshold.

10.2.1 Deterministic Case: Largest volume of oil ashore

The deterministic trajectory that resulted in the largest volume of oil ashore was identified as run number 68 during summer conditions, which started on 30th December 2017. Figure 10.10 illustrates the floating oil exposure and shoreline accumulation over the 30-day simulation.

Figure 10.11 displays the time series of the volume of oil accumulating on shorelines at the low (10 g/m²), moderate (100 g/m²) and high (1,000 g/m²) thresholds over the 30-day simulation.

Figure 10.12 presents the fates and weathering graph for the corresponding single spill trajectory and Table 10.8 summarises the mass balance at the end of the simulation.

Table 10.8Summary of the mass balance for the trajectory that resulted in the largest volume
of oil ashore. Results are based on a 603.7 m³ surface release of MDO over 6 hours,
tracked for 30 days.

Exposure Metrics	Peak Volume	Day of occurrence	Volume at day 30
Surface (m ³)	108.7	0.1	0.0
Entrained (m ³)	478.0	0.3	130.0
Dissolved (m ³)	2.4	1.1	0.0
Evaporation (m ³)	249.4	30.0	249.4
Decay (m ³)	256.8	30.0	256.8
Ashore (m ³)	33.7	11.4	27.6

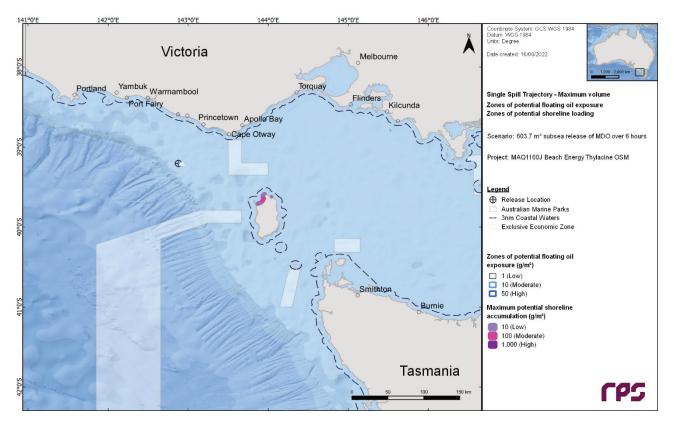


Figure 10.10 Zones of potential floating oil exposure and shoreline accumulation, for the trajectory with the largest volume of oil ashore. Results are based on a 603.7 m³ surface release of MDO over 6 hours, tracked for 30 days.

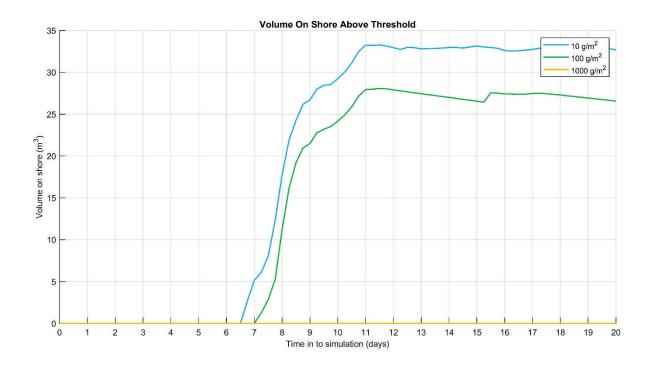


Figure 10.11 Time series of the volume of oil accumulating on shorelines at the low (10 g/m²), moderate (100 g/m²) and high (1,000 g/m²) thresholds for the trajectory with the largest volume of oil ashore. Results are based on a 603.7 m³ surface release of MDO over 6 hours, tracked for 30 days.

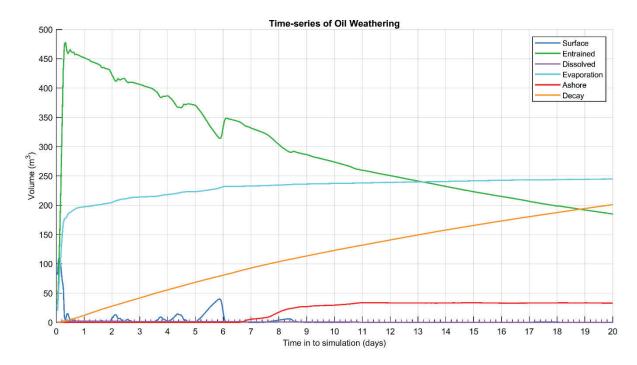


Figure 10.12 Predicted weathering and fates graph for the trajectory with the largest volume of oil ashore. Results are based on a 603.7 m³ surface release of MDO over 6 hours, tracked for 30 days.

10.2.2 Deterministic Case: Longest length of shoreline accumulation above 100 g/m²

The deterministic trajectory that resulted in the longest length of shoreline accumulation above 100 g/m² was identified as run number 90 during winter conditions, which started on 7th June 2019. Figure 10.13 illustrates the floating oil exposure and shoreline accumulation over the 30-day simulation.

Figure 10.14 displays the time series of the length of oil accumulation on shorelines at the low (10 g/m²), moderate (100 g/m²) and high (1,000 g/m²) thresholds over the 30-day simulation.

Figure 10.15 presents the fates and weathering graph for the corresponding single spill trajectory and Table 10.9 summarises the mass balance at the end of the simulation.

Table 10.9Summary of the mass balance that resulted in the longest length of shoreline
accumulation above 100 g/m². Results are based on a 603.7 m³ surface release of
MDO over 6 hours, tracked for 30 days.

Exposure Metrics	Peak Volume	Day of occurrence	Volume at day 30
Surface (m ³)	180.6	0.3	0.0
Entrained (m ³)	450.3	0.8	128.3
Dissolved (m ³)	2.0	2.3	0.0
Evaporation (m ³)	238.0	30.0	238.0
Decay (m ³)	275.9	30.0	275.9
Ashore (m ³)	34.9	16.6	24.9

Figure 10.13 Zones of potential floating oil exposure and shoreline accumulation, for the trajectory with the longest length of shoreline accumulation above 100 g/m². Results are based on a 603.7 m³ surface release of MDO over 6 hours, tracked for 30 days.

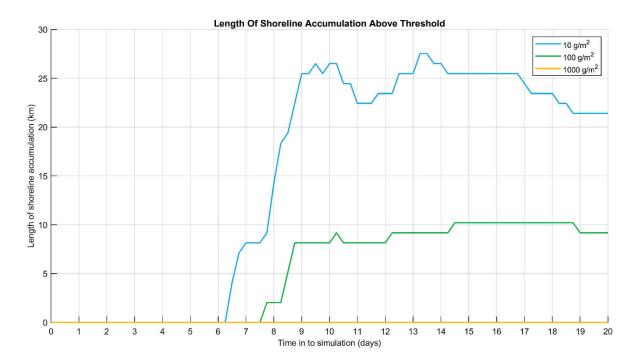


Figure 10.14 Time series of the length of shoreline at the low (10 g/m²), moderate (100 g/m²) and high (1,000 g/m²) thresholds for the trajectory with the longest length of shoreline accumulation above 100 g/m². Results are based on a 603.7 m³ surface release of MDO over 6 hours, tracked for 30 days.

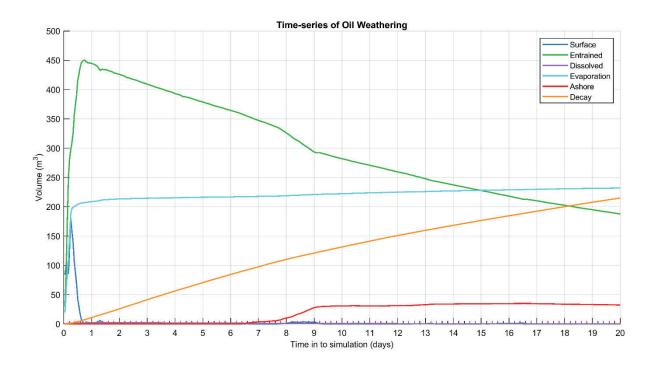


Figure 10.15 Predicted weathering and fates graph for the trajectory with the longest length of shoreline accumulation above 100 g/m². Results are based on a 603.7 m³ surface release of MDO over 6 hours, tracked for 30 days.

10.2.3 Deterministic Case: Minimum time before shoreline accumulation above 10 g/m²

The deterministic trajectory that resulted in the minimum time before shoreline accumulation above the low threshold (10 g/m^2) was identified as run number 92 during winter conditions which started on the 11th May 2015. Figure 10.16 illustrates the floating oil exposure and shoreline accumulation over the 30 days.

Figure 10.17 presents the fates and weathering graph for the corresponding single spill trajectory and Table 10.10 summarises the mass balance at the end of the 30-day simulation.

Table 10.10 Summary of the mass balance for the trajectory that resulted in the minimum time before shoreline accumulation above the low threshold (10 g/m²). Results are based on a 603.7 m³ surface release of MDO over 6 hours, tracked for 30 days.

Exposure Metrics	Peak Volume	Day of occurrence	Volume at day 30
Surface (m ³)	62.5	5.2	0.0
Entrained (m ³)	595.8	0.3	120.1
Dissolved (m ³)	3.3	1.4	0.1
Evaporation (m ³)	236.2	29.9	235.9
Decay (m³)	291.5	30.0	291.5
Ashore (m ³)	32.1	5.2	19.4

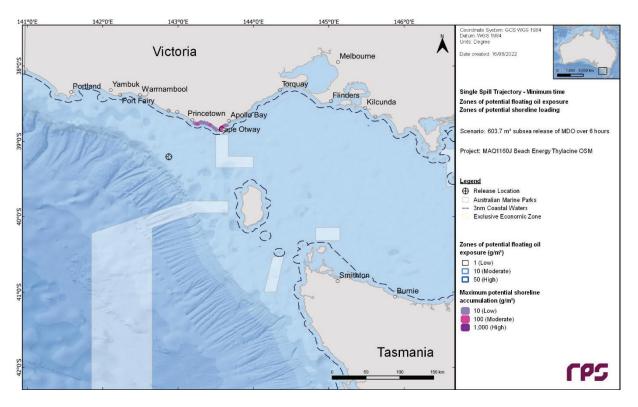


Figure 10.16 Zones of potential floating oil exposure and shoreline accumulation over the 30day simulation, for the trajectory with the minimum time before shoreline accumulation above 10 g/m². Results are based on a 603.7 m³ surface release of MDO over 6 hours, tracked for 30 days.

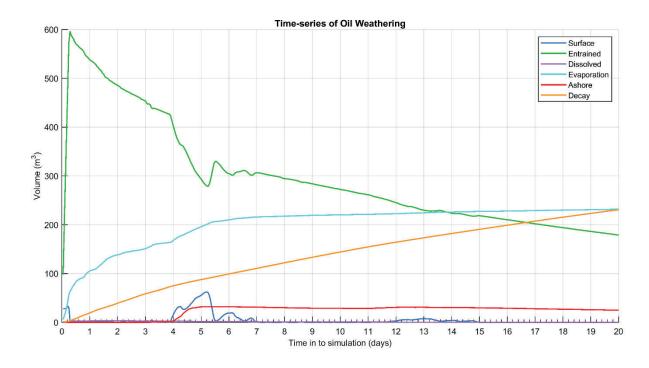


Figure 10.17 Predicted weathering and fates graph for the trajectory with the minimum time before shoreline accumulation above 10 g/m². Results are based on a 603.7 m³ surface release of MDO over 6 hours, tracked for 30 days.

11 **REFERENCES**

- American Society for Testing and Materials (ASTM) 2013. F2067-13 Standard Practice for Development and Use of Oil-Spill Trajectory Models, ASTM International, West Conshohocken (PA).
- Andersen, OB 1995, 'Global ocean tides from ERS 1 and TOPEX/POSEIDON altimetry', *Journal of Geophysical Research: Oceans*, vol. 100, no. C12, pp. 25249–25259.
- Anderson JW, Neff JM, Cox BA, Tatem HE & Hightower GM 1974, 'Characteristics of dispersions and watersoluble extracts of crude and refined oils and their toxicity to estuarine crustaceans and fish', *Marine Biology*, vol. 27, no. 1, pp. 75–88.
- Anderson JW, Riley R, Kiesser S & Gurtisen J 1987, 'Toxicity of dispersed and undispersed Prudhoe Bay crude oil fractions to shrimp and fish', Proceedings of the 1987 International Oil Spill Conference, American Petroleum Institute, pp. 235–240.
- Asia-Pacific ASA, 2010. Montara well release monitoring study S7.2. Oil fate and effects assessment: modelling of chemical dispersant operation. Prepared for PTTEP Australasia.
- Australian Maritime Safety Authority (AMSA) 2014, 'Identification of oil on water: Aerial observations and identification guide', viewed 4 June 2020, https://www.amsa.gov.au/sites/default/files/2014-01-mp-amsa22-identification-oil-on-water.pdf
- Australian Maritime Safety Authority (AMSA) 2015, 'Australian Maritime Safety Authority Technical Guideline for the Preparation of Marine Pollution Contingency Plans for Marine and Coastal Facilities Australian Maritime Safety Authority', viewed 20 June 2017, https://www.amsa.gov.au/forms-andpublications/Publications/AMSA413_Contingency_Planning_Guidelines.pdf
- Australian and New Zealand Environment and Conservation Council (ANZECC) & Agriculture and Resource Management Council of Australia and New Zealand (ARMCANZ) 2000, 'Australian and New Zealand guidelines for fresh and marine water quality Volume 1, The guidelines (National water quality management strategy; no.4)', Australian and New Zealand Environment and Conservation Council, Agriculture and Resource Management Council of Australia and New Zealand.
- Becker, JJ, Sandwell, DT, Smith, WHF, Braud, J, Binder, B, Depner, J, Fabre, D, Factor, J, Ingalls, S, Kim, S-H, Ladner, R, Marks, K, Nelson, S, Pharaoh, A, Trimmer, R, Von Rosenberg, J, Wallace, G & Weatherall, P 2009, 'Global bathymetry and evaluation data at 30 arc seconds resolution: SRTM30_PLUS', *Marine Geodesy*, vol. 32, no. 4, pp. 355–371.
- Blum DJ & Speece RE 1990, 'Determining chemical toxicity to aquatic species', *Environmental Science & Technology*, vol. 24, no. 3, pp. 284–293.
- Bonn Agreement 2009, 'Bonn Agreement aerial operations handbook, 2009 Publication of the Bonn Agreement', viewed 13 January 2015, http://www.bonnagreement.org/site/assets/files/3947/ba-aoh_revision_2_april_2012.pdf
- Carls, MG, Holland, L, Larsen, M, Collier, TK, Scholz, NL & Incardona, JP, 2008. Fish embryos are damaged by dissolved PAHs, not oil particles. *Aquatic toxicology*, 88(2), pp.121–127.

- Chassignet, EP, Hurlburt, HE, Smedstad, OM, Halliwell, GR, Hogan, PJ, Wallcraft, AJ, Baraille, R & Bleck, R 2007, 'The HYCOM (hybrid coordinate ocean model) data assimilative system', *Journal of Marine Systems*, vol. 65, no. 1, pp. 60–83.
- Chassignet, E, Hurlburt, H, Metzger, E, Smedstad, O, Cummings, J & Halliwell, G 2009, 'U.S. GODAE: Global Ocean Prediction with the HYbrid Coordinate Ocean Model (HYCOM)', *Oceanography*, vol. 22, no. 2, pp. 64–75.
- Davies, AM 1977a, 'The numerical solutions of the three-dimensional hydrodynamic equations using a Bspline representation of the vertical current profile', in JC Nihoul (ed), Bottom Turbulence: *Proceedings of the 8th Liège Colloquium on Ocean Hydrodynamics,* Elsevier Scientific, Amsterdam, pp. 1–25.
- Davies, AM 1977b, 'Three-dimensional model with depth-varying eddy viscosity', in JC Nihoul (ed), Bottom Turbulence: *Proceedings of the 8th Liège Colloquium on Ocean Hydrodynamics,* Elsevier Scientific, Amsterdam, pp. 27–48.
- French, D, Reed, M, Jayko, K, Feng, S, Rines, H, Pavignano, S, Isaji, T, Puckett, S, Keller, A, French III, FW, Gifford, D, McCue, J, Brown, G, MacDonald, E, Quirk, J, Natzke, S, Bishop, R, Welsh, M, Phillips, M & Ingram, BS 1996, '*The CERCLA Type A natural resource damage assessment model for coastal and marine environments (NRDAM/CME), Technical Documentation, Volume I Model Description, Final Report*,' Office of Environmental Policy and Compliance, U.S. Department of the Interior, Washington DC.
- French, D, Schuttenberg, H & Isaji, T 1999, 'Probabilities of oil exceeding thresholds of concern: examples from an evaluation for Florida Power and Light', *Proceedings of the 22nd Arctic and Marine Oil Spill Program (AMOP) Technical Seminar,* Environment Canada, Alberta, pp. 243–270.
- French-McCay, DP 2002, 'Development and application of an oil toxicity and exposure model, OilToxEx', *Environmental Toxicology and Chemistry*, vol. 21, no. 10, pp. 2080-2094.
- French-McCay, DP 2003, 'Development and application of damage assessment modelling: example assessment for the North Cape oil spill', *Marine Pollution Bulletin*, *vol.* 47, no. 9, pp. 9–12.
- French-McCay, DP 2004, 'Spill impact modelling: development and validation', *Environmental Toxicology and Chemistry, vol.* 23, no.10, pp. 2441–2456.
- French-McCay, DP 2009, 'State-of-the-art and research needs for oil spill impact assessment modelling', *Proceedings of the 32nd Arctic and Marine Oil Spill Program (AMOP) Technical Seminar*, Environment Canada, Ottawa, pp. 601–653.
- French-McCay, D, Rowe, JJ, Whittier, N, Sankaranarayanan, S, & Etkin, DS 2004, 'Estimate of potential impacts and natural resource damages of oil', *Journal of Hazardous Materials*, vol. 107, no. 1, pp. 11–25.
- French-McCay, D, Whittier, N, Dalton, C, Rowe, J, Sankaranarayanan, S & Aurand, D 2005a, 'Modeling the fates of hypothetical oil spills in Delaware, Florida, Texas, California, and Alaska waters, varying response options including use of dispersants', Proceedings of the International Oil Spill Conference 2005, American Petroleum Institute, Washington DC, paper 399.
- French-McCay, D, Whittier, N, Rowe, J, Sankaranarayanan, S, Kim, H-S & Aurand, D 2005b, 'Use of probabilistic trajectory and impact modeling to assess consequences of oil spills with various response strategies,' Proceedings of the 28th Arctic and Marine Oil Spill Program (AMOP) Technical Seminar, Environment Canada, Ottawa, pp. 253–271.

- French-McCay, D, Reich, D, Rowe, J, Schroeder, M & Graham, E 2011, 'Oil spill modeling input to the offshore environmental cost model (OECM) for US-BOEMRE's spill risk and costs evaluations', *Proceedings of the 34th Arctic and Marine Oil Spill Program (AMOP) Technical Siminar, Environment Canada,* Ottawa.
- French-McCay, D, Reich, D, Michel, J, Etkin, DS, Symons, L, Helton, D, & Wagner J 2012, 'Oil spill consequence analysis of potentially-polluting shipwrecks', Proceedings of the 35th Arctic and Marine Oil Spill Program (AMOP) Technical Seminar, Environment Canada, Ottawa.
- French-McCay, D, Jayko, K, Li, Z, Horn, M, Kim, Y, Isaji, T, Crowley, D, Spaulding, M, Decker, L, Turner, C, Zamorski, S, Fontenault, J, Schmmkler, R & Rowe, J 2015, 'Technical Reports for Deepwater Horizon Water Column Injury Assessment: WC_TR.14: Modeling Oil Fate and Exposure Concentrations in the Deepwater Plume and Rising Oil Resulting from the Deepwater Horizon Oil Spill' RPS ASA, South Kingston, Rhode Island.
- Gordon, R 1982, 'Wind driven circulation in Narragansett Bay' PhD thesis, Department of Ocean Engineering, University of Rhode Island.
- Grant, DL, Clarke, PJ & Allaway, WG 1993, 'The response of grey mangrove (*Avicennia marina* (Forsk.) Vierh) seedlings to spills of crude oil,' *The Journal of Experimental Marine Biological Ecology, vol.* 171, no. 2, pp. 273–295.
- International Tankers Owners Pollution Federation (ITOPF) 2014, 'Technical Information Paper 2 Fate of Marine Oil Spills', International Tankers Owners Pollution Federation td, UK.
- Isaji, T & Spaulding, M 1984, 'A model of the tidally induced residual circulation in the Gulf of Maine and Georges Bank', *Journal of Physical Oceanography*, vol. 14, no. 6, pp. 1119–1126.
- Isaji, T, Howlett, E, Dalton C, & Anderson, E 2001, 'Stepwise-continuous-variable-rectangular grid hydrodynamics model', *Proceedings of the 24th Arctic and Marine Oil spill Program (AMOP) Technical Seminar (including 18th TSOCS and 3rd PHYTO)*, Environment Canada, Edmonton, pp. 597–610.
- Jones, ISF 1980, 'Tidal and wind driven currents in Bass Strait', *Australian Journal of Marine and Freshwater Research* vol. 31, no. 2, pp. 109–117.
- Koops, W, Jak, RG & van der Veen, DPC 2004, 'Use of dispersants in oil spill response to minimise environmental damage to birds and aquatic organisms', *Proceedings of the Interspill 2004: Conference and Exhibition on Oil Spill Technology,* Trondheim, presentation 429.
- Kostianoy, AG, Ginzburg, AI, Lebedev, SA, Frankignoulle, M & Delille, B 2003, 'Fronts and mesoscale variability in the southern Indian Ocean as inferred from the TOPEX/POSEIDON and ERS-2 Altimetry data', *Oceanology*, vol. 43, no. 5, pp. 632–642.
- Levitus, S, Antonov, JI, Baranova, OK, Boyer, TP, Coleman, CL, Garcia, HE, Grodsky, AI, Johnson, DR, Locarnini, RA, Mishonov, AV, Reagan, JR, Sazama, CL, Seidov, D, Smolyar, I, Yarosh, ES & Zweng, MM 2013, 'The World Ocean Database', *Data Science Journal*, vol.12, no. 0, pp. WDS229–WDS234.
- Lin, Q & Mendelssohn, IA 1996, 'A comparative investigation of the effects of south Louisiana crude oil on the vegetation of fresh, brackish and Salt Marshes', *Marine Pollution Bulletin*, vol. 32, no. 2, pp. 202–209.

- Ludicone, D, Santoleri, R, Marullo, S & Gerosa, P 1998, 'Sea level variability and surface eddy statistics in the Mediterranean Sea from TOPEX/POSEIDON data. *Journal of Geophysical ResearchI*, vol. 103, no. C2, pp. 2995–3011.
- Malins DC & Hodgins HO 1981, 'Petroleum and marine fishes: a review of uptake, disposition, and effects', *Environmental Science & Technology*, vol. 15, no. 11, pp.1272–1280.
- Matsumoto, K, Takanezawa, T & Ooe, M 2000, 'Ocean tide models developed by assimilating TOPEX/POSEIDON altimeter data into hydrodynamical model: A global model and a regional model around Japan', *Journal of Oceanography*, vol. 56, no.5, pp. 567–581.
- McAuliffe CD 1987, 'Organism exposure to volatile/soluble hydrocarbons from crude oil spills a field and laboratory comparison', Proceedings of the 1987 International Oil Spill Conference, *American Petroleum Institute*, pp. 275–288.
- McCarty LS 1986, 'The relationship between aquatic toxicity QSARs and bioconcentration for some organic chemicals', *Environmental Toxicology and Chemistry*, vol. 5, no. 12, pp. 1071–1080.
- McCarty LS, Dixon DG, MacKay D, Smith AD & Ozburn GW 1992a, 'Residue-based interpretation of toxicity and bioconcentration QSARs from aquatic bioassays: Neutral narcotic organics', *Environmental Toxicology and Chemistry: An International Journal*, vol. 11, no. 7, pp.917–930.
- McCarty LP, Flannagan DC, Randall SA & Johnson KA 1992b, 'Acute toxicity in rats of chlorinated hydrocarbons given via the intratracheal route', *Human & Experimental Toxicology*, vol. 11, no. 3, pp.173–117.
- McCarty LS & Mackay D 1993, 'Enhancing ecotoxicological modelling and assessment. Body residues and modes of toxic action', *Environmental Science & Technology*, vol. 27, no. 9, pp. 1718–1728.
- McGrath JA, & Di Toro DM 2009, 'Validation of the target lipid model for toxicity assessment of residual petroleum constituents: monocyclic and polycyclic aromatic hydrocarbons', *Environmental Toxicology and Chemistry*, vol. 28, no. 6, pp. 1130–1148.
- Middleton, JF & Bye AT 2007, 'A review of shelf-slope circulation along Australia's southern shelves: Cape Leeuwin to Portland', *Progress in Oceanography* vol. 75, pp. 1–41.
- National Centers for Environmental Information (NCEI) 2021, 'World Ocean Atlas' viewed 20 July 2021, https://www.ncei.noaa.gov/products/world-ocean-atlas
- National Oceanic and Atmospheric Administration (NOAA) 2013, Screening level risk assessment package Gulf state, Office of National Marine Sanctuaries & Office of Response and Restoration, Washington DC.
- National Offshore Petroleum Safety and Environmental Management Authority (NOPSEMA) 2018, 'At a glance: Oil spill modelling', viewed 15 November 2018, https://www.nopsema.gov.au/assets/Publications/A626200.pdf

- National Offshore Petroleum Safety and Environmental Management Authority (NOPSEMA) 2019, 'Environment bulletin: Oil spill modelling', viewed 4 February 2020, https://www.nopsema.gov.au/assets/Bulletins/A652993.pdf
- National Research Council (NRC) 2003, 'Oil in the sea III: Inputs, fates and effects', National Research Council, The National Academic Press, Washington DC.
- National Research Council (NRC) 2005, 'Oil Spill Dispersants Efficacy and Effects. Committee on Oil Spill Dispersants: Efficacy and Effects', National Research Council, The National Academies Press, Washington DC.
- Neff JM & Anderson JW 1981, 'Response of marine animals to petroleum and specific petroleum hydrocarbons' United States Department of Energy, United States.
- Nirmalakhandan N & Speece RE 1988, 'Quantitative techniques for predicting the behaviour of chemicals in the ecosystem', *Environmental Science & Technology*, vol. 22, no. 6, pp. 606–615.
- Nordtug, T., Olsen, A.J., Altin, D., Overrein, I., Storøy, W., Hansen, B.H. and De Laender, F., 2011. Oil droplets do not affect assimilation and survival probability of first feeding larvae of North-East Arctic cod. *Science of the Total Environment*, 412, pp.148–153.
- Oil Spill Solutions 2015, 'Evaluation The Theory of Oil Slick Appearances', viewed 6 January 2015, http://www.oilspillsolutions.org/evaluation.htm
- Owen, A 1980, 'A three-dimensional model of the Bristol Channel', *Journal of Physical Oceanography*, vol. 10, pp. 1290–1302.
- Qiu, B & Chen, S 2010, 'Eddy-mean flow interaction in the decadally modulating Kuroshio Extension system', *Deep-Sea Research II*, vol. 57, no. 13, pp. 1098–1110.
- Redman AD 2015, 'Role of entrained droplet oil on the bioavailability of petroleum substances in aqueous exposures', *Marine Pollution Bulletin*, vol. 97, no. 1–2, pp. 342–348.
- Saha, S, Moorthi, S, Pan, H-L, Wu, X, Wang, J & Nadiga, S 2010, 'The NCEP Climate Forecast System Reanalysis', *Bulletin of the American Meteorological Society*, vol. 91, no. 8, pp. 1015–1057.
- Sandery, P & Kämpf, J 2007, 'Transport timescales for identifying seasonal variation in Bass Strait, southeastern Australia', *Estuarine, Coastal and Shelf Science*, vol. 74, no. 4, pp. 684-696.
- Scholten, MCTh, Kaag, NHBM, Dokkum, HP van, Jak, R.G., Schobben, HPM & Slob, W 1996, *Toxische effecten van olie in het aquatische milieu*, TNO report TNO-MEP R96/230, Den Helder.
- Spaulding, ML, Kolluru, VS, Anderson, E & Howlett, E 1994, 'Application of three-dimensional oil spill model (WOSM/OILMAP) to hindcast the Braer Spill', Spill Science and Technology Bulletin, vol. 1, no. 1, pp. 23–35.
- Suprayogi, B & Murray, F 1999, 'A field experiment of the physical and chemical effects of two oils on mangroves', *Environmental and Experimental Botany*, vol. 42, no. 3, pp. 221–229.

- Swartz RC, Schults DW, Ozretich RJ, Lamberson JO, Cole FA, Ferraro SP, Dewitt TH & Redmond MS 1995, 'ΣPAH: A Model to predict the toxicity of polynuclear aromatic hydrocarbon mixtures in field-collected sediments', *Environmental Toxicology and Chemistry*, vol. 14, no. 11, pp. 1977–1187.
- Verhaar, HJ, Van Leeuwen, CJ & Hermens, JL 1992, 'Classifying environmental pollutants', *Chemosphere*, vol. 25, no. 4, pp. 471-491.
- Verhaar, HJ, de Wolf, W, Dyer, S, Legierse, KC, Seinen, W & Hermens, JL 1999, 'An LC₅₀ vs time model for the aquatic toxicity of reactive and receptor-mediated compounds. Consequences for bioconcentration kinetics and risk assessment', *Environmental science & technology*, vol. 33, no. 5, pp.758-763.
- Willmott, CJ 1981, 'On the validation of models', Physical Geography, vol. 2, no. 2, pp.184–194.
- Willmott, CJ 1982, 'Some comments on the evaluation of model performance', *Bulletin of the American Meteorological Society*, vol. 63, no. 11, pp.1309–1313.
- Willmott CJ, Ackleson SG, Davis RE, Feddema JJ, Klink, KM, Legates, DR, O'Donnell, J & Rowe, CM 1985, 'Statistics for the evaluation of model performance', *Journal of Geophysical Research*, vol. I 90, no. C5, pp. 8995–9005.
- Willmott, CJ & Matsuura, K 2005, 'Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance', *Journal of Climate Research*, vol. 30, no. 1, pp. 79–82.
- Yaremchuk, M & Tangdong, Q 2004, 'Seasonal variability of the large-scale currents near the coast of the Philippines', *Journal of Physical Oceanography*, *vol.* 34, no., 4, pp. 844–855.
- Zigic, S, Zapata, M, Isaji, T, King, B, & Lemckert, C 2003, 'Modelling of Moreton Bay using an ocean/coastal circulation model', Proceedings of the 16th Australasian Coastal and Ocean Engineering Conference, the 9th Australasian Port and Harbour Conference and the Annual New Zealand Coastal Society Conference, Institution of Engineers Australia, Auckland, paper 170.